| /* Copyright 2022 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| |
| #include <cstddef> |
| #include <cstdint> |
| |
| #include "tensorflow/lite/c/builtin_op_data.h" |
| #include "tensorflow/lite/c/common.h" |
| #include "tensorflow/lite/micro/kernels/kernel_runner.h" |
| #include "tensorflow/lite/micro/micro_utils.h" |
| #include "tensorflow/lite/micro/test_helpers.h" |
| #include "tensorflow/lite/micro/testing/micro_test.h" |
| |
| namespace tflite { |
| namespace testing { |
| namespace { |
| |
| // Simple test data for 2x2x10 input 2x3x10 weights. |
| const int simple_input_size = 20; |
| int simple_input_dims[] = {2, 2, 10}; |
| const float simple_input_data[] = { |
| 1, 2, 3, 4, 5, 6, 7, 8, -9, -10, // b = 0 |
| 1, 2, 3, 4, 5, 6, 7, -8, 9, -10, // b = 1 |
| }; |
| const int simple_weights_size = 30; |
| int simple_weights_dims[] = {2, 3, 10}; |
| const float simple_weights_data[] = { |
| 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, // u = 0 |
| 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, // u = 1 |
| 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, // u = 2 |
| }; |
| |
| // TODO(b/258710417): INT4 isn't currently supported on Hexagon. |
| #if !defined(HEXAGON) |
| const float simple_int4_weights_data[] = { |
| -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, // u = 0 |
| -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, // u = 1 |
| -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, // u = 2 |
| }; |
| const float simple_golden_null_bias_int4_weights[] = { |
| -28, -28, -28, 0, 0, 0, |
| }; |
| #endif |
| int simple_bias_dims[] = {1, 3}; |
| const float simple_bias_data[] = {1, 2, 3}; |
| const float simple_golden[] = { |
| 24, 25, 26, 58, 59, 60, |
| }; |
| const float simple_golden_null_bias[] = { |
| 23, 23, 23, 57, 57, 57, |
| }; |
| |
| const int simple_output_size = 6; |
| int simple_output_dims[] = {2, 2, 3}; |
| |
| // Test data for 2x2x10 input 2x3x10 weights with negative outputs to test relu. |
| const int relu_input_size = 20; |
| int relu_input_dims[] = {2, 2, 10}; |
| const float relu_input_data[] = { |
| 1, 2, 3, 4, 5, 6, 7, 8, -9, -10, // b = 0 |
| 1, 2, 3, 4, 5, 6, 7, -8, 9, -10, // b = 1 |
| }; |
| const int relu_weights_size = 30; |
| int relu_weights_dims[] = {2, 3, 10}; |
| const float relu_weights_data[] = { |
| 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, // u = 0 |
| -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, // u = 1 |
| 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, // u = 2 |
| }; |
| int relu_bias_dims[] = {1, 3}; |
| const float relu_bias_data[] = {1, -2, 3}; |
| const float relu_golden[] = { |
| 24, 0, 26, 58, 0, 60, |
| }; |
| const int relu_output_size = 6; |
| int relu_output_dims[] = {2, 2, 3}; |
| |
| // Input and filter similar to real model. Input shape is 1x64 and output is |
| // 1x16. |
| const int representative_64x16_input_size = 64; |
| int representative_64x16_input_dims[] = {2, 1, 64}; |
| const float representative_64x16_input_data[] = { |
| 0.0000, 0.1543, 0.0000, 0.0000, 1.8520, 0.0000, 4.7844, 1.1832, |
| 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 1.5948, 0.0000, |
| 1.5948, 1.9549, 0.0000, 1.2347, 0.0000, 1.5948, 1.5948, 0.5145, |
| 0.0000, 0.0000, 0.0000, 0.0000, 2.6237, 0.0000, 0.0000, 0.0000, |
| 1.3890, 5.3503, 2.3665, 2.9838, 0.0000, 1.2861, 0.0000, 3.0867, |
| 0.9775, 0.0000, 5.9676, 0.0000, 0.0000, 1.4405, 0.5145, 2.5723, |
| 3.1896, 4.4757, 0.0000, 0.0000, 0.0000, 0.0000, 4.1671, 0.0000, |
| 2.8295, 3.0353, 0.0000, 2.7780, 0.0000, 0.0000, 0.0000, 0.0000}; |
| const int representative_64x16_weights_size = 64 * 16; |
| int representative_64x16_weights_dims[] = {2, 16, 64}; |
| const float representative_64x16_weights_data[] = { |
| -0.1075, 0.1245, 0.1811, -0.1302, -0.1868, 0.0679, 0.1245, 0.2321, |
