Merge remote-tracking branch 'spacebeaker/upstream' into master

Change-Id: Ieb5c6acc9bbafad3813c83058a9e40089fee2e3c
diff --git a/.bazelrc b/.bazelrc
index 55bf613..af0b2fd 100644
--- a/.bazelrc
+++ b/.bazelrc
@@ -15,6 +15,18 @@
 #
 # TFLM Bazel configuration file.
 
+# The semver-format version label embedded in build outputs when and where
+# stamping is used. Note TFLM does not currently publish semver-versioned
+# releases; however, this value is used where a version label is required, such
+# as in the Python distribution package.
+build --embed_label=0
+
+# Get stamp values from a script's output
+build --workspace_status_command=./tools/workspace_status.sh
+
+# TODO(b/315853820): Needed for Bazel 7.0, until migrated to bzlmod
+build --noenable_bzlmod
+
 # Use the following C++ standard
 build --cxxopt -std=c++17
 
diff --git a/.bazelversion b/.bazelversion
new file mode 100644
index 0000000..66ce77b
--- /dev/null
+++ b/.bazelversion
@@ -0,0 +1 @@
+7.0.0
diff --git a/.github/mergify.yml b/.github/mergify.yml
index 79b9fc9..4d3b6ad 100644
--- a/.github/mergify.yml
+++ b/.github/mergify.yml
@@ -1,6 +1,7 @@
 queue_rules:
   - name: default
     checks_timeout: 2 h
+    branch_protection_injection_mode: queue
     conditions:
       - base=main
       - label=ci:ready_to_merge
@@ -14,7 +15,6 @@
     actions:
       queue:
         name: default
-        require_branch_protection: true
         method: squash
         commit_message_template: |
           {{ title }} (#{{ number }})
diff --git a/.github/workflows/ci.yml b/.github/workflows/ci.yml
index 8728675..1386751 100644
--- a/.github/workflows/ci.yml
+++ b/.github/workflows/ci.yml
@@ -35,7 +35,6 @@
         run: |
           sudo ci/install_bazelisk.sh
           pip3 install Pillow
-          pip3 install Wave
           pip3 install numpy
       - name: Test
         run: |
@@ -56,7 +55,6 @@
         run: |
           sudo ci/install_bazelisk.sh
           pip3 install Pillow
-          pip3 install Wave
           pip3 install numpy
       - name: Test
         run: |
@@ -77,8 +75,12 @@
         run: |
           sudo ci/install_bazelisk.sh
           pip3 install Pillow
-          pip3 install Wave
           pip3 install numpy
+      - name: Fix kernel mmap rnd bits
+        # Asan in llvm 14 provided in ubuntu 22.04 is incompatible with
+        # high-entropy ASLR in much newer kernels that GitHub runners are
+        # using leading to random crashes: https://reviews.llvm.org/D148280
+        run: sudo sysctl vm.mmap_rnd_bits=28
       - name: Test
         run: |
           tensorflow/lite/micro/tools/ci_build/test_bazel_msan.sh
@@ -98,8 +100,12 @@
         run: |
           sudo ci/install_bazelisk.sh
           pip3 install Pillow
-          pip3 install Wave
           pip3 install numpy
+      - name: Fix kernel mmap rnd bits
+        # Asan in llvm 14 provided in ubuntu 22.04 is incompatible with
+        # high-entropy ASLR in much newer kernels that GitHub runners are
+        # using leading to random crashes: https://reviews.llvm.org/D148280
+        run: sudo sysctl vm.mmap_rnd_bits=28
       - name: Test
         run: |
           tensorflow/lite/micro/tools/ci_build/test_bazel_asan.sh
@@ -118,7 +124,6 @@
       - name: Install dependencies
         run: |
           pip3 install Pillow
-          pip3 install Wave
           pip3 install numpy
       - name: Test
         run: |
@@ -139,7 +144,6 @@
       - name: Install dependencies
         run: |
           pip3 install Pillow
-          pip3 install Wave
           pip3 install numpy
       - name: Test
         run: |
@@ -160,7 +164,6 @@
       - name: Install dependencies
         run: |
           pip3 install Pillow
-          pip3 install Wave
           pip3 install numpy
       - name: Test
         run: |
@@ -213,7 +216,6 @@
       - name: Install dependencies
         run: |
           pip3 install Pillow
-          pip3 install Wave
           pip3 install numpy
       - name: Test
         run: |
@@ -234,7 +236,6 @@
       - name: Install dependencies
         run: |
           pip3 install Pillow
-          pip3 install Wave
           pip3 install numpy
       - name: Test
         run: |
@@ -256,7 +257,6 @@
       - name: Install dependencies
         run: |
           pip3 install Pillow
-          pip3 install Wave
           pip3 install numpy
       - name: Test
         run: |
@@ -278,7 +278,6 @@
       - name: Install dependencies
         run: |
           pip3 install Pillow
-          pip3 install Wave
           pip3 install numpy
       - name: Test
         run: |
@@ -300,7 +299,6 @@
       - name: Install dependencies
         run: |
           pip3 install Pillow
-          pip3 install Wave
           pip3 install numpy
       - name: Test
         run: |
diff --git a/.github/workflows/cortex_m.yml b/.github/workflows/cortex_m.yml
index 26fe77d..a1e8168 100644
--- a/.github/workflows/cortex_m.yml
+++ b/.github/workflows/cortex_m.yml
@@ -14,24 +14,40 @@
   # Allow manually triggering of the workflow.
   workflow_dispatch: {}
 
+  pull_request_target:
+    types:
+      - closed
+      - labeled
+
+  workflow_call:
+    inputs:
+      trigger-sha:
+        required: true
+        type: string
+    secrets:
+      tflm-bot-token:
+        required: true
+
 jobs:
   cortex_m_generic:
     runs-on: ubuntu-latest
 
     if: |
       github.event_name == 'workflow_dispatch' ||
-      (github.event_name == 'schedule' && github.repository == 'tensorflow/tflite-micro')
+      (github.event_name == 'schedule' &&
+       github.repository == 'tensorflow/tflite-micro') ||
+      (github.event.action == 'labeled' &&
+       github.event.label.name == 'ci:run_full')
 
     name: Cortex-M Generic
     steps:
       - uses: actions/setup-python@v4
-        with: 
+        with:
           python-version: '3.10'
       - uses: actions/checkout@v2
       - name: Install dependencies
         run: |
           pip3 install Pillow
-          pip3 install Wave
           pip3 install numpy
       - name: Test
         run: |
@@ -42,18 +58,20 @@
 
     if: |
       github.event_name == 'workflow_dispatch' ||
-      (github.event_name == 'schedule' && github.repository == 'tensorflow/tflite-micro')
+      (github.event_name == 'schedule' &&
+       github.repository == 'tensorflow/tflite-micro') ||
+      (github.event.action == 'labeled' &&
+       github.event.label.name == 'ci:run_full')
 
     name: Cortex-M Corstone 300 (FVP)
     steps:
       - uses: actions/setup-python@v4
-        with: 
+        with:
           python-version: '3.10'
       - uses: actions/checkout@v2
       - name: Install dependencies
         run: |
           pip3 install Pillow
-          pip3 install Wave
           pip3 install numpy
       - name: Test
         run: |
diff --git a/.github/workflows/generate_integration_tests.yml b/.github/workflows/generate_integration_tests.yml
index 91c8f18..74ed944 100644
--- a/.github/workflows/generate_integration_tests.yml
+++ b/.github/workflows/generate_integration_tests.yml
@@ -30,7 +30,6 @@
       - name: Install dependencies
         run: |
           pip3 install Pillow
-          pip3 install Wave
           pip3 install numpy
       - name: Test
         run: |
diff --git a/.github/workflows/pypi_build.yml b/.github/workflows/pypi_build.yml
new file mode 100644
index 0000000..52a8075
--- /dev/null
+++ b/.github/workflows/pypi_build.yml
@@ -0,0 +1,54 @@
+# YAML schema for GitHub Actions:
+# https://help.github.com/en/actions/automating-your-workflow-with-github-actions/workflow-syntax-for-github-actions
+#
+# Helpful YAML parser to clarify YAML syntax:
+# https://yaml-online-parser.appspot.com/
+#
+
+name: PyPI Build
+
+on:
+  schedule:
+    # 1pm UTC is 6am or 7am PT depending on daylight savings.
+    - cron: '0 13 * * *'
+
+  workflow_dispatch:
+    inputs:
+      upload-type:
+        description: 'Upload type'
+        required: true
+        default: 'pypi'
+        type: choice
+        options:
+          - 'pypi'
+          - 'no upload'
+env:
+  TWINE_PASSWORD: ${{ secrets.PYPI_API_KEY }}
+
+jobs:
+  pypi-build:
+    runs-on: ubuntu-latest
+    steps:
+      - uses: actions/checkout@v2
+        with:
+          token: ${{ secrets.TFLM_BOT_REPO_TOKEN }}
+      - name: Build Wheel 3.10
+        run: |
+          python/tflite_micro/pypi_build.sh cp310
+      - name: Build Wheel 3.11
+        run: |
+          python/tflite_micro/pypi_build.sh cp311
+      - name: Check Directory Output
+        run: |
+          ls -l bazel-pypi-out
+      - name: Install Twine
+        run: |
+          python -m pip install --upgrade pip setuptools wheel
+          pip install twine
+      - name: upload to pypi
+        if: |
+          github.event.inputs.upload-type == 'pypi' ||
+          github.event_name == 'schedule'
+        run: |
+          python/tflite_micro/pypi_upload.sh \
+          bazel-pypi-out/tflite_micro-*.whl
\ No newline at end of file
diff --git a/.github/workflows/sync.yml b/.github/workflows/sync.yml
index d505a9d..0c5434e 100644
--- a/.github/workflows/sync.yml
+++ b/.github/workflows/sync.yml
@@ -62,5 +62,5 @@
           author: TFLM-bot <tflm-github-bot@google.com>
           body: "BUG=automated sync from upstream\nNO_CHECK_TFLITE_FILES=automated sync from upstream"
           labels: bot:sync-tf, ci:run
-          reviewers: advaitjain
+          reviewers: rascani
 
