| /* |
| * Copyright 2024 Google LLC |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "tensorflow/lite/kernels/internal/reference/add.h" |
| |
| #include "tensorflow/lite/c/common.h" |
| #include "tensorflow/lite/kernels/internal/reference/integer_ops/add.h" |
| #include "tensorflow/lite/kernels/internal/reference/process_broadcast_shapes.h" |
| #include "tensorflow/lite/micro/kernels/add.h" |
| #include "tensorflow/lite/micro/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/micro_log.h" |
| #include "tflm/opt/opt.h" |
| |
| namespace tflite { |
| namespace { |
| |
| void* Init(TfLiteContext* context, const char* buffer, size_t length) { |
| TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); |
| return context->AllocatePersistentBuffer(context, sizeof(OpDataAdd)); |
| } |
| |
| TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { |
| return AddPrepare(context, node); |
| } |
| |
| TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { |
| TFLITE_DCHECK(node->user_data != nullptr); |
| const OpDataAdd* data = static_cast<const OpDataAdd*>(node->user_data); |
| |
| const TfLiteEvalTensor* input1 = |
| tflite::micro::GetEvalInput(context, node, kAddInputTensor1); |
| const TfLiteEvalTensor* input2 = |
| tflite::micro::GetEvalInput(context, node, kAddInputTensor2); |
| TfLiteEvalTensor* output = |
| tflite::micro::GetEvalOutput(context, node, kAddOutputTensor); |
| |
| if (output->type == kTfLiteFloat32) { |
| tflite::ArithmeticParams op_params; |
| SetActivationParams(data->output_activation_min_f32, |
| data->output_activation_max_f32, &op_params); |
| if (data->requires_broadcast) { |
| reference_ops::BroadcastAdd4DSlow( |
| op_params, tflite::micro::GetTensorShape(input1), |
| tflite::micro::GetTensorData<float>(input1), |
| tflite::micro::GetTensorShape(input2), |
| tflite::micro::GetTensorData<float>(input2), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<float>(output)); |
| } else { |
| reference_ops::Add(op_params, tflite::micro::GetTensorShape(input1), |
| tflite::micro::GetTensorData<float>(input1), |
| tflite::micro::GetTensorShape(input2), |
| tflite::micro::GetTensorData<float>(input2), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<float>(output)); |
| } |
| } else if (output->type == kTfLiteInt32) { |
| tflite::ArithmeticParams op_params; |
| SetActivationParams(std::numeric_limits<int32_t>::lowest(), |
| std::numeric_limits<int32_t>::max(), &op_params); |
| if (data->requires_broadcast) { |
| reference_ops::BroadcastAdd4DSlow( |
| op_params, tflite::micro::GetTensorShape(input1), |
| tflite::micro::GetTensorData<int32_t>(input1), |
| tflite::micro::GetTensorShape(input2), |
| tflite::micro::GetTensorData<int32_t>(input2), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<int32_t>(output)); |
| } else { |
| kelvin::opt::ElementwiseAddS32( |
| tflite::micro::GetTensorData<int32_t>(input1), |
| tflite::micro::GetTensorData<int32_t>(input2), |
| tflite::micro::GetTensorData<int32_t>(output), |
| op_params.quantized_activation_min, |
| op_params.quantized_activation_max, |
| MatchingElementsSize(tflite::micro::GetTensorShape(input1), |
| tflite::micro::GetTensorShape(input2), |
| tflite::micro::GetTensorShape(output))); |
| } |
| return kTfLiteOk; |
| } else if (output->type == kTfLiteInt16) { |
| tflite::ArithmeticParams op_params; |
| op_params.left_shift = data->left_shift; |
| op_params.input1_offset = data->input1_offset; |
| op_params.input1_multiplier = data->input1_multiplier; |
| op_params.input1_shift = data->input1_shift; |
| op_params.input2_offset = data->input2_offset; |
| op_params.input2_multiplier = data->input2_multiplier; |
| op_params.input2_shift = data->input2_shift; |