| -0.1981, -0.2094, 0.1358, -0.1698, 0.0113, 0.0566, 0.1358, -0.2490, |
| 0.0000, -0.1189, -0.0170, -0.0396, -0.3113, 0.1641, -0.4188, 0.0566, |
| -0.4471, 0.4754, -0.0396, 0.0113, -0.0340, 0.0170, 0.0170, 0.1811, |
| -0.0792, 0.4981, 0.2490, -0.1924, 0.0792, 0.1868, -0.1075, -0.3962, |
| 0.1358, 0.2547, -0.1245, -0.0962, -0.0283, 0.4132, -0.0057, -0.5150, |
| 0.1019, 0.1585, -0.0962, -0.2207, -0.2377, 0.2830, 0.4471, 0.0170, |
| 0.0566, 0.2038, 0.1019, -0.0226, 0.2830, 0.1415, 0.0283, -0.0792, |
| 0.4301, 0.3226, -0.1132, 0.4981, -0.3849, -0.2943, -0.2547, -0.2264, |
| 0.0453, -0.0170, 0.0396, 0.1415, 0.3000, 0.2547, 0.0962, 0.2151, |
| -0.1585, -0.1302, -0.0057, -0.2773, 0.0283, -0.0906, 0.1302, -0.1075, |
| -0.0566, 0.1755, 0.2773, 0.0283, 0.0566, 0.1528, -0.0736, -0.2830, |
| 0.0792, 0.0962, -0.2321, -0.0113, 0.2660, -0.2887, -0.0566, 0.0057, |
| -0.2547, -0.0679, -0.2321, 0.0340, 0.1868, 0.2490, 0.2264, -0.3509, |
| 0.1585, -0.0849, -0.0623, 0.1132, 0.3396, -0.2490, 0.1528, 0.0679, |
| 0.1755, 0.4754, -0.0057, -0.2151, -0.1415, -0.1302, -0.2717, 0.1641, |
| 0.5037, -0.2321, 0.0170, -0.1755, -0.1075, -0.0226, 0.2038, -0.0340, |
| -0.5150, -0.3113, 0.1472, -0.0226, 0.1528, 0.1189, -0.1472, 0.0396, |
| -0.3000, -0.1924, -0.0283, 0.0283, 0.1641, 0.0736, 0.1472, -0.1755, |
| -0.1132, 0.0113, -0.1868, -0.2604, -0.3283, -0.0509, 0.0283, -0.0679, |
| 0.0623, 0.0792, -0.0283, -0.0962, 0.0396, 0.1641, 0.4584, 0.3226, |
| 0.0226, -0.1811, 0.2377, -0.1019, 0.2321, 0.1811, -0.1924, -0.0057, |
| 0.0736, 0.0113, 0.2547, -0.2264, -0.0170, -0.0396, 0.1245, -0.1415, |
| 0.1755, 0.3679, -0.2377, -0.0396, -0.1585, -0.3000, -0.1641, -0.1302, |
| -0.0396, -0.1698, 0.1189, 0.2434, 0.1132, -0.1245, -0.1415, 0.0453, |
| 0.1868, -0.0906, -0.1189, -0.0509, 0.0057, -0.1189, -0.0057, 0.0170, |
| -0.1924, 0.2207, 0.0792, -0.4641, -0.2660, 0.2943, 0.1358, -0.0340, |
| -0.3339, -0.1189, 0.0906, -0.4358, 0.0453, -0.1755, 0.1415, 0.0340, |
| 0.1924, -0.0057, 0.2321, -0.2094, -0.1132, 0.0000, 0.1924, -0.3000, |
| 0.0340, -0.3396, -0.0906, -0.0340, 0.1641, -0.0226, -0.1472, -0.1019, |
| 0.2377, -0.0962, -0.3396, -0.5433, 0.0906, 0.2151, -0.0679, 0.1755, |
| 0.1528, 0.0283, -0.4188, -0.0340, -0.0057, -0.0679, 0.0509, 0.1472, |
| -0.3849, -0.0113, 0.3962, 0.0849, 0.1472, 0.0340, -0.1358, 0.1641, |
| -0.2038, 0.2151, -0.1189, -0.3679, 0.0906, -0.0679, 0.5716, -0.0057, |
| -0.0736, 0.0113, 0.2830, -0.2887, 0.0396, 0.0849, -0.0736, -0.0736, |
| -0.3679, 0.2264, 0.0113, -0.1641, 0.0396, -0.1132, -0.0623, 0.3113, |
| 0.5999, -0.1415, 0.1472, -0.2038, -0.1132, -0.2377, 0.0566, 0.1755, |
| -0.0057, -0.0453, 0.0226, 0.1132, 0.1698, 0.0340, -0.0226, 0.0226, |
| 0.4415, -0.3792, 0.0792, 0.3736, -0.5999, -0.3056, -0.1924, -0.1132, |
| -0.0962, 0.0283, 0.0000, -0.3339, -0.3226, 0.3679, -0.0453, -0.1641, |
| 0.0170, 0.1302, -0.0170, -0.0509, 0.1755, -0.0283, -0.1302, -0.2887, |
| -0.0679, 0.0340, 0.4641, 0.2321, 0.7188, 0.3339, -0.1075, 0.4754, |
| -0.0226, 0.3226, -0.1528, -0.0849, 0.0509, -0.1981, 0.0113, 0.2321, |
| 0.2773, -0.1019, 0.4075, 0.0396, 0.0792, 0.1132, -0.0906, -0.4188, |
| 0.1924, -0.3679, -0.6396, 0.1358, 0.4981, 0.4132, -0.0283, 0.3849, |
| -0.3509, -0.0566, -0.0962, 0.3113, -0.1811, 0.4019, 0.0453, -0.0057, |
| -0.1868, -0.2490, -0.0792, -0.3622, 0.1924, -0.0453, -0.1528, -0.1811, |
| 0.5943, -0.1302, 0.3170, -0.0170, 0.0509, -0.1528, -0.1755, 0.5547, |
| 0.2490, -0.0906, 0.0000, 0.1698, 0.0000, 0.0340, -0.1132, -0.0509, |
| -0.1755, -0.2943, 0.1472, 0.0849, 0.0000, 0.1528, -0.0566, 0.1528, |
| -0.5264, -0.5320, -0.0736, 0.0566, 0.2604, -0.4075, 0.0962, -0.3453, |
| -0.1415, 0.0057, 0.3905, 0.2830, 0.3679, 0.5320, -0.2660, 0.0340, |
| 0.0736, 0.0057, 0.2207, 0.4471, 0.0849, 0.3000, -0.0057, -0.0623, |
| 0.1415, -0.0566, 0.5264, -0.0340, 0.0226, -0.0623, -0.0113, -0.5037, |