diff --git a/.github/workflows/tests_entry.yml b/.github/workflows/tests_entry.yml
index 07cf617..1ed4de1 100644
--- a/.github/workflows/tests_entry.yml
+++ b/.github/workflows/tests_entry.yml
@@ -28,9 +28,10 @@
     runs-on: ubuntu-latest
     steps:
       - name: fail-without-labels
-        if: ${{ !(contains(github.event.pull_request.labels.*.name, 'ci:run') ||
-          contains(github.event.pull_request.labels.*.name, 'ci:ready_to_merge') ||
-          contains(github.event.pull_request.labels.*.name, 'ci:run_full')) }}
+        if: github.event.action == 'labeled' &&
+          !(github.event.label.name == 'ci:run' ||
+            github.event.label.name == 'ci:ready_to_merge' ||
+            github.event.label.name == 'ci:run_full')
         run: exit 1
 
   ci-ready-to-merge:
@@ -60,7 +61,8 @@
     needs: ci-ready-to-merge
     steps:
       - name: remove-cirun
-        if: ${{ contains(github.event.pull_request.labels.*.name, 'ci:run') }}
+        if: github.event.action == 'labeled' &&
+            github.event.label.name == 'ci:run'
         uses: actions/github-script@v5
         with:
           github-token: ${{ secrets.TFLM_BOT_REPO_TOKEN }}
@@ -78,7 +80,8 @@
     needs: ci-run
     steps:
       - name: remove-cirun-full
-        if: ${{ contains(github.event.pull_request.labels.*.name, 'ci:run_full') }}
+        if: github.event.action == 'labeled' &&
+            github.event.label.name == 'ci:run_full'
         uses: actions/github-script@v5
         with:
           github-token: ${{ secrets.TFLM_BOT_REPO_TOKEN }}
@@ -102,7 +105,7 @@
           echo "PR description requires a BUG= line with issue number."
           echo "See https://testing.googleblog.com/2017/09/code-health-providing-context-with.html for additional context"
           exit 1
-  
+
   call-ci:
     needs: ci-run
     uses: ./.github/workflows/ci.yml
@@ -128,7 +131,7 @@
   call-check-tflite-files:
     needs: ci-run
     uses: ./.github/workflows/check_tflite_files.yml
-    with: 
+    with:
       trigger-sha: ${{ github.event.pull_request.head.sha }}
       pr-number: ${{ github.event.pull_request.number }}
       pr-body: ${{ github.event.pull_request.body }}
diff --git a/.github/workflows/tests_post.yml b/.github/workflows/tests_post.yml
index 719adaa..d15b092 100644
--- a/.github/workflows/tests_post.yml
+++ b/.github/workflows/tests_post.yml
@@ -11,46 +11,12 @@
       - labeled
 
 jobs:
-  riscv_postmerge:
-    if: ${{ github.event.pull_request.merged == true ||
-      contains(github.event.pull_request.labels.*.name, 'ci:run_full') }}
-    uses: ./.github/workflows/riscv_postmerge.yml
-    with:
-      trigger-sha: ${{ github.event.pull_request.head.sha }}
-    secrets:
-      tflm-bot-token: ${{ secrets.TFLM_BOT_PACKAGE_READ_TOKEN }}
-
-  xtensa_postmerge:
-    if: ${{ github.event.pull_request.merged == true ||
-            contains(github.event.pull_request.labels.*.name, 'ci:run_full') }}
-    uses: ./.github/workflows/xtensa_postmerge.yml
-    with:
-      trigger-sha: ${{ github.event.pull_request.head.sha }}
-    secrets:
-      tflm-bot-token: ${{ secrets.TFLM_BOT_PACKAGE_READ_TOKEN }}
-
-  issue_on_error:
-    needs: [riscv_postmerge,xtensa_postmerge]
-    if: ${{ always() && contains(needs.*.result, 'failure') &&
-            !contains(github.event.pull_request.labels.*.name, 'ci:run_full') }}
-    uses: ./.github/workflows/issue_on_error.yml
-    with:
-      repo: ${{ github.repository}}
-      workflow: ${{ github.workflow }}
-      run_number: ${{ github.run_number }}
-      run_id: ${{ github.run_id }}
-      flag_label: ci:bot_issue
-      pr_number: ${{ github.event.number }}
-      pr_link: ${{ github.event.pull_request._links.html.href }}
-    secrets:
-      token: ${{ secrets.GITHUB_TOKEN }}
-
   ci_run_full:
-    needs: [issue_on_error]
     runs-on: ubuntu-latest
     steps:
       - name: remove-cirun-full
-        if: ${{ contains(github.event.pull_request.labels.*.name, 'ci:run_full') }}
+        if: github.event.action == 'labeled' &&
+            github.event.label.name == 'ci:run_full'
         uses: actions/github-script@v5
         with:
           github-token: ${{ secrets.TFLM_BOT_REPO_TOKEN }}
@@ -63,3 +29,48 @@
             })
         continue-on-error: true
 
+  riscv_postmerge:
+    needs: [ci_run_full]
+    if: always() && github.event.pull_request.merged == true ||
+        (github.event.action == 'labeled' &&
+         github.event.label.name == 'ci:run_full')
+    uses: ./.github/workflows/riscv_postmerge.yml
+    with:
+      trigger-sha: ${{ github.event.pull_request.head.sha }}
+    secrets:
+      tflm-bot-token: ${{ secrets.TFLM_BOT_PACKAGE_READ_TOKEN }}
+
+  xtensa_postmerge:
+    needs: [ci_run_full]
+    if: always() && github.event.pull_request.merged == true ||
+        (github.event.action == 'labeled' &&
+         github.event.label.name == 'ci:run_full')
+    uses: ./.github/workflows/xtensa_postmerge.yml
+    with:
+      trigger-sha: ${{ github.event.pull_request.head.sha }}
+    secrets:
+      tflm-bot-token: ${{ secrets.TFLM_BOT_PACKAGE_READ_TOKEN }}
+
+  cortex_m_ci_full:
+    needs: [ci_run_full]
+    uses: ./.github/workflows/cortex_m.yml
+    with:
+      trigger-sha: ${{ github.event.pull_request.head.sha }}
+    secrets:
+      tflm-bot-token: ${{ secrets.TFLM_BOT_PACKAGE_READ_TOKEN }}
+
+  issue_on_error:
+    needs: [riscv_postmerge, xtensa_postmerge, cortex_m_ci_full]
+    if: ${{ always() && contains(needs.*.result, 'failure') &&
+            github.event.pull_request.merged == true }}
+    uses: ./.github/workflows/issue_on_error.yml
+    with:
+      repo: ${{ github.repository}}
+      workflow: ${{ github.workflow }}
+      run_number: ${{ github.run_number }}
+      run_id: ${{ github.run_id }}
+      flag_label: ci:bot_issue
+      pr_number: ${{ github.event.number }}
+      pr_link: ${{ github.event.pull_request._links.html.href }}
+    secrets:
+      token: ${{ secrets.GITHUB_TOKEN }}
diff --git a/.github/workflows/xtensa_postmerge.yml b/.github/workflows/xtensa_postmerge.yml
index 8e1188e..d91cc94 100644
--- a/.github/workflows/xtensa_postmerge.yml
+++ b/.github/workflows/xtensa_postmerge.yml
@@ -31,7 +31,7 @@
       - run: |
           rm -rf .git
           echo ${{ secrets.tflm-bot-token }} | docker login ghcr.io -u tflm-bot --password-stdin
-          docker run --env XTENSA_TOOLS_VERSION=RI-2020.4-linux --rm -v `pwd`:/opt/tflite-micro ghcr.io/tflm-bot/xtensa_xplorer_13:0.1 \
+          docker run --env XTENSA_TOOLS_VERSION=RI-2020.4-linux --rm -v `pwd`:/opt/tflite-micro ghcr.io/tflm-bot/xtensa_xplorer_13:0.3 \
           /bin/bash -c \
           "cd /opt && tflite-micro/tensorflow/lite/micro/tools/ci_build/test_xtensa_fusion_f1.sh EXTERNAL tflite-micro/"
 