| op_params.output_offset = data->output_offset; |
| op_params.output_multiplier = data->output_multiplier; |
| op_params.output_shift = data->output_shift; |
| SetActivationParams(data->output_activation_min, |
| data->output_activation_max, &op_params); |
| |
| bool need_broadcast = reference_ops::ProcessBroadcastShapes( |
| tflite::micro::GetTensorShape(input1), |
| tflite::micro::GetTensorShape(input2), &op_params); |
| |
| if (need_broadcast) { |
| reference_ops::BroadcastAdd4DSlow( |
| op_params, tflite::micro::GetTensorShape(input1), |
| tflite::micro::GetTensorData<int16_t>(input1), |
| tflite::micro::GetTensorShape(input2), |
| tflite::micro::GetTensorData<int16_t>(input2), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<int16_t>(output)); |
| } else { |
| kelvin::opt::ElementwiseAddS16( |
| tflite::micro::GetTensorData<int16_t>(input1), |
| tflite::micro::GetTensorData<int16_t>(input2), |
| op_params.input1_offset, op_params.input1_multiplier, |
| op_params.input1_shift, op_params.input2_offset, |
| op_params.input2_multiplier, op_params.input2_shift, |
| op_params.left_shift, tflite::micro::GetTensorData<int16_t>(output), |
| op_params.output_offset, op_params.output_multiplier, |
| op_params.output_shift, op_params.quantized_activation_min, |
| op_params.quantized_activation_max, |
| MatchingElementsSize(tflite::micro::GetTensorShape(input1), |
| tflite::micro::GetTensorShape(input2), |
| tflite::micro::GetTensorShape(output))); |
| } |
| return kTfLiteOk; |
| } else if (output->type == kTfLiteInt8) { |
| tflite::ArithmeticParams op_params; |
| op_params.left_shift = data->left_shift; |
| op_params.input1_offset = data->input1_offset; |
| op_params.input1_multiplier = data->input1_multiplier; |
| op_params.input1_shift = data->input1_shift; |
| op_params.input2_offset = data->input2_offset; |
| op_params.input2_multiplier = data->input2_multiplier; |
| op_params.input2_shift = data->input2_shift; |
| op_params.output_offset = data->output_offset; |
| op_params.output_multiplier = data->output_multiplier; |
| op_params.output_shift = data->output_shift; |
| SetActivationParams(data->output_activation_min, |
| data->output_activation_max, &op_params); |
| |
| bool need_broadcast = reference_ops::ProcessBroadcastShapes( |
| tflite::micro::GetTensorShape(input1), |
| tflite::micro::GetTensorShape(input2), &op_params); |
| |
| if (need_broadcast) { |
| reference_integer_ops::BroadcastAdd4DSlow( |
| op_params, tflite::micro::GetTensorShape(input1), |
| tflite::micro::GetTensorData<int8_t>(input1), |
| tflite::micro::GetTensorShape(input2), |
| tflite::micro::GetTensorData<int8_t>(input2), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<int8_t>(output)); |
| } else { |
| kelvin::opt::ElementwiseAddS8( |
| tflite::micro::GetTensorData<int8_t>(input1), |
| tflite::micro::GetTensorData<int8_t>(input2), op_params.input1_offset, |
| op_params.input1_multiplier, op_params.input1_shift, |
| op_params.input2_offset, op_params.input2_multiplier, |
| op_params.input2_shift, op_params.left_shift, |
| tflite::micro::GetTensorData<int8_t>(output), op_params.output_offset, |
| op_params.output_multiplier, op_params.output_shift, |
| op_params.quantized_activation_min, |
| op_params.quantized_activation_max, |
| MatchingElementsSize(tflite::micro::GetTensorShape(input1), |
| tflite::micro::GetTensorShape(input2), |
| tflite::micro::GetTensorShape(output))); |
| } |
| } else { |
| MicroPrintf("Unsupported output type: %s", TfLiteTypeGetName(output->type)); |
| return kTfLiteError; |
| } |
| |
| return kTfLiteOk; |
| } |
| |
| } // namespace |
| |
| TFLMRegistration Register_ADD() { |
| return tflite::micro::RegisterOp(Init, Prepare, Eval); |
| } |
| |
| } // namespace tflite |