| -0.4471, 0.0170, -0.0396, -0.1358, -0.1698, 0.1924, 0.0057, -0.1585, |
| 0.0849, -0.1698, 0.0057, -0.1245, -0.0170, -0.1755, -0.0792, 0.5264, |
| 0.1358, 0.2434, 0.1585, -0.4188, -0.1472, -0.1358, -0.0849, -0.1189, |
| 0.5037, 0.0736, -0.0453, -0.2434, 0.1868, -0.0679, 0.1415, -0.2717, |
| 0.2604, 0.0057, -0.1528, -0.1811, 0.0226, -0.1641, 0.3170, -0.1981, |
| 0.1245, 0.0226, 0.0566, 0.2830, -0.1755, 0.0396, -0.2094, 0.1924, |
| 0.1698, 0.0283, 0.1641, 0.0849, 0.0000, -0.1698, -0.1415, -0.3000, |
| 0.4471, 0.3056, -0.0283, -0.4245, -0.0453, 0.0226, 0.0000, -0.1075, |
| -0.1528, -0.3226, 0.2773, -0.2264, -0.1811, 0.1755, -0.3566, -0.4188, |
| 0.1755, -0.0057, 0.2038, 0.1075, 0.3679, -0.0792, 0.2207, -0.0453, |
| 0.3736, 0.2943, -0.0113, -0.0623, 0.2264, 0.0113, -0.0396, -0.2207, |
| 0.0453, -0.2830, -0.1302, 0.0623, -0.1924, -0.1811, -0.2717, 0.2830, |
| 0.2094, 0.0170, -0.3170, -0.0283, -0.1189, -0.0509, -0.0566, -0.3622, |
| 0.1132, -0.0906, 0.1132, 0.4019, -0.4698, -0.1019, -0.1075, -0.2094, |
| -0.2207, -0.0509, 0.0057, 0.1019, -0.0509, 0.2264, -0.5716, 0.0226, |
| -0.4019, 0.1641, -0.3000, 0.3849, 0.1245, 0.0679, 0.3056, 0.2377, |
| 0.0679, -0.0170, -0.5377, -0.0170, 0.0057, 0.1358, -0.1132, -0.2038, |
| 0.0679, 0.1075, -0.2773, 0.5943, 0.0623, -0.1472, 0.3566, 0.0396, |
| -0.2377, 0.2604, 0.0849, 0.1358, -0.3792, -0.0340, -0.1415, 0.3566, |
| -0.3736, 0.1245, 0.0566, 0.3396, 0.0736, 0.4019, -0.1528, 0.1075, |
| 0.0792, -0.2547, 0.0453, -0.1755, 0.1868, -0.2547, 0.1075, 0.0623, |
| 0.1698, -0.0170, 0.1585, -0.0736, -0.4358, -0.0113, -0.6792, -0.0849, |
| -0.0396, -0.6056, 0.1358, 0.1189, 0.2547, 0.1528, 0.2887, 0.0453, |
| -0.1075, -0.3283, -0.0453, -0.0509, 0.2038, 0.2547, 0.0849, -0.0566, |
| -0.1698, 0.0509, -0.0113, -0.1585, 0.1924, -0.0792, -0.1868, 0.0509, |
| -0.1698, -0.0849, -0.0170, 0.0453, 0.3170, 0.0906, -0.5943, -0.1245, |
| 0.1585, -0.1755, -0.2151, 0.0906, 0.1924, 0.3170, -0.2490, -0.5660, |
| -0.0283, 0.0962, -0.1358, 0.1585, 0.0057, -0.2604, 0.1189, -0.0170, |
| 0.3509, 0.0623, 0.0679, -0.1302, -0.0792, 0.0906, -0.0792, 0.0849, |
| -0.1924, 0.2604, -0.1245, -0.3679, 0.0340, 0.0113, -0.1698, 0.2490, |
| 0.0283, 0.1019, -0.3736, 0.1019, -0.2207, -0.0340, 0.3170, 0.1755, |
| 0.0962, 0.3226, -0.0113, -0.1189, -0.2321, -0.0226, -0.2434, -0.0170, |
| -0.1585, -0.0283, -0.1132, 0.0679, -0.4188, -0.0453, 0.1528, -0.1302, |
| -0.3792, 0.1415, -0.1358, -0.1811, 0.1302, 0.1415, 0.5207, 0.0509, |
| -0.1358, -0.0396, -0.2434, 0.0396, 0.0792, -0.2264, -0.1415, 0.0906, |
| 0.1245, 0.0170, 0.0623, -0.1415, 0.2773, -0.3566, -0.0396, 0.2887, |
| 0.4188, 0.1698, -0.2547, 0.1132, -0.0453, -0.0113, -0.1358, 0.1075, |
| 0.0566, 0.1075, 0.2604, -0.0849, -0.2490, 0.1415, 0.0509, -0.2151, |
| 0.0340, 0.1698, 0.0509, -0.0906, 0.0566, -0.1075, -0.2151, 0.2038, |
| -0.1924, -0.0113, 0.2830, 0.1358, -0.1189, 0.0113, -0.5603, -0.2830, |
| -0.2943, 0.0453, -0.0396, 0.1358, 0.0566, 0.2038, -0.3283, -0.0509, |
| 0.0509, 0.1641, 0.2094, -0.2038, -0.1868, -0.1585, -0.2207, -0.1302, |
| 0.0396, -0.1019, -0.0679, 0.1075, -0.4584, -0.2207, 0.2434, -0.0113, |
| 0.0849, 0.1755, -0.3056, 0.1585, -0.2547, 0.0453, 0.0906, -0.1358, |
| -0.0679, -0.0509, 0.0679, -0.3509, 0.0057, 0.0453, 0.4132, -0.1981, |
| 0.2264, -0.0736, 0.1075, 0.0679, -0.0906, -0.3113, 0.0509, 0.0849, |
| 0.2604, 0.0623, -0.3113, 0.3849, 0.0000, 0.6396, -0.2038, -0.1019, |
| 0.1245, -0.0453, 0.1641, 0.1075, -0.1075, -0.2660, -0.4528, -0.0566, |
| -0.0170, 0.0453, 0.0340, 0.1189, -0.2434, -0.0283, -0.1811, 0.2547, |
| 0.0000, -0.0226, 0.4471, 0.1019, -0.1472, 0.0849, 0.1075, 0.1075, |
| 0.0283, -0.2773, 0.4415, -0.1811, 0.2717, 0.3170, 0.0509, 0.0623, |
| -0.0962, 0.1585, -0.0792, -0.1811, -0.0792, -0.3283, 0.0962, -0.1698, |
| -0.0736, 0.0453, 0.0962, -0.3566, -0.4584, 0.3396, -0.4811, 0.3056, |