@@ -46,7 +46,7 @@
       - run: |
           rm -rf .git
           echo ${{ secrets.tflm-bot-token }} | docker login ghcr.io -u tflm-bot --password-stdin
-          docker run --env XTENSA_TOOLS_VERSION=RI-2020.4-linux --rm -v `pwd`:/opt/tflite-micro ghcr.io/tflm-bot/xtensa_xplorer_13:0.1 \
+          docker run --env XTENSA_TOOLS_VERSION=RI-2020.4-linux --rm -v `pwd`:/opt/tflite-micro ghcr.io/tflm-bot/xtensa_xplorer_13:0.3 \
           /bin/bash -c \
           "cd /opt && tflite-micro/tensorflow/lite/micro/tools/ci_build/test_xtensa_vision_p6.sh RUN_TESTS tflite-micro/"
 
@@ -61,6 +61,6 @@
       - run: |
           rm -rf .git
           echo ${{ secrets.tflm-bot-token }} | docker login ghcr.io -u tflm-bot --password-stdin
-          docker run --env XTENSA_TOOLS_VERSION=RI-2019.2-linux --rm -v `pwd`:/opt/tflite-micro ghcr.io/tflm-bot/xtensa_xplorer_11:0.1 \
+          docker run --env XTENSA_TOOLS_VERSION=RI-2019.2-linux --rm -v `pwd`:/opt/tflite-micro ghcr.io/tflm-bot/xtensa_xplorer_11:0.2 \
           /bin/bash -c \
           "cd /opt && tflite-micro/tensorflow/lite/micro/tools/ci_build/test_xtensa_hifimini.sh tflite-micro/"
diff --git a/.github/workflows/xtensa_presubmit.yml b/.github/workflows/xtensa_presubmit.yml
index 58c4258..519aff9 100644
--- a/.github/workflows/xtensa_presubmit.yml
+++ b/.github/workflows/xtensa_presubmit.yml
@@ -32,7 +32,7 @@
       - run: |
           rm -rf .git
           echo ${{ secrets.tflm-bot-token }} | docker login ghcr.io -u tflm-bot --password-stdin
-          docker run --env XTENSA_TOOLS_VERSION=RI-2020.4-linux --rm -v `pwd`:/opt/tflite-micro ghcr.io/tflm-bot/xtensa_xplorer_13:0.1 \
+          docker run --env XTENSA_TOOLS_VERSION=RI-2020.4-linux --rm -v `pwd`:/opt/tflite-micro ghcr.io/tflm-bot/xtensa_xplorer_13:0.3 \
           /bin/bash -c \
           "cd /opt && tflite-micro/tensorflow/lite/micro/tools/ci_build/test_xtensa_vision_p6.sh RUN_NO_TESTS tflite-micro/"
 
@@ -47,7 +47,7 @@
       - run: |
           rm -rf .git
           echo ${{ secrets.tflm-bot-token }} | docker login ghcr.io -u tflm-bot --password-stdin
-          docker run --env XTENSA_TOOLS_VERSION=RI-2022.9-linux --rm -v `pwd`:/opt/tflite-micro ghcr.io/tflm-bot/xtensa_hifi5:0.1 \
+          docker run --env XTENSA_TOOLS_VERSION=RI-2022.9-linux --rm -v `pwd`:/opt/tflite-micro ghcr.io/tflm-bot/xtensa_xplorer_hifi5:0.2 \
           /bin/bash -c \
           "cd /opt && tflite-micro/tensorflow/lite/micro/tools/ci_build/test_xtensa_hifi5.sh tflite-micro/"
 
@@ -62,6 +62,6 @@
       - run: |
           rm -rf .git
           echo ${{ secrets.tflm-bot-token }} | docker login ghcr.io -u tflm-bot --password-stdin
-          docker run --env XTENSA_TOOLS_VERSION=RI-2020.4-linux --rm -v `pwd`:/opt/tflite-micro ghcr.io/tflm-bot/xtensa_xplorer_13:0.1 \
+          docker run --env XTENSA_TOOLS_VERSION=RI-2020.4-linux --rm -v `pwd`:/opt/tflite-micro ghcr.io/tflm-bot/xtensa_xplorer_13:0.3 \
           /bin/bash -c \
           "cd /opt && tflite-micro/tensorflow/lite/micro/tools/ci_build/test_xtensa_hifi3z.sh EXTERNAL tflite-micro/"
diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md
index a442570..e1410af 100644
--- a/CONTRIBUTING.md
+++ b/CONTRIBUTING.md
@@ -4,25 +4,27 @@
 -->
 
 <!--ts-->
-   * [How to Contribute](#how-to-contribute)
-      * [Contributor License Agreement](#contributor-license-agreement)
-      * [Community Guidelines](#community-guidelines)
-   * [Code Contribution Guidelines](#code-contribution-guidelines)
-      * [General Pull Request Guidelines](#general-pull-request-guidelines)
-      * [Guidelines for Specific Contribution Categories](#guidelines-for-specific-contribution-categories)
-         * [Bug Fixes](#bug-fixes)
-         * [Reference Kernel Implementations](#reference-kernel-implementations)
-         * [Optimized Kernel Implementations](#optimized-kernel-implementations)
-         * [New Target / Platform / IDE / Examples](#new-target--platform--ide--examples)
-   * [Development Workflow Notes](#development-workflow-notes)
-      * [Initial Setup](#initial-setup)
-      * [Before submitting your PR](#before-submitting-your-pr)
-      * [During the PR review](#during-the-pr-review)
-      * [Reviewer notes](#reviewer-notes)
-      * [Python notes](#python-notes)
-   * [Continuous Integration System](#continuous-integration-system)
+* [How to Contribute](#how-to-contribute)
+   * [Contributor License Agreement](#contributor-license-agreement)
+   * [Community Guidelines](#community-guidelines)
+* [Code Contribution Guidelines](#code-contribution-guidelines)
+   * [General Pull Request Guidelines](#general-pull-request-guidelines)
+   * [Guidelines for Specific Contribution Categories](#guidelines-for-specific-contribution-categories)
+      * [Bug Fixes](#bug-fixes)
+      * [Reference Kernel Implementations](#reference-kernel-implementations)
+      * [Optimized Kernel Implementations](#optimized-kernel-implementations)
+      * [New Target / Platform / IDE / Examples](#new-target--platform--ide--examples)
+* [Development Environment](#development-environment)
+   * [Prerequisites](#prerequisites)
+   * [Recommendations](#recommendations)
+* [Development Workflow Notes](#development-workflow-notes)
+   * [Before submitting your PR](#before-submitting-your-pr)
+   * [During the PR review](#during-the-pr-review)
+   * [Reviewer notes](#reviewer-notes)
+   * [Python notes](#python-notes)
+* [Continuous Integration System](#continuous-integration-system)
 
-<!-- Added by: advaitjain, at: Thu 16 Sep 2021 11:43:42 AM PDT -->
+<!-- Added by: rkuester, at: Fri Dec 15 04:25:41 PM CST 2023 -->
 
 <!--te-->
 
@@ -143,10 +145,20 @@
 Please see the [new platform support guide](tensorflow/lite/micro/docs/new_platform_support.md)
 for documentation on how to add TFLM support for your particular platform.
 
+# Development Environment
 
-# Development Workflow Notes
+We support amd64-architecture development and testing on Ubuntu 22.04, although
+other OSes may work.
 
-## Initial Setup
+## Prerequisites
+
+TFLM's primary build system is [Bazel](https://bazel.build). Add
+[Bazelisk](https://github.com/bazelbuild/bazelisk) as the `bazel` executable in
+your PATH ([e.g., copy it to `/usr/local/bin/bazel`](ci/install_bazelisk.sh)) to
+automatically download and run the correct Bazel version as specified in
+`//.bazelversion`.
+
+## Recommendations
 
 Below are some tips that might be useful and improve the development experience.
 
@@ -156,7 +168,9 @@
 * Code search the [TfLite Micro codebase](https://sourcegraph.com/github.com/tensorflow/tflite-micro@main)
   on Sourcegraph. And optionally install the [plugin that enables GitHub integration](https://docs.sourcegraph.com/integration/github#github-integration-with-sourcegraph).
 
-* Install [bazel](ci/install_bazelisk.sh) and [buildifier](ci/install_buildifier.sh).
+* Install
+  [Buildifier](https://github.com/bazelbuild/buildtools/blob/master/buildifier/README.md)
+  ([e.g.](ci/install_buildifier.sh)) to format Bazel BUILD and .bzl files.
 
 * Install the latest clang and clang-format. For example, [here](ci/Dockerfile.micro)
   is the what we do for the TFLM continuous integration Docker container.
@@ -164,8 +178,8 @@
 * Get a copy of [cpplint](https://github.com/google/styleguide/tree/gh-pages/cpplint)
   or install it:
 
-* Install Pillow and Wave.  For example, [here](ci/Dockerfile.micro) is what we
-  do for the TFLM continuous integration Docker container.
+* Install Pillow.  For example, [here](ci/Dockerfile.micro) is what we do for
+  the TFLM continuous integration Docker container.
 
