| /* |
| * Copyright 2024 Google LLC |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "tensorflow/lite/kernels/internal/reference/pooling.h" |
| |
| #include "tensorflow/lite/c/builtin_op_data.h" |
| #include "tensorflow/lite/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/kernels/pooling.h" |
| #include "tensorflow/lite/micro/micro_log.h" |
| #include "tflm/opt/opt.h" |
| |
| namespace tflite { |
| |
| namespace { |
| |
| TfLiteStatus AverageEval(TfLiteContext* context, TfLiteNode* node) { |
| TFLITE_DCHECK(node->builtin_data != nullptr); |
| auto* params = reinterpret_cast<TfLitePoolParams*>(node->builtin_data); |
| |
| TFLITE_DCHECK(node->user_data != nullptr); |
| const OpDataPooling* data = |
| static_cast<const OpDataPooling*>(node->user_data); |
| |
| const TfLiteEvalTensor* input = |
| micro::GetEvalInput(context, node, kPoolingInputTensor); |
| TfLiteEvalTensor* output = |
| micro::GetEvalOutput(context, node, kPoolingOutputTensor); |
| |
| // Inputs and outputs share the same type, guaranteed by the converter. |
| switch (input->type) { |
| case kTfLiteFloat32: |
| AveragePoolingEvalFloat(context, node, params, data, input, output); |
| break; |
| case kTfLiteInt8: |
| AveragePoolingEvalQuantized<int8_t>(context, node, params, data, input, |
| output); |
| break; |
| case kTfLiteInt16: |
| AveragePoolingEvalQuantized<int16_t>(context, node, params, data, input, |
| output); |
| break; |
| default: |
| MicroPrintf("Input type %s is not currently supported", |
| TfLiteTypeGetName(input->type)); |
| return kTfLiteError; |
| } |
| return kTfLiteOk; |
| } |
| |
| TfLiteStatus MaxEval(TfLiteContext* context, TfLiteNode* node) { |
| TFLITE_DCHECK(node->builtin_data != nullptr); |
| auto* params = reinterpret_cast<TfLitePoolParams*>(node->builtin_data); |
| |
| TFLITE_DCHECK(node->user_data != nullptr); |
| const OpDataPooling* data = |
| static_cast<const OpDataPooling*>(node->user_data); |
| |
| const TfLiteEvalTensor* input = |
| micro::GetEvalInput(context, node, kPoolingInputTensor); |
| TfLiteEvalTensor* output = |
| micro::GetEvalOutput(context, node, kPoolingOutputTensor); |
| |
| tflite::PoolParams op_params; |
| op_params.stride_height = params->stride_height; |
| op_params.stride_width = params->stride_width; |
| op_params.filter_height = params->filter_height; |
| op_params.filter_width = params->filter_width; |
| op_params.padding_values.height = data->padding.height; |
| op_params.padding_values.width = data->padding.width; |
| op_params.quantized_activation_min = data->activation_min; |
| op_params.quantized_activation_max = data->activation_max; |
| op_params.float_activation_min = data->activation_min_f32; |
| op_params.float_activation_max = data->activation_max_f32; |
| |
| switch (input->type) { |
| case kTfLiteFloat32: |
| reference_ops::MaxPool(op_params, tflite::micro::GetTensorShape(input), |
| tflite::micro::GetTensorData<float>(input), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<float>(output)); |
| break; |
| case kTfLiteInt8: |
| kelvin::opt::MaxPoolS8( |
| op_params, tflite::micro::GetTensorShape(input), input->data.int8, |
| tflite::micro::GetTensorShape(output), output->data.int8); |
| break; |
| case kTfLiteInt16: |
| kelvin::opt::MaxPoolS16( |
| op_params, tflite::micro::GetTensorShape(input), input->data.i16, |
| tflite::micro::GetTensorShape(output), output->data.i16); |
| break; |
| default: |
| MicroPrintf("Type %s not currently supported.", |
| TfLiteTypeGetName(input->type)); |
| return kTfLiteError; |
| } |
| return kTfLiteOk; |
| } |
| |
| void* Init(TfLiteContext* context, const char* buffer, size_t length) { |
| TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); |
| return context->AllocatePersistentBuffer(context, sizeof(OpDataPooling)); |
| } |
| |
| } // namespace |
| |
| TFLMRegistration Register_AVERAGE_POOL_2D() { |
| return tflite::micro::RegisterOp(Init, PoolingPrepare, AverageEval); |
| } |
| |
| TFLMRegistration Register_MAX_POOL_2D() { |
| return tflite::micro::RegisterOp(Init, PoolingPrepare, MaxEval); |
| } |
| |
| } // namespace tflite |