| -0.1755, 0.2490, -0.1698, -0.2377, -0.3339, -0.0453, 0.1811, 0.0736, |
| 0.0340, -0.0962, -0.0113, -0.3056, -0.3339, 0.2038, 0.2038, -0.1924, |
| 0.2547, -0.4471, -0.0849, -0.2038, 0.3566, -0.4811, 0.3453, 0.0849, |
| 0.1189, 0.3170, -0.1358, 0.2717, 0.0113, -0.4754, -0.1924, 0.4245, |
| -0.2773, 0.3453, 0.2264, 0.2943, 0.5320, 0.2773, -0.2264, -0.1019, |
| -0.1132, -0.3962, 0.3679, 0.0509, -0.0623, -0.0906, -0.5603, -0.1641, |
| -0.3170, -0.2377, 0.1415, -0.0509, 0.0792, 0.0170, -0.0226, -0.0057, |
| -0.1358, -0.4245, 0.3905, 0.3113, 0.0340, -0.1189, 0.2887, -0.2943, |
| -0.3056, 0.2434, 0.1019, -0.0170, 0.3849, 0.1528, -0.0736, -0.0170, |
| 0.0792, 0.1755, 0.0509, 0.3509, 0.1472, 0.1528, 0.1472, 0.0057, |
| 0.0113, -0.0113, -0.3283, -0.3962, -0.0792, -0.1245, -0.0283, -0.1868, |
| 0.4019, 0.2943, -0.0906, -0.2321, 0.6056, 0.1189, 0.0340, -0.2207, |
| -0.0453, 0.3339, 0.2377, -0.1641, 0.3736, 0.2151, -0.2547, 0.0453, |
| 0.1924, -0.1019, -0.0340, -0.2207, 0.3962, -0.4471, -0.2547, -0.2151, |
| -0.3736, 0.0283, 0.1189, 0.0283, 0.0736, 0.0396, 0.1019, 0.0283, |
| 0.0170, 0.2321, 0.3509, -0.0226, -0.0226, 0.0736, 0.0283, 0.1641, |
| -0.0906, 0.1811, 0.0226, 0.5716, -0.0396, -0.0509, -0.1641, -0.0509, |
| 0.4132, -0.2604, 0.1019, -0.0283, -0.0340, 0.0453, 0.1472, -0.0057, |
| 0.2717, -0.2094, 0.3396, 0.0340, 0.1245, 0.2547, -0.5886, 0.2717, |
| -0.0906, 0.1641, 0.0962, -0.0792, -0.0113, 0.2264, -0.0736, 0.3170, |
| 0.0623, 0.0679, 0.0623, -0.0792, -0.2207, 0.1924, 0.1245, -0.2773}; |
| int representative_64x16_bias_dims[] = {1, 16}; |
| const float representative_64x16_bias_data[] = { |
| -0.0084, 0.0006, 0.0000, 0.0000, -0.0087, -0.0006, -0.0003, -0.0003, |
| 0.0006, -0.0003, -0.0003, -0.0003, -0.0253, 0.0012, 0.0000, 0.0000}; |
| const float representative_64x16_golden[] = { |
| 3.8624, -2.9580, 4.3043, -1.2844, -1.5769, -2.7998, -0.1011, -3.4029, |
| -1.0557, -7.1931, -1.4852, -0.4163, 1.7186, -0.6965, 0.3580, 2.7378}; |
| const int representative_64x16_output_size = 16; |
| int representative_64x16_output_dims[] = {2, 1, 16}; |
| |
| template <typename T> |
| TfLiteStatus ValidateFullyConnectedGoldens( |
| TfLiteTensor* tensors, const int tensors_size, bool null_bias, |
| const TfLiteFusedActivation activation, const float tolerance, |
| const int output_len, const T* golden, T* output_data) { |
| TfLiteFullyConnectedParams builtin_data = { |
| activation, kTfLiteFullyConnectedWeightsFormatDefault, false, false, |
| kTfLiteNoType}; |
| |
| // Avoid variable length array warning. |
| constexpr int inputs_array_len = 4; |
| constexpr int outputs_array_len = 2; |
| int inputs_array_data[inputs_array_len]; |
| int outputs_array_data[outputs_array_len]; |
| |
| outputs_array_data[0] = 1; |
| inputs_array_data[1] = 0; |
| inputs_array_data[2] = 1; |
| |
| if (null_bias) { |
| inputs_array_data[0] = 2; |
| outputs_array_data[1] = 2; |
| } else { |
| inputs_array_data[0] = 3; |
| inputs_array_data[3] = 2; |
| outputs_array_data[1] = 3; |
| } |
| |
| TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data); |
| TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data); |
| |
| const TFLMRegistration registration = Register_FULLY_CONNECTED(); |
| micro::KernelRunner runner(registration, tensors, tensors_size, inputs_array, |
| outputs_array, |
| reinterpret_cast<void*>(&builtin_data)); |
| |
| TfLiteStatus status = runner.InitAndPrepare(); |
| if (status != kTfLiteOk) { |
| return status; |
| } |
| |
| status = runner.Invoke(); |
| if (status != kTfLiteOk) { |
| return status; |
| } |
| |
| for (int i = 0; i < output_len; ++i) { |
| TF_LITE_MICRO_EXPECT_NEAR(golden[i], output_data[i], tolerance); |
| } |
| return kTfLiteOk; |
| } |
| |
| TfLiteStatus TestFullyConnectedFloat( |
| int* input_dims_data, const float* input_data, int* weights_dims_data, |
