| /* |
| * Copyright 2024 Google LLC |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "tensorflow/lite/kernels/internal/reference/conv.h" |
| |
| #include "tensorflow/lite/c/common.h" |
| #include "tensorflow/lite/kernels/internal/portable_tensor_utils.h" |
| #include "tensorflow/lite/kernels/internal/reference/integer_ops/conv.h" |
| #include "tensorflow/lite/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/kernels/conv.h" |
| #include "tensorflow/lite/micro/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/micro_log.h" |
| #include "tflm/opt/opt.h" |
| |
| namespace tflite { |
| namespace { |
| |
| constexpr int kFilterHeightIndex = 1; |
| constexpr int kFilterWidthIndex = 2; |
| constexpr int kFilterInputChannelIndex = 3; |
| constexpr int kInputChannelIndex = 3; |
| constexpr int kOutputChannelIndex = 3; |
| |
| void* Init(TfLiteContext* context, const char* buffer, size_t length) { |
| TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); |
| return context->AllocatePersistentBuffer(context, sizeof(OpDataConv)); |
| } |
| |
| TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { |
| const TfLiteEvalTensor* input = |
| tflite::micro::GetEvalInput(context, node, kConvInputTensor); |
| const TfLiteEvalTensor* filter = |
| tflite::micro::GetEvalInput(context, node, kConvWeightsTensor); |
| const TfLiteEvalTensor* bias = |
| (NumInputs(node) == 3) |
| ? tflite::micro::GetEvalInput(context, node, kConvBiasTensor) |
| : nullptr; |
| TfLiteEvalTensor* output = |
| tflite::micro::GetEvalOutput(context, node, kConvOutputTensor); |
| |
| TFLITE_DCHECK(node->builtin_data != nullptr); |
| const auto& params = |
| *(reinterpret_cast<TfLiteConvParams*>(node->builtin_data)); |
| TFLITE_DCHECK(node->user_data != nullptr); |
| const auto& data = *(static_cast<const OpDataConv*>(node->user_data)); |
| |
| TF_LITE_ENSURE_EQ(context, input->type, output->type); |
| TF_LITE_ENSURE_MSG( |
| context, |
| input->type == filter->type || |
| (input->type == kTfLiteInt16 && filter->type == kTfLiteInt8) || |
| (input->type == kTfLiteInt8 && filter->type == kTfLiteInt4), |
| "Hybrid models are not supported on TFLite Micro."); |
| |
| switch (input->type) { // Already know in/out types are same. |
| case kTfLiteFloat32: { |
| tflite::reference_ops::Conv( |
| ConvParamsFloat(params, data), tflite::micro::GetTensorShape(input), |
| tflite::micro::GetTensorData<float>(input), |
| tflite::micro::GetTensorShape(filter), |
| tflite::micro::GetTensorData<float>(filter), |
| tflite::micro::GetTensorShape(bias), |
| tflite::micro::GetOptionalTensorData<float>(bias), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<float>(output), |
| tflite::micro::GetTensorShape(nullptr), nullptr); |
| break; |
| } |
| case kTfLiteInt16: { |
| const auto params_q = ConvParamsQuantized(params, data); |
| bool opt = !(params_q.padding_values.width > 0 || |
| params_q.padding_values.height > 0 || |
| params_q.dilation_width_factor > 1 || |
| params_q.dilation_height_factor > 1); |
| switch (bias->type) { |
| case kTfLiteInt32: { |
| const auto fn = opt ? kelvin::opt::ConvS16B32 |
| : reference_integer_ops::ConvPerChannel<int32_t>; |
| fn(params_q, data.per_channel_output_multiplier, |
| data.per_channel_output_shift, |
| tflite::micro::GetTensorShape(input), |
| tflite::micro::GetTensorData<int16_t>(input), |
| tflite::micro::GetTensorShape(filter), |
| tflite::micro::GetTensorData<int8_t>(filter), |
| tflite::micro::GetTensorShape(bias), |
| tflite::micro::GetOptionalTensorData<std::int32_t>(bias), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<int16_t>(output)); |
| break; |
| } |
| case kTfLiteInt64: { |
| const auto fn = opt ? kelvin::opt::ConvS16B64 |
| : reference_integer_ops::ConvPerChannel<int64_t>; |
| fn(params_q, data.per_channel_output_multiplier, |
| data.per_channel_output_shift, |
| tflite::micro::GetTensorShape(input), |
| tflite::micro::GetTensorData<int16_t>(input), |
| tflite::micro::GetTensorShape(filter), |
| tflite::micro::GetTensorData<int8_t>(filter), |
| tflite::micro::GetTensorShape(bias), |
| tflite::micro::GetOptionalTensorData<std::int64_t>(bias), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<int16_t>(output)); |
| break; |
| } |
| default: |
| MicroPrintf("Bias type %s (%d) not supported.", |
| TfLiteTypeGetName(bias->type), bias->type); |
| return kTfLiteError; |
| } |
| break; |
| } |
| case kTfLiteInt8: { |
| switch (filter->type) { |
| case kTfLiteInt4: { |
| int8_t* unpacked_filter_data = reinterpret_cast<int8_t*>( |
| context->GetScratchBuffer(context, data.filter_buffer_index)); |
| tflite::tensor_utils::UnpackDenseInt4IntoInt8( |
| tflite::micro::GetTensorData<int8_t>(filter), |
| tflite::micro::GetTensorShape(filter).FlatSize(), |
| unpacked_filter_data); |
| reference_integer_ops::ConvPerChannel( |
| ConvParamsQuantized(params, data), |
| data.per_channel_output_multiplier, data.per_channel_output_shift, |
| tflite::micro::GetTensorShape(input), |
| tflite::micro::GetTensorData<int8_t>(input), |
| tflite::micro::GetTensorShape(filter), unpacked_filter_data, |
| tflite::micro::GetTensorShape(bias), |
| tflite::micro::GetOptionalTensorData<int32_t>(bias), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<int8_t>(output)); |
| break; |
| } |
| case kTfLiteInt8: { |
| const auto params_q = ConvParamsQuantized(params, data); |
| kelvin::opt::ConvS8( |
| params_q, data.per_channel_output_multiplier, |
| data.per_channel_output_shift, |
| tflite::micro::GetTensorShape(input), |
| tflite::micro::GetTensorData<int8_t>(input), |
| tflite::micro::GetTensorShape(filter), |
| tflite::micro::GetTensorData<int8_t>(filter), |
| tflite::micro::GetTensorShape(bias), |
| tflite::micro::GetOptionalTensorData<int32_t>(bias), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<int8_t>(output)); |
| break; |
| } |
| default: |
| MicroPrintf("Weight type %s (%d) not supported.", |
| TfLiteTypeGetName(filter->type), filter->type); |
| return kTfLiteError; |
| } |
| break; |
| } |
| default: |
| MicroPrintf("Type %s (%d) not supported.", TfLiteTypeGetName(input->type), |
| input->type); |
| return kTfLiteError; |
| } |
| return kTfLiteOk; |
| } |
| |
| } // namespace |
| |
| TFLMRegistration Register_CONV_2D() { |
| return tflite::micro::RegisterOp(Init, ConvPrepare, Eval); |
| } |
| |
| } // namespace tflite |