   ```
   pip install cpplint
@@ -184,6 +198,8 @@
   cp tensorflow/lite/micro/tools/dev_setup/pre-push.tflm .git/hooks/pre-push
   ```
 
+# Development Workflow Notes
+
 ## Before submitting your PR
 
 1.  Run in-place clang-format on all the files that are modified in your git
diff --git a/WORKSPACE b/WORKSPACE
index f881df9..48202f5 100644
--- a/WORKSPACE
+++ b/WORKSPACE
@@ -15,54 +15,72 @@
 
 workspace(name = "tflite_micro")
 
+load("//tensorflow:workspace.bzl", "workspace")
+
+workspace()
+
 load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive")
 
 # compile_commands.json generator
 http_archive(
     name = "hedron_compile_commands",
-    url = "https://github.com/hedronvision/bazel-compile-commands-extractor/archive/1266d6a25314d165ca78d0061d3399e909b7920e.tar.gz",
-    strip_prefix = "bazel-compile-commands-extractor-1266d6a25314d165ca78d0061d3399e909b7920e",
     sha256 = "bacabfe758676fdc19e4bea7c4a3ac99c7e7378d259a9f1054d341c6a6b44ff6",
+    strip_prefix = "bazel-compile-commands-extractor-1266d6a25314d165ca78d0061d3399e909b7920e",
+    url = "https://github.com/hedronvision/bazel-compile-commands-extractor/archive/1266d6a25314d165ca78d0061d3399e909b7920e.tar.gz",
 )
+
 load("@hedron_compile_commands//:workspace_setup.bzl", "hedron_compile_commands_setup")
+
 hedron_compile_commands_setup()
 
+_rules_python_version = "0.26.0"
+
 http_archive(
     name = "rules_python",
-    sha256 = "497ca47374f48c8b067d786b512ac10a276211810f4a580178ee9b9ad139323a",
-    strip_prefix = "rules_python-0.16.1",
-    url = "https://github.com/bazelbuild/rules_python/archive/refs/tags/0.16.1.tar.gz",
+    sha256 = "9d04041ac92a0985e344235f5d946f71ac543f1b1565f2cdbc9a2aaee8adf55b",
+    strip_prefix = "rules_python-{}".format(_rules_python_version),
+    url = "https://github.com/bazelbuild/rules_python/archive/refs/tags/{}.tar.gz".format(_rules_python_version),
 )
 
+load("@rules_python//python:repositories.bzl", "py_repositories")
+
+py_repositories()
+
+# Read the Python package dependencies of the build environment. To modify
+# them, see //third_party:python_requirements.in.
 load("@rules_python//python:pip.bzl", "pip_parse")
+
 pip_parse(
     name = "tflm_pip_deps",
     requirements_lock = "//third_party:python_requirements.txt",
 )
 
+# Create repositories for each Python package dependency.
 load("@tflm_pip_deps//:requirements.bzl", "install_deps", "requirement")
+
 install_deps()
 
-load("//tensorflow:workspace.bzl", "workspace")
-workspace()
-
 http_archive(
-  name = "pybind11_bazel",
-  strip_prefix = "pybind11_bazel-faf56fb3df11287f26dbc66fdedf60a2fc2c6631",
-  urls = ["https://github.com/pybind/pybind11_bazel/archive/faf56fb3df11287f26dbc66fdedf60a2fc2c6631.zip"],
-  sha256 = "a185aa68c93b9f62c80fcb3aadc3c83c763854750dc3f38be1dadcb7be223837",
+    name = "pybind11_bazel",
+    sha256 = "a185aa68c93b9f62c80fcb3aadc3c83c763854750dc3f38be1dadcb7be223837",
+    strip_prefix = "pybind11_bazel-faf56fb3df11287f26dbc66fdedf60a2fc2c6631",
+    urls = ["https://github.com/pybind/pybind11_bazel/archive/faf56fb3df11287f26dbc66fdedf60a2fc2c6631.zip"],
 )
 
 http_archive(
-  name = "pybind11",
-  build_file = "@pybind11_bazel//:pybind11.BUILD",
-  strip_prefix = "pybind11-2.10.0",
-  urls = ["https://github.com/pybind/pybind11/archive/refs/tags/v2.10.0.tar.gz"],
-  sha256 = "eacf582fa8f696227988d08cfc46121770823839fe9e301a20fbce67e7cd70ec",
+    name = "pybind11",
+    build_file = "@pybind11_bazel//:pybind11.BUILD",
+    sha256 = "eacf582fa8f696227988d08cfc46121770823839fe9e301a20fbce67e7cd70ec",
+    strip_prefix = "pybind11-2.10.0",
+    urls = ["https://github.com/pybind/pybind11/archive/refs/tags/v2.10.0.tar.gz"],
 )
 
 load("@pybind11_bazel//:python_configure.bzl", "python_configure")
-python_configure(name = "local_config_python", python_version = "3")
+
+python_configure(
+    name = "local_config_python",
+    python_version = "3",
+)
 
 load("//python:py_pkg_cc_deps.bzl", "py_pkg_cc_deps")
 
@@ -76,5 +94,13 @@
     name = "tensorflow_cc_deps",
     includes = ["tensorflow/include"],
     libs = ["tensorflow/libtensorflow_framework.so.2"],
-    pkg = requirement("tensorflow-cpu"),
+    pkg = requirement("tensorflow"),
+)
+
+# Optimized kernel deps
+http_archive(
+    name = "nnlib_hifi4",
+    build_file = "@tflite_micro//third_party/xtensa/nnlib_hifi4:nnlib_hifi4.BUILD",
+    strip_prefix = "nnlib-hifi4-34f5f995f28d298ae2b6e2ba6e76c32a5cb34989",
+    urls = ["https://github.com/foss-xtensa/nnlib-hifi4/archive/34f5f995f28d298ae2b6e2ba6e76c32a5cb34989.zip"],
 )
diff --git a/ci/Dockerfile.micro b/ci/Dockerfile.micro
index 6ce775e..0515cca 100644
--- a/ci/Dockerfile.micro
+++ b/ci/Dockerfile.micro
@@ -59,7 +59,6 @@
 # https://github.com/tensorflow/tflite-micro/pull/337
 # https://github.com/tensorflow/tflite-micro/pull/410
 RUN pip install Pillow
-RUN pip install Wave
 