| const float* weights_data, int* bias_dims_data, const float* bias_data, |
| const float* golden, int* output_dims_data, |
| TfLiteFusedActivation activation, float* output_data) { |
| TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data); |
| TfLiteIntArray* weights_dims = IntArrayFromInts(weights_dims_data); |
| TfLiteIntArray* bias_dims = IntArrayFromInts(bias_dims_data); |
| TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data); |
| const int output_dims_count = ElementCount(*output_dims); |
| bool null_bias = bias_data == nullptr ? true : false; |
| |
| constexpr int array_size = 4; // Avoid variable length array warning. |
| const int inputs_size = bias_data == nullptr ? 2 : 3; |
| constexpr int outputs_size = 1; |
| const int tensors_size = inputs_size + outputs_size; |
| TfLiteTensor tensors[array_size]; |
| |
| tensors[0] = CreateTensor(input_data, input_dims); |
| tensors[1] = CreateTensor(weights_data, weights_dims); |
| |
| if (bias_data == nullptr) { |
| tensors[2] = CreateTensor(output_data, output_dims); |
| } else { |
| tensors[2] = CreateTensor(bias_data, bias_dims); |
| tensors[3] = CreateTensor(output_data, output_dims); |
| } |
| |
| return ValidateFullyConnectedGoldens(tensors, tensors_size, null_bias, |
| activation, 1e-4f, output_dims_count, |
| golden, output_data); |
| } |
| |
| template <typename dataT, typename weightT, typename biasT> |
| TfLiteStatus TestFullyConnectedQuantized( |
| int* input_dims_data, const float* input_data, dataT* input_quantized, |
| const float input_scale, const int input_zero_point, int* weights_dims_data, |
| const float* weights_data, weightT* weights_quantized, |
| const float weights_scale, const int weights_zero_point, |
| int* bias_dims_data, const float* bias_data, biasT* bias_quantized, |
| const float* golden, dataT* golden_quantized, int* output_dims_data, |
| const float output_scale, const int output_zero_point, |
| TfLiteFusedActivation activation, dataT* output_data, |
| TfLiteType weights_packed_type = kTfLiteNoType) { |
| TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data); |
| TfLiteIntArray* weights_dims = IntArrayFromInts(weights_dims_data); |
| TfLiteIntArray* bias_dims = IntArrayFromInts(bias_dims_data); |
| TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data); |
| const int output_dims_count = ElementCount(*output_dims); |
| bool null_bias = bias_data == nullptr ? true : false; |
| |
| constexpr int array_size = 4; // Avoid variable length array warning. |
| const int inputs_size = bias_data == nullptr ? 2 : 3; |
| constexpr int outputs_size = 1; |
| const int tensors_size = inputs_size + outputs_size; |
| TfLiteTensor tensors[array_size]; |
| |
| tensors[0] = CreateQuantizedTensor(input_data, input_quantized, input_dims, |
| input_scale, input_zero_point); |
| tensors[1] = CreateQuantizedTensor( |
| weights_data, weights_quantized, weights_dims, weights_scale, |
| weights_zero_point, false, weights_packed_type); |
| if (bias_data == nullptr) { |
| tensors[2] = CreateQuantizedTensor(output_data, output_dims, output_scale, |
| output_zero_point); |
| } else { |
| tensors[2] = CreateQuantizedBiasTensor(bias_data, bias_quantized, bias_dims, |
| input_scale, weights_scale), |
| tensors[3] = CreateQuantizedTensor(output_data, output_dims, output_scale, |
| output_zero_point); |
| } |
| |
| Quantize(golden, golden_quantized, output_dims_count, output_scale, |
| output_zero_point); |
| |
| return ValidateFullyConnectedGoldens(tensors, tensors_size, null_bias, |
| activation, 0.0f, output_dims_count, |
| golden_quantized, output_data); |
| } |
| |
| } // namespace |
| } // namespace testing |
| } // namespace tflite |
| |
| TF_LITE_MICRO_TESTS_BEGIN |
| |
| TF_LITE_MICRO_TEST(SimpleTest) { |
| float output_data[tflite::testing::simple_output_size]; |
| TF_LITE_MICRO_EXPECT_EQ( |
| tflite::testing::TestFullyConnectedFloat( |
| tflite::testing::simple_input_dims, |
| tflite::testing::simple_input_data, |
| tflite::testing::simple_weights_dims, |
| tflite::testing::simple_weights_data, |
| tflite::testing::simple_bias_dims, tflite::testing::simple_bias_data, |
| tflite::testing::simple_golden, tflite::testing::simple_output_dims, |
| kTfLiteActNone, output_data), |
| kTfLiteOk); |
| } |
| |
| TF_LITE_MICRO_TEST(SimpleTestNullBias) { |
| float output_data[tflite::testing::simple_output_size]; |
| TF_LITE_MICRO_EXPECT_EQ( |
| tflite::testing::TestFullyConnectedFloat( |
| tflite::testing::simple_input_dims, |
| tflite::testing::simple_input_data, |
| tflite::testing::simple_weights_dims, |
| tflite::testing::simple_weights_data, nullptr, nullptr, |
| tflite::testing::simple_golden_null_bias, |
| tflite::testing::simple_output_dims, kTfLiteActNone, output_data), |
| kTfLiteOk); |
| } |
| |
| TF_LITE_MICRO_TEST(SimpleTestQuantizedInt8) { |
| const float input_scale = 1.0f; |
| const int input_zero_point = -1; |
| const float weights_scale = 1.0f; |
| const int weights_zero_point = 0; |
| const float output_scale = 0.5f; |
| const int output_zero_point = -1; |
| |
| int8_t input_quantized[tflite::testing::simple_input_size]; |
| int8_t weights_quantized[tflite::testing::simple_weights_size]; |
| int32_t bias_quantized[tflite::testing::simple_output_size]; |
| int8_t golden_quantized[tflite::testing::simple_output_size]; |
| int8_t output_data[tflite::testing::simple_output_size]; |
| |
| TF_LITE_MICRO_EXPECT_EQ( |
| tflite::testing::TestFullyConnectedQuantized( |
| tflite::testing::simple_input_dims, |
| tflite::testing::simple_input_data, input_quantized, input_scale, |
| input_zero_point, tflite::testing::simple_weights_dims, |
| tflite::testing::simple_weights_data, weights_quantized, |
| weights_scale, weights_zero_point, tflite::testing::simple_bias_dims, |
| tflite::testing::simple_bias_data, bias_quantized, |
| tflite::testing::simple_golden, golden_quantized, |
| tflite::testing::simple_output_dims, output_scale, output_zero_point, |
| kTfLiteActNone, output_data), |
| kTfLiteOk); |
| } |
| |
| #if !defined(HEXAGON) |
| TF_LITE_MICRO_TEST(SimpleTestQuantizedInt16) { |
| const float input_scale = 128.0 / 65536; |
| const int input_zero_point = 0; |
| const float weights_scale = 1.0f; |
| const int weights_zero_point = 0; |
| const float output_scale = 128.0 / 65536; |
| const int output_zero_point = 0; |
| |
| const float simple_golden[] = {24, 25, 26, 58, 59, 60}; |
| int16_t input_quantized[tflite::testing::simple_input_size]; |
| int8_t weights_quantized[tflite::testing::simple_weights_size]; |
| int64_t bias_quantized[tflite::testing::simple_output_size]; |
| int16_t golden_quantized[tflite::testing::simple_output_size]; |
| int16_t output_data[tflite::testing::simple_output_size]; |
| |
| TF_LITE_MICRO_EXPECT_EQ( |
| tflite::testing::TestFullyConnectedQuantized( |
| tflite::testing::simple_input_dims, |
| tflite::testing::simple_input_data, input_quantized, input_scale, |
| input_zero_point, tflite::testing::simple_weights_dims, |
| tflite::testing::simple_weights_data, weights_quantized, |
| weights_scale, weights_zero_point, tflite::testing::simple_bias_dims, |
| tflite::testing::simple_bias_data, bias_quantized, simple_golden, |
| golden_quantized, tflite::testing::simple_output_dims, output_scale, |
| output_zero_point, kTfLiteActNone, output_data), |
| kTfLiteOk); |
| } |
| #endif |
| |
| TF_LITE_MICRO_TEST(SimpleTest4DInputQuantizedInt8) { |
| const float input_scale = 1.0f; |
| const int input_zero_point = -1; |
| const float weights_scale = 1.0f; |
| const int weights_zero_point = 0; |
| |
| const float output_scale = 0.5f; |
| const int output_zero_point = -1; |
| |
| int input_dims_4d[] = {4, 1, 1, 2, 10}; |