 # necessary bits for create_size_log scripts
 RUN pip install pandas
diff --git a/ci/Dockerfile.xtensa_xplorer_11 b/ci/Dockerfile.xtensa_xplorer_11
new file mode 100644
index 0000000..fa7f316
--- /dev/null
+++ b/ci/Dockerfile.xtensa_xplorer_11
@@ -0,0 +1,49 @@
+FROM python:3.10-bullseye
+ENV DEBIAN_FRONTEND noninterative
+
+RUN \
+  apt update && \
+  apt install -y \
+    automake \
+    build-essential \
+    curl \
+    git \
+    unzip \
+    wget
+
+WORKDIR /opt/xtensa
+
+COPY ./Xplorer-8.0.11-linux-x64-installer.bin .
+COPY ./mini1m1m_RI_2019_2_linux_w_keys.tgz .
+COPY ./XtensaTools_RI_2022_9_linux.tgz .
+COPY ci/install_cores_xplorer_11.sh .
+COPY ci/install_bazelisk.sh .
+
+RUN \
+  pip3 install Pillow
+
+RUN \
+  pip3 install numpy
+
+RUN \
+  chmod +x Xplorer-8.0.11-linux-x64-installer.bin && \
+  ./Xplorer-8.0.11-linux-x64-installer.bin --prefix /opt/xtensa --mode unattended
+
+ENV XTENSA_BASE "/opt/xtensa/XtDevTools/install/"
+
+RUN \
+  chmod +x install_cores_xplorer_11.sh && \
+  ./install_cores_xplorer_11.sh
+
+RUN ./install_bazelisk.sh
+
+RUN \
+  rm Xplorer-8.0.11-linux-x64-installer.bin && \
+  rm mini1m1m_RI_2019_2_linux_w_keys.tgz && \
+  rm XtensaTools_RI_2022_9_linux.tgz && \
+  rm -f install_cores_xplorer_11.sh
+
+ENV LIC_DIR "/opt/xtensa/licenses/RI-2020.4-linux"
+ENV LM_LICENSE_FILE "/opt/xtensa/licenses/RI-2019.2-linux/mini1m1m_RG/misc/license.dat"
+
+CMD /opt/xtensa/XtDevTools/install/tools/RI-2020.4-linux/XtensaTools/bin/xt-clang++ --xtensa-core=
diff --git a/ci/Dockerfile.xtensa_xplorer_13 b/ci/Dockerfile.xtensa_xplorer_13
new file mode 100644
index 0000000..d50be6c
--- /dev/null
+++ b/ci/Dockerfile.xtensa_xplorer_13
@@ -0,0 +1,51 @@
+FROM python:3.10-bullseye
+ENV DEBIAN_FRONTEND noninterative
+
+RUN \
+  apt update && \
+  apt install -y \
+    automake \
+    build-essential \
+    curl \
+    git \
+    unzip \
+    wget
+
+WORKDIR /opt/xtensa
+
+COPY ./Xplorer-8.0.13-linux-x64-installer.bin .
+COPY ./F1_190305_swupgrade_linux.tgz .
+COPY ./P6_200528_linux.tgz .
+COPY ./HIFI_190304_swupgrade_linux.tgz .
+COPY ci/install_cores_xplorer_13.sh .
+COPY ci/install_bazelisk.sh .
+
+RUN \
+  pip3 install Pillow
+
+RUN \
+  pip3 install numpy
+
+RUN \
+  chmod +x Xplorer-8.0.13-linux-x64-installer.bin && \
+  ./Xplorer-8.0.13-linux-x64-installer.bin --prefix /opt/xtensa --mode unattended
+
+ENV XTENSA_BASE "/opt/xtensa/XtDevTools/install/"
+
+RUN \
+  chmod +x install_cores_xplorer_13.sh && \
+  ./install_cores_xplorer_13.sh
+
+RUN ./install_bazelisk.sh
+
+RUN \
+  rm Xplorer-8.0.13-linux-x64-installer.bin && \
+  rm F1_190305_swupgrade_linux.tgz && \
+  rm P6_200528_linux.tgz && \
+  rm HIFI_190304_swupgrade_linux.tgz && \
+  rm -f install_cores_xplorer_13.sh
+
+ENV LIC_DIR "/opt/xtensa/licenses/RI-2020.4-linux"
+ENV LM_LICENSE_FILE "${LIC_DIR}/F1_190305_swupgrade/misc/license.dat:${LIC_DIR}/AE_HiFi5_LE5_AO_FP_XC/misc/license.dat:${LIC_DIR}/P6_200528/misc/license.dat:${LIC_DIR}/HIFI_190304_swupgrade/misc/license.dat"
+
+CMD /opt/xtensa/XtDevTools/install/tools/RI-2020.4-linux/XtensaTools/bin/xt-clang++ --xtensa-core=
diff --git a/ci/Dockerfile.xtensa_xplorer_solo b/ci/Dockerfile.xtensa_xplorer_solo
new file mode 100644
index 0000000..e7fe205
--- /dev/null
+++ b/ci/Dockerfile.xtensa_xplorer_solo
@@ -0,0 +1,49 @@
+FROM python:3.10-bullseye
+ENV DEBIAN_FRONTEND noninterative
+
+RUN \
+  apt update && \
+  apt install -y \
+    automake \
+    build-essential \
+    curl \
+    git \
+    unzip \
+    wget
+
+WORKDIR /opt/xtensa
+
+COPY ./Xplorer-solo-9.0.19-linux-x64-installer.bin .
+COPY ./PRD_H5_RDO_07_01_2022_linux.tgz .
+COPY ./XtensaTools_RI_2022_9_linux.tgz .
+COPY ci/install_cores_xplorer_solo.sh .
+COPY ci/install_bazelisk.sh .
+
+RUN \
+  pip3 install Pillow
+
+RUN \
+  pip3 install numpy
+
+RUN \
+  chmod +x Xplorer-solo-9.0.19-linux-x64-installer.bin && \
+  ./Xplorer-solo-9.0.19-linux-x64-installer.bin --prefix /opt/xtensa --mode unattended
+
+ENV XTENSA_BASE "/opt/xtensa/XtDevTools/install/"
+
+RUN \
+  chmod +x install_cores_xplorer_solo.sh && \
+  ./install_cores_xplorer_solo.sh
+
+RUN ./install_bazelisk.sh
+
+RUN \
+  rm Xplorer-solo-9.0.19-linux-x64-installer.bin && \
+  rm PRD_H5_RDO_07_01_2022_linux.tgz && \
+  rm XtensaTools_RI_2022_9_linux.tgz && \
+  rm -f install_cores_xplorer_solo.sh
+
+ENV LIC_DIR "/opt/xtensa/licenses/RI-2020.4-linux"
+ENV LM_LICENSE_FILE "/opt/xtensa/licenses/RI-2022.9-linux/PRD_H5_RDO_07_01_2022/misc/license.dat"
+
+CMD /opt/xtensa/XtDevTools/install/tools/RI-2020.4-linux/XtensaTools/bin/xt-clang++ --xtensa-core=
diff --git a/ci/flatbuffers_for_tf_sync/BUILD b/ci/flatbuffers_for_tf_sync/BUILD
deleted file mode 100644
index 82bab3f..0000000
--- a/ci/flatbuffers_for_tf_sync/BUILD
+++ /dev/null
@@ -1 +0,0 @@
-# This empty BUILD file is required to make Bazel treat this directory as a package.
diff --git a/ci/flatbuffers_for_tf_sync/BUILD.system b/ci/flatbuffers_for_tf_sync/BUILD.system
deleted file mode 100644
index 8fe4d7a..0000000
--- a/ci/flatbuffers_for_tf_sync/BUILD.system
+++ /dev/null
@@ -1,43 +0,0 @@
-licenses(["notice"])  # Apache 2.0
-
-filegroup(
-    name = "LICENSE.txt",
-    visibility = ["//visibility:public"],
-)
-
-# Public flatc library to compile flatbuffer files at runtime.
-cc_library(
-    name = "flatbuffers",
-    linkopts = ["-lflatbuffers"],
-    visibility = ["//visibility:public"],
-)
-
-# Public flatc compiler library.
-cc_library(
-    name = "flatc_library",
-    linkopts = ["-lflatbuffers"],
-    visibility = ["//visibility:public"],
-)
-
-genrule(
-    name = "lnflatc",
-    outs = ["flatc.bin"],
-    cmd = "ln -s $$(which flatc) $@",
-)
-
-# Public flatc compiler.
-sh_binary(
-    name = "flatc",
-    srcs = ["flatc.bin"],
-    visibility = ["//visibility:public"],
-)
-
-cc_library(
-    name = "runtime_cc",
-    visibility = ["//visibility:public"],
-)
-
-py_library(
-    name = "runtime_py",
-    visibility = ["//visibility:public"],
-)
diff --git a/ci/flatbuffers_for_tf_sync/build_defs.bzl b/ci/flatbuffers_for_tf_sync/build_defs.bzl
deleted file mode 100644
index eaefb01..0000000
--- a/ci/flatbuffers_for_tf_sync/build_defs.bzl
+++ /dev/null
@@ -1,640 +0,0 @@
-"""BUILD rules for generating flatbuffer files."""
-
-load("@build_bazel_rules_android//android:rules.bzl", "android_library")
-load("@rules_python//python:defs.bzl", "py_library")
-
-flatc_path = "@flatbuffers//:flatc"
-zip_files = "//tensorflow/lite/tools:zip_files"
-
-DEFAULT_INCLUDE_PATHS = [
-    "./",
-    "$(GENDIR)",
-    "$(BINDIR)",
-]
-
-DEFAULT_FLATC_ARGS = [
-    "--no-union-value-namespacing",
-    "--gen-object-api",
-]
-
-def flatbuffer_library_public(
-        name,
-        srcs,
-        outs,
-        language_flag,
-        out_prefix = "",
-        includes = [],
-        include_paths = [],
-        compatible_with = [],
-        flatc_args = DEFAULT_FLATC_ARGS,
-        reflection_name = "",
-        reflection_visibility = None,
-        output_to_bindir = False):
-    """Generates code files for reading/writing the given flatbuffers in the requested language using the public compiler.
-
-    Outs:
-      filegroup(name): all generated source files.
-      Fileset([reflection_name]): (Optional) all generated reflection binaries.
-
-    Args:
-      name: Rule name.
-      srcs: Source .fbs files. Sent in order to the compiler.
-      outs: Output files from flatc.
-      language_flag: Target language flag. One of [-c, -j, -js].
-      out_prefix: Prepend this path to the front of all generated files except on
-          single source targets. Usually is a directory name.
-      includes: Optional, list of filegroups of schemas that the srcs depend on.
-      include_paths: Optional, list of paths the includes files can be found in.
-      compatible_with: Optional, passed to genrule for environments this rule
-          can be built for.
-      flatc_args: Optional, list of additional arguments to pass to flatc.
-      reflection_name: Optional, if set this will generate the flatbuffer
-        reflection binaries for the schemas.
-      reflection_visibility: The visibility of the generated reflection Fileset.
-      output_to_bindir: Passed to genrule for output to bin directory.
-    """
-    include_paths_cmd = ["-I %s" % (s) for s in include_paths]
-
-    # '$(@D)' when given a single source target will give the appropriate
-    # directory. Appending 'out_prefix' is only necessary when given a build
-    # target with multiple sources.
-    output_directory = (
-        ("-o $(@D)/%s" % (out_prefix)) if len(srcs) > 1 else ("-o $(@D)")
-    )
-    genrule_cmd = " ".join([
-        "for f in $(SRCS); do",
-        "$(location %s)" % (flatc_path),