| |
| int8_t input_quantized[tflite::testing::simple_input_size]; |
| int8_t weights_quantized[tflite::testing::simple_weights_size]; |
| int32_t bias_quantized[tflite::testing::simple_output_size]; |
| int8_t golden_quantized[tflite::testing::simple_output_size]; |
| int8_t output_data[tflite::testing::simple_output_size]; |
| |
| TF_LITE_MICRO_EXPECT_EQ( |
| tflite::testing::TestFullyConnectedQuantized( |
| input_dims_4d, tflite::testing::simple_input_data, input_quantized, |
| input_scale, input_zero_point, tflite::testing::simple_weights_dims, |
| tflite::testing::simple_weights_data, weights_quantized, |
| weights_scale, weights_zero_point, tflite::testing::simple_bias_dims, |
| tflite::testing::simple_bias_data, bias_quantized, |
| tflite::testing::simple_golden, golden_quantized, |
| tflite::testing::simple_output_dims, output_scale, output_zero_point, |
| kTfLiteActNone, output_data), |
| kTfLiteOk); |
| } |
| |
| TF_LITE_MICRO_TEST(SimpleTestQuantizedInt8Relu) { |
| const float input_scale = 1.0f; |
| const int input_zero_point = -1; |
| const float weights_scale = 1.0f; |
| const int weights_zero_point = 0; |
| |
| const float output_scale = 0.5f; |
| const int output_zero_point = -128; |
| |
| int8_t input_quantized[tflite::testing::relu_input_size]; |
| int8_t weights_quantized[tflite::testing::relu_weights_size]; |
| int32_t bias_quantized[tflite::testing::relu_output_size]; |
| int8_t golden_quantized[tflite::testing::relu_output_size]; |
| int8_t output_data[tflite::testing::relu_output_size]; |
| |
| TF_LITE_MICRO_EXPECT_EQ( |
| tflite::testing::TestFullyConnectedQuantized( |
| tflite::testing::relu_input_dims, tflite::testing::relu_input_data, |
| input_quantized, input_scale, input_zero_point, |
| tflite::testing::relu_weights_dims, |
| tflite::testing::relu_weights_data, weights_quantized, weights_scale, |
| weights_zero_point, tflite::testing::relu_bias_dims, |
| tflite::testing::relu_bias_data, bias_quantized, |
| tflite::testing::relu_golden, golden_quantized, |
| tflite::testing::relu_output_dims, output_scale, output_zero_point, |
| kTfLiteActRelu, output_data), |
| kTfLiteOk); |
| } |
| |
| TF_LITE_MICRO_TEST(SimpleTest4DInput) { |
| int input_dims_4d[] = {4, 1, 1, 2, 10}; |
| |
| float output_data[tflite::testing::simple_output_size]; |
| |
| TF_LITE_MICRO_EXPECT_EQ( |
| tflite::testing::TestFullyConnectedFloat( |
| input_dims_4d, tflite::testing::simple_input_data, |
| tflite::testing::simple_weights_dims, |
| tflite::testing::simple_weights_data, |
| tflite::testing::simple_bias_dims, tflite::testing::simple_bias_data, |
| tflite::testing::simple_golden, tflite::testing::simple_output_dims, |
| kTfLiteActNone, output_data), |
| kTfLiteOk); |
| } |
| |
| TF_LITE_MICRO_TEST(Representative1x64Input1x16Output) { |
| float output_data[tflite::testing::representative_64x16_output_size]; |
| |
| TF_LITE_MICRO_EXPECT_EQ( |
| tflite::testing::TestFullyConnectedFloat( |
| tflite::testing::representative_64x16_input_dims, |
| tflite::testing::representative_64x16_input_data, |
| tflite::testing::representative_64x16_weights_dims, |
| tflite::testing::representative_64x16_weights_data, |
| tflite::testing::representative_64x16_bias_dims, |
| tflite::testing::representative_64x16_bias_data, |
| tflite::testing::representative_64x16_golden, |
| tflite::testing::representative_64x16_output_dims, kTfLiteActNone, |
| output_data), |
| kTfLiteOk); |
| } |
| |
| TF_LITE_MICRO_TEST(Representative1x64Input1x16OutputQuantizedInt8) { |
| const float input_scale = 0.051445; |
| const int input_zero_point = -128; |
| const float weights_scale = 0.005660; |
| const int weights_zero_point = 0; |
| |
| const float output_scale = 0.069785; |
| const int output_zero_point = -9; |
| |
| int8_t input_quantized[tflite::testing::representative_64x16_input_size]; |
| int8_t weights_quantized[tflite::testing::representative_64x16_weights_size]; |
| int32_t bias_quantized[tflite::testing::representative_64x16_output_size]; |
| int8_t golden_quantized[tflite::testing::representative_64x16_output_size]; |
| int8_t output_data[tflite::testing::representative_64x16_output_size]; |
| |
| TF_LITE_MICRO_EXPECT_EQ( |
| tflite::testing::TestFullyConnectedQuantized( |
| tflite::testing::representative_64x16_input_dims, |
| tflite::testing::representative_64x16_input_data, input_quantized, |
| input_scale, input_zero_point, |
| tflite::testing::representative_64x16_weights_dims, |
| tflite::testing::representative_64x16_weights_data, weights_quantized, |
| weights_scale, weights_zero_point, |
| tflite::testing::representative_64x16_bias_dims, |
| tflite::testing::representative_64x16_bias_data, bias_quantized, |
| tflite::testing::representative_64x16_golden, golden_quantized, |
| tflite::testing::representative_64x16_output_dims, output_scale, |
| output_zero_point, kTfLiteActNone, output_data), |
| kTfLiteOk); |
| } |
| |
| TF_LITE_MICRO_TEST(SimpleTestQuantizedInt8NullBias) { |
| const float input_scale = 1.0f; |
| const int input_zero_point = -1; |
| const float weights_scale = 1.0f; |
| const int weights_zero_point = 0; |
| const float output_scale = 0.5f; |
| const int output_zero_point = -1; |
| |
| int8_t input_quantized[tflite::testing::simple_input_size]; |
| int8_t weights_quantized[tflite::testing::simple_weights_size]; |
| int8_t golden_quantized[tflite::testing::simple_output_size]; |
| int8_t output_data[tflite::testing::simple_output_size]; |
| |
| TF_LITE_MICRO_EXPECT_EQ( |
| tflite::testing::TestFullyConnectedQuantized( |
| tflite::testing::simple_input_dims, |
| tflite::testing::simple_input_data, input_quantized, input_scale, |
| input_zero_point, tflite::testing::simple_weights_dims, |
| tflite::testing::simple_weights_data, weights_quantized, |
| weights_scale, weights_zero_point, nullptr, nullptr, |
| static_cast<int32_t*>(nullptr), |
| tflite::testing::simple_golden_null_bias, golden_quantized, |
| tflite::testing::simple_output_dims, output_scale, output_zero_point, |
| kTfLiteActNone, output_data), |
| kTfLiteOk); |
| } |
| |
| // TODO(b/258710417): INT4 isn't currently supported on Hexagon. |
| #if !defined(HEXAGON) |
| // This test was created by handcrafting simple_int4_weights_data, and |
| // simple_golden_null_bias_int4_weights was obtained by running |
| // TestFullyConnectedQuantized() with int8 quantization, and ensuring that int4 |
| // quantization yields the same outputs. |
| TF_LITE_MICRO_TEST(SimpleTestQuantizedInt4Weights) { |
| const float input_scale = 1.0f; |
| const int input_zero_point = -1; |
| const float weights_scale = 1.0f; |
| const int weights_zero_point = 0; |
| const float output_scale = 0.5f; |
| const int output_zero_point = -1; |
| |
| int8_t input_quantized[tflite::testing::simple_input_size]; |
| int8_t weights_quantized[tflite::testing::simple_weights_size]; |
| int8_t golden_quantized[tflite::testing::simple_output_size]; |
| int8_t output_data[tflite::testing::simple_output_size]; |
| |
| TF_LITE_MICRO_EXPECT_EQ( |
| tflite::testing::TestFullyConnectedQuantized( |
| tflite::testing::simple_input_dims, |
| tflite::testing::simple_input_data, input_quantized, input_scale, |
| input_zero_point, tflite::testing::simple_weights_dims, |
| tflite::testing::simple_int4_weights_data, weights_quantized, |
| weights_scale, weights_zero_point, nullptr, nullptr, |
| static_cast<int32_t*>(nullptr), |
| tflite::testing::simple_golden_null_bias_int4_weights, |
| golden_quantized, tflite::testing::simple_output_dims, output_scale, |
| output_zero_point, kTfLiteActNone, output_data, kTfLiteInt4), |
| kTfLiteOk); |
| } |
| #endif |
| |
| TF_LITE_MICRO_TESTS_END |