-        " ".join(flatc_args),
-        " ".join(include_paths_cmd),
-        language_flag,
-        output_directory,
-        "$$f;",
-        "done",
-    ])
-    native.genrule(
-        name = name,
-        srcs = srcs,
-        outs = outs,
-        output_to_bindir = output_to_bindir,
-        compatible_with = compatible_with,
-        tools = includes + [flatc_path],
-        cmd = genrule_cmd,
-        message = "Generating flatbuffer files for %s:" % (name),
-    )
-    if reflection_name:
-        reflection_genrule_cmd = " ".join([
-            "for f in $(SRCS); do",
-            "$(location %s)" % (flatc_path),
-            "-b --schema",
-            " ".join(flatc_args),
-            " ".join(include_paths_cmd),
-            language_flag,
-            output_directory,
-            "$$f;",
-            "done",
-        ])
-        reflection_outs = [
-            (out_prefix + "%s.bfbs") % (s.replace(".fbs", "").split("/")[-1])
-            for s in srcs
-        ]
-        native.genrule(
-            name = "%s_srcs" % reflection_name,
-            srcs = srcs,
-            outs = reflection_outs,
-            output_to_bindir = output_to_bindir,
-            compatible_with = compatible_with,
-            tools = includes + [flatc_path],
-            cmd = reflection_genrule_cmd,
-            message = "Generating flatbuffer reflection binary for %s:" % (name),
-        )
-        # TODO(b/114456773): Make bazel rules proper and supported by flatbuffer
-        # Have to comment this since FilesetEntry is not supported in bazel
-        # skylark.
-        # native.Fileset(
-        #     name = reflection_name,
-        #     out = "%s_out" % reflection_name,
-        #     entries = [
-        #         native.FilesetEntry(files = reflection_outs),
-        #     ],
-        #     visibility = reflection_visibility,
-        #     compatible_with = compatible_with,
-        # )
-
-def flatbuffer_cc_library(
-        name,
-        srcs,
-        srcs_filegroup_name = "",
-        out_prefix = "",
-        includes = [],
-        include_paths = [],
-        compatible_with = [],
-        flatc_args = DEFAULT_FLATC_ARGS,
-        visibility = None,
-        srcs_filegroup_visibility = None,
-        gen_reflections = False):
-    '''A cc_library with the generated reader/writers for the given flatbuffer definitions.
-
-    Outs:
-      filegroup([name]_srcs): all generated .h files.
-      filegroup(srcs_filegroup_name if specified, or [name]_includes if not):
-          Other flatbuffer_cc_library's can pass this in for their `includes`
-          parameter, if they depend on the schemas in this library.
-      Fileset([name]_reflection): (Optional) all generated reflection binaries.
-      cc_library([name]): library with sources and flatbuffers deps.
-
-    Remarks:
-      ** Because the genrule used to call flatc does not have any trivial way of
-        computing the output list of files transitively generated by includes and
-        --gen-includes (the default) being defined for flatc, the --gen-includes
-        flag will not work as expected. The way around this is to add a dependency
-        to the flatbuffer_cc_library defined alongside the flatc included Fileset.
-        For example you might define:
-
-        flatbuffer_cc_library(
-            name = "my_fbs",
-            srcs = [ "schemas/foo.fbs" ],
-            includes = [ "//third_party/bazz:bazz_fbs_includes" ],
-        )
-
-        In which foo.fbs includes a few files from the Fileset defined at
-        //third_party/bazz:bazz_fbs_includes. When compiling the library that
-        includes foo_generated.h, and therefore has my_fbs as a dependency, it
-        will fail to find any of the bazz *_generated.h files unless you also
-        add bazz's flatbuffer_cc_library to your own dependency list, e.g.:
-
-        cc_library(
-            name = "my_lib",
-            deps = [
-                ":my_fbs",
-                "//third_party/bazz:bazz_fbs"
-            ],
-        )
-
-        Happy dependent Flatbuffering!
-
-    Args:
-      name: Rule name.
-      srcs: Source .fbs files. Sent in order to the compiler.
-      srcs_filegroup_name: Name of the output filegroup that holds srcs. Pass this
-          filegroup into the `includes` parameter of any other
-          flatbuffer_cc_library that depends on this one's schemas.
-      out_prefix: Prepend this path to the front of all generated files. Usually
-          is a directory name.
-      includes: Optional, list of filegroups of schemas that the srcs depend on.
-          ** SEE REMARKS BELOW **
-      include_paths: Optional, list of paths the includes files can be found in.
-      compatible_with: Optional, passed to genrule for environments this rule
-          can be built for
-      flatc_args: Optional list of additional arguments to pass to flatc
-          (e.g. --gen-mutable).
-      visibility: The visibility of the generated cc_library. By default, use the
-          default visibility of the project.
-      srcs_filegroup_visibility: The visibility of the generated srcs filegroup.
-          By default, use the value of the visibility parameter above.
-      gen_reflections: Optional, if true this will generate the flatbuffer
-        reflection binaries for the schemas.
-    '''
-    output_headers = [
-        (out_prefix + "%s_generated.h") % (s.replace(".fbs", "").split("/")[-1])
-        for s in srcs
-    ]
-    reflection_name = "%s_reflection" % name if gen_reflections else ""
-
-    flatbuffer_library_public(
-        name = "%s_srcs" % (name),
-        srcs = srcs,
-        outs = output_headers,
-        language_flag = "-c",
-        out_prefix = out_prefix,
-        includes = includes,
-        include_paths = include_paths,
-        compatible_with = compatible_with,
-        flatc_args = flatc_args,
-        reflection_name = reflection_name,
-        reflection_visibility = visibility,
-    )
-    native.cc_library(
-        name = name,
-        hdrs = output_headers,
-        srcs = output_headers,
-        features = [
-            "-parse_headers",
-        ],
-        deps = [
-            "@flatbuffers//:runtime_cc",
-        ],
-        includes = ["."],
-        linkstatic = 1,
-        visibility = visibility,
-        compatible_with = compatible_with,
-    )
-
-    # A filegroup for the `srcs`. That is, all the schema files for this
-    # Flatbuffer set.
-    native.filegroup(
-        name = srcs_filegroup_name if srcs_filegroup_name else "%s_includes" % (name),
-        srcs = srcs,
-        visibility = srcs_filegroup_visibility if srcs_filegroup_visibility != None else visibility,
-        compatible_with = compatible_with,
-    )
-
-# Custom provider to track dependencies transitively.
-FlatbufferInfo = provider(
-    fields = {
-        "transitive_srcs": "flatbuffer schema definitions.",
-    },
-)
-
-def _flatbuffer_schemas_aspect_impl(target, ctx):
-    _ignore = [target]
-    transitive_srcs = depset()
-    if hasattr(ctx.rule.attr, "deps"):
-        for dep in ctx.rule.attr.deps:
-            if FlatbufferInfo in dep:
-                transitive_srcs = depset(dep[FlatbufferInfo].transitive_srcs, transitive = [transitive_srcs])
-    if hasattr(ctx.rule.attr, "srcs"):
-        for src in ctx.rule.attr.srcs:
-            if FlatbufferInfo in src:
-                transitive_srcs = depset(src[FlatbufferInfo].transitive_srcs, transitive = [transitive_srcs])
-            for f in src.files:
-                if f.extension == "fbs":
-                    transitive_srcs = depset([f], transitive = [transitive_srcs])
-    return [FlatbufferInfo(transitive_srcs = transitive_srcs)]
-
-# An aspect that runs over all dependencies and transitively collects
-# flatbuffer schema files.
-_flatbuffer_schemas_aspect = aspect(
-    attr_aspects = [
-        "deps",
-        "srcs",
-    ],
-    implementation = _flatbuffer_schemas_aspect_impl,
-)
-
-# Rule to invoke the flatbuffer compiler.
-def _gen_flatbuffer_srcs_impl(ctx):
-    outputs = ctx.attr.outputs
-    include_paths = ctx.attr.include_paths
-    if ctx.attr.no_includes:
-        no_includes_statement = ["--no-includes"]
-    else:
-        no_includes_statement = []
-
-    # Need to generate all files in a directory.
-    if not outputs:
-        outputs = [ctx.actions.declare_directory("{}_all".format(ctx.attr.name))]
-        output_directory = outputs[0].path
-    else:
-        outputs = [ctx.actions.declare_file(output) for output in outputs]
-        output_directory = outputs[0].dirname
-
-    deps = depset(ctx.files.srcs + ctx.files.deps, transitive = [
-        dep[FlatbufferInfo].transitive_srcs
-        for dep in ctx.attr.deps
-        if FlatbufferInfo in dep
-    ])
-
-    include_paths_cmd_line = []
-    for s in include_paths:
-        include_paths_cmd_line.extend(["-I", s])
-
-    for src in ctx.files.srcs:
-        ctx.actions.run(
-            inputs = deps,
-            outputs = outputs,
-            executable = ctx.executable._flatc,
-            arguments = [
-                            ctx.attr.language_flag,
-                            "-o",
-                            output_directory,
-                            # Allow for absolute imports and referencing of generated files.
-                            "-I",
-                            "./",
-                            "-I",
-                            ctx.genfiles_dir.path,
-                            "-I",
-                            ctx.bin_dir.path,
-                        ] + no_includes_statement +
-                        include_paths_cmd_line + [
-                "--no-union-value-namespacing",
-                "--gen-object-api",
-                src.path,
-            ],
-            progress_message = "Generating flatbuffer files for {}:".format(src),
-            use_default_shell_env = True,
-        )
-    return [
-        DefaultInfo(files = depset(outputs)),
-    ]
-
-_gen_flatbuffer_srcs = rule(
-    _gen_flatbuffer_srcs_impl,
-    attrs = {
-        "srcs": attr.label_list(
-            allow_files = [".fbs"],
-            mandatory = True,
-        ),
-        "outputs": attr.string_list(
-            default = [],
-            mandatory = False,
-        ),
-        "deps": attr.label_list(
-            default = [],
-            mandatory = False,
-            aspects = [_flatbuffer_schemas_aspect],
-        ),
-        "include_paths": attr.string_list(
-            default = [],
-            mandatory = False,
-        ),
-        "language_flag": attr.string(
-            mandatory = True,
-        ),
-        "no_includes": attr.bool(
-            default = False,
-            mandatory = False,
-        ),
-        "_flatc": attr.label(
-            default = Label("@flatbuffers//:flatc"),
-            executable = True,
-            cfg = "exec",
-        ),
-    },
-    output_to_genfiles = True,
-)
-
-def flatbuffer_py_strip_prefix_srcs(name, srcs = [], strip_prefix = ""):
-    """Strips path prefix.
-
-    Args:
-      name: Rule name. (required)
-      srcs: Source .py files. (required)
-      strip_prefix: Path that needs to be stripped from the srcs filepaths. (required)
-    """
-    for src in srcs:
-        native.genrule(
-            name = name + "_" + src.replace(".", "_").replace("/", "_"),
-            srcs = [src],
-            outs = [src.replace(strip_prefix, "")],
-            cmd = "cp $< $@",
-        )
-
-def _concat_flatbuffer_py_srcs_impl(ctx):
-    # Merge all generated python files. The files are concatenated and import
-    # statements are removed. Finally we import the flatbuffer runtime library.
-    # IMPORTANT: Our Windows shell does not support "find ... -exec" properly.
-    # If you're changing the commandline below, please build wheels and run smoke
-    # tests on all the three operating systems.
-    command = "echo 'import flatbuffers\n' > %s; "
-    command += "for f in $(find %s -name '*.py' | sort); do cat $f | sed '/import flatbuffers/d' >> %s; done "
-    ctx.actions.run_shell(
-        inputs = ctx.attr.deps[0].files,
-        outputs = [ctx.outputs.out],
-        command = command % (
-            ctx.outputs.out.path,
-            ctx.attr.deps[0].files.to_list()[0].path,
-            ctx.outputs.out.path,
-        ),
-        use_default_shell_env = True,
-    )
-
-_concat_flatbuffer_py_srcs = rule(
-    _concat_flatbuffer_py_srcs_impl,
-    attrs = {
-        "deps": attr.label_list(mandatory = True),
-    },
-    output_to_genfiles = True,
-    outputs = {"out": "%{name}.py"},
-)
-
-def flatbuffer_py_library(
-        name,
-        srcs,
-        deps = [],
-        include_paths = []):
-    """A py_library with the generated reader/writers for the given schema.
-
-    This rule assumes that the schema files define non-conflicting names, so that
-    they can be merged in a single file. This is e.g. the case if only a single
-    namespace is used.
-    The rule call the flatbuffer compiler for all schema files and merges the
-    generated python files into a single file that is wrapped in a py_library.
-
-    Args:
-      name: Rule name. (required)
-      srcs: List of source .fbs files. (required)
-      deps: List of dependencies.
-      include_paths: Optional, list of paths the includes files can be found in.
-    """
-    all_srcs = "{}_srcs".format(name)
-    _gen_flatbuffer_srcs(
-        name = all_srcs,
-        srcs = srcs,
-        language_flag = "--python",
-        deps = deps,
-        include_paths = include_paths,
-    )
-    all_srcs_no_include = "{}_srcs_no_include".format(name)
-    _gen_flatbuffer_srcs(
-        name = all_srcs_no_include,
-        srcs = srcs,
-        language_flag = "--python",
-        deps = deps,
-        no_includes = True,
-        include_paths = include_paths,
-    )
-    concat_py_srcs = "{}_generated".format(name)
-    _concat_flatbuffer_py_srcs(
-        name = concat_py_srcs,
-        deps = [
-            ":{}".format(all_srcs_no_include),
-        ],
-    )
-    py_library(
-        name = name,
-        srcs = [
-            ":{}".format(concat_py_srcs),
-        ],
-        srcs_version = "PY3",
-        deps = deps + [
-            "@flatbuffers//:runtime_py",
-        ],
-    )
-
-def flatbuffer_java_library(
-        name,
-        srcs,
-        custom_package = "",
-        package_prefix = "",
-        include_paths = DEFAULT_INCLUDE_PATHS,
-        flatc_args = DEFAULT_FLATC_ARGS,
-        visibility = None):
-    """A java library with the generated reader/writers for the given flatbuffer definitions.
-
-    Args:
-      name: Rule name. (required)
-      srcs: List of source .fbs files including all includes. (required)
-      custom_package: Package name of generated Java files. If not specified
-          namespace in the schema files will be used. (optional)
-      package_prefix: like custom_package, but prefixes to the existing
-          namespace. (optional)
-      include_paths: List of paths that includes files can be found in. (optional)
-      flatc_args: List of additional arguments to pass to flatc. (optional)
-      visibility: Visibility setting for the java_library rule. (optional)
-    """
-    out_srcjar = "java_%s_all.srcjar" % name
-    flatbuffer_java_srcjar(
-        name = "%s_srcjar" % name,
-        srcs = srcs,
-        out = out_srcjar,
-        custom_package = custom_package,
-        flatc_args = flatc_args,
-        include_paths = include_paths,
-        package_prefix = package_prefix,
-    )
-
-    native.filegroup(
-        name = "%s.srcjar" % name,
-        srcs = [out_srcjar],
-    )
-
-    native.java_library(
-        name = name,
-        srcs = [out_srcjar],
-        javacopts = ["-source 7 -target 7"],
-        deps = [
-            "@flatbuffers//:runtime_java",
-        ],
-        visibility = visibility,
-    )
-
-def flatbuffer_java_srcjar(
-        name,
-        srcs,
-        out,
-        custom_package = "",
-        package_prefix = "",
-        include_paths = DEFAULT_INCLUDE_PATHS,
-        flatc_args = DEFAULT_FLATC_ARGS):
-    """Generate flatbuffer Java source files.
-
-    Args:
-      name: Rule name. (required)
-      srcs: List of source .fbs files including all includes. (required)
-      out: Output file name. (required)
-      custom_package: Package name of generated Java files. If not specified
-          namespace in the schema files will be used. (optional)
-      package_prefix: like custom_package, but prefixes to the existing
-          namespace. (optional)
-      include_paths: List of paths that includes files can be found in. (optional)
-      flatc_args: List of additional arguments to pass to flatc. (optional)
-    """
-    command_fmt = """set -e
-      tmpdir=$(@D)
-      schemas=$$tmpdir/schemas
-      java_root=$$tmpdir/java
-      rm -rf $$schemas
-      rm -rf $$java_root
-      mkdir -p $$schemas
-      mkdir -p $$java_root
-
-      for src in $(SRCS); do
-        dest=$$schemas/$$src
-        rm -rf $$(dirname $$dest)
-        mkdir -p $$(dirname $$dest)
-        if [ -z "{custom_package}" ] && [ -z "{package_prefix}" ]; then
-          cp -f $$src $$dest
-        else
-          if [ -z "{package_prefix}" ]; then
-            sed -e "s/namespace\\s.*/namespace {custom_package};/" $$src > $$dest
-          else
-            sed -e "s/namespace \\([^;]\\+\\);/namespace {package_prefix}.\\1;/" $$src > $$dest
-          fi
-        fi
-      done
-
-      flatc_arg_I="-I $$tmpdir/schemas"
-      for include_path in {include_paths}; do
-        flatc_arg_I="$$flatc_arg_I -I $$schemas/$$include_path"
-      done
-
-      flatc_additional_args=
-      for arg in {flatc_args}; do
-        flatc_additional_args="$$flatc_additional_args $$arg"
-      done
-
-      for src in $(SRCS); do
-        $(location {flatc_path}) $$flatc_arg_I --java $$flatc_additional_args -o $$java_root  $$schemas/$$src
-      done
-
-      $(location {zip_files}) -export_zip_path=$@ -file_directory=$$java_root
-      """
-    genrule_cmd = command_fmt.format(
-        package_name = native.package_name(),
-        custom_package = custom_package,
-        package_prefix = package_prefix,
-        flatc_path = flatc_path,
-        zip_files = zip_files,
-        include_paths = " ".join(include_paths),
-        flatc_args = " ".join(flatc_args),
-    )
-
-    native.genrule(
-        name = name,
-        srcs = srcs,
-        outs = [out],
-        tools = [flatc_path, zip_files],
-        cmd = genrule_cmd,
-    )
-
-def flatbuffer_android_library(
-        name,
-        srcs,
-        custom_package = "",
-        package_prefix = "",
-        include_paths = DEFAULT_INCLUDE_PATHS,
-        flatc_args = DEFAULT_FLATC_ARGS,
-        visibility = None):
-    """An android_library with the generated reader/writers for the given flatbuffer definitions.
-
-    Args:
-      name: Rule name. (required)
-      srcs: List of source .fbs files including all includes. (required)
-      custom_package: Package name of generated Java files. If not specified
-          namespace in the schema files will be used. (optional)
-      package_prefix: like custom_package, but prefixes to the existing
-          namespace. (optional)
-      include_paths: List of paths that includes files can be found in. (optional)
-      flatc_args: List of additional arguments to pass to flatc. (optional)
-      visibility: Visibility setting for the android_library rule. (optional)
-    """
-    out_srcjar = "android_%s_all.srcjar" % name
-    flatbuffer_java_srcjar(
-        name = "%s_srcjar" % name,
-        srcs = srcs,
-        out = out_srcjar,
-        custom_package = custom_package,
-        flatc_args = flatc_args,
-        include_paths = include_paths,
-        package_prefix = package_prefix,
-    )
-
-    native.filegroup(
-        name = "%s.srcjar" % name,
-        srcs = [out_srcjar],
-    )
-
-    # To support org.checkerframework.dataflow.qual.Pure.
-    checkerframework_annotations = [
-        "@org_checkerframework_qual",
-    ] if "--java-checkerframework" in flatc_args else []
-
-    android_library(
-        name = name,
-        srcs = [out_srcjar],
-        javacopts = ["-source 7 -target 7"],
-        visibility = visibility,
-        deps = [
-            "@flatbuffers//:runtime_android",
-        ] + checkerframework_annotations,
-    )
diff --git a/ci/flatbuffers_for_tf_sync/flatbuffers.BUILD b/ci/flatbuffers_for_tf_sync/flatbuffers.BUILD
deleted file mode 100644
index 108c0cd..0000000
--- a/ci/flatbuffers_for_tf_sync/flatbuffers.BUILD
+++ /dev/null
@@ -1,156 +0,0 @@
-load("@build_bazel_rules_android//android:rules.bzl", "android_library")
-load(":build_defs.bzl", "flatbuffer_py_strip_prefix_srcs")
-
-package(default_visibility = ["//visibility:public"])
-
-licenses(["notice"])  # Apache 2.0
-
-exports_files(["LICENSE.txt"])
-
-licenses(["notice"])
-
-config_setting(
-    name = "freebsd",
-    values = {"cpu": "freebsd"},
-)
-
-config_setting(
-    name = "windows",
-    values = {"cpu": "x64_windows"},
-)
-
-load("@rules_cc//cc:defs.bzl", "cc_binary", "cc_library")
-
-# Public flatc library to compile flatbuffer files at runtime.
-cc_library(
-    name = "flatbuffers",
-    hdrs = ["//:public_headers"],
-    linkstatic = 1,
-    strip_include_prefix = "/include",
-    visibility = ["//visibility:public"],
-    deps = ["//src:flatbuffers"],
-)
-
-# Public C++ headers for the Flatbuffers library.
-filegroup(
-    name = "public_headers",
-    srcs = [
-        "include/flatbuffers/base.h",
-        "include/flatbuffers/code_generators.h",
-        "include/flatbuffers/flatbuffers.h",
-        "include/flatbuffers/flexbuffers.h",
-        "include/flatbuffers/hash.h",
-        "include/flatbuffers/idl.h",
-        "include/flatbuffers/minireflect.h",
-        "include/flatbuffers/reflection.h",
-        "include/flatbuffers/reflection_generated.h",
-        "include/flatbuffers/registry.h",
-        "include/flatbuffers/stl_emulation.h",
-        "include/flatbuffers/util.h",
-    ],
-    visibility = ["//:__subpackages__"],
-)
-
-# Public flatc compiler library.
-cc_library(
-    name = "flatc_library",
-    linkstatic = 1,
-    visibility = ["//visibility:public"],
-    deps = [
-        "@flatbuffers//src:flatc_library",
-    ],
-)
-
-# Public flatc compiler.
-cc_binary(
-    name = "flatc",
-    linkopts = select({
-        ":freebsd": [
-            "-lm",
-        ],
-        ":windows": [],
-        "//conditions:default": [
-            "-lm",
-            "-ldl",
-        ],
-    }),
-    visibility = ["//visibility:public"],
-    deps = [
-        "@flatbuffers//src:flatc",
-    ],
-)
-
-filegroup(
-    name = "flatc_headers",
-    srcs = [
-        "include/flatbuffers/flatc.h",
-    ],
-    visibility = ["//:__subpackages__"],
-)
-
-# Library used by flatbuffer_cc_library rules.
-cc_library(
-    name = "runtime_cc",
-    hdrs = [
-        "include/flatbuffers/base.h",
-        "include/flatbuffers/flatbuffers.h",
-        "include/flatbuffers/flexbuffers.h",
-        "include/flatbuffers/stl_emulation.h",
-        "include/flatbuffers/util.h",
-    ],
-    linkstatic = 1,
-    strip_include_prefix = "/include",
-    visibility = ["//visibility:public"],
-)
-
-flatbuffer_py_strip_prefix_srcs(
-    name = "flatbuffer_py_strip_prefix",
-    srcs = [
-        "python/flatbuffers/__init__.py",
-        "python/flatbuffers/builder.py",
-        "python/flatbuffers/compat.py",
-        "python/flatbuffers/encode.py",
-        "python/flatbuffers/number_types.py",
-        "python/flatbuffers/packer.py",
-        "python/flatbuffers/table.py",
-        "python/flatbuffers/util.py",
-    ],
-    strip_prefix = "python/flatbuffers/",
-)
-
-filegroup(
-    name = "runtime_py_srcs",
-    srcs = [
-        "__init__.py",
-        "builder.py",
-        "compat.py",
-        "encode.py",
-        "number_types.py",
-        "packer.py",
-        "table.py",
-        "util.py",
-    ],
-)
-
-py_library(
-    name = "runtime_py",
-    srcs = [":runtime_py_srcs"],
-    visibility = ["//visibility:public"],
-)
-
-filegroup(
-    name = "runtime_java_srcs",
-    srcs = glob(["java/com/google/flatbuffers/**/*.java"]),
-)
-
-java_library(
-    name = "runtime_java",
-    srcs = [":runtime_java_srcs"],
-    visibility = ["//visibility:public"],
-)
-
-android_library(
-    name = "runtime_android",
-    srcs = [":runtime_java_srcs"],
-    visibility = ["//visibility:public"],
-)
diff --git a/ci/flatbuffers_for_tf_sync/workspace.bzl b/ci/flatbuffers_for_tf_sync/workspace.bzl
deleted file mode 100644
index 59c1fd9..0000000
--- a/ci/flatbuffers_for_tf_sync/workspace.bzl
+++ /dev/null
@@ -1,16 +0,0 @@
-"""Loads the Flatbuffers library, used by TF Lite."""
-
-load("//third_party:repo.bzl", "tf_http_archive", "tf_mirror_urls")
-
-def repo():
-    tf_http_archive(
-        name = "flatbuffers",
-        strip_prefix = "flatbuffers-1.12.0",
-        sha256 = "62f2223fb9181d1d6338451375628975775f7522185266cd5296571ac152bc45",
-        urls = tf_mirror_urls("https://github.com/google/flatbuffers/archive/v1.12.0.tar.gz"),
-        build_file = "//third_party/flatbuffers:flatbuffers.BUILD",
-        system_build_file = "//third_party/flatbuffers:BUILD.system",
-        link_files = {
-            "//third_party/flatbuffers:build_defs.bzl": "build_defs.bzl",
-        },
-    )
diff --git a/ci/install_bazelisk.sh b/ci/install_bazelisk.sh
index d2f8a13..db385e6 100755
--- a/ci/install_bazelisk.sh
+++ b/ci/install_bazelisk.sh
@@ -18,5 +18,5 @@
 wget https://github.com/bazelbuild/bazelisk/releases/download/v1.16.0/bazelisk-linux-amd64
 mv bazelisk-linux-amd64 bazel
 chmod +x bazel
-sudo mv bazel /usr/local/bin
+mv bazel /usr/local/bin
 
diff --git a/ci/install_cores_xplorer_11.sh b/ci/install_cores_xplorer_11.sh
new file mode 100755
index 0000000..1df00cb
--- /dev/null
+++ b/ci/install_cores_xplorer_11.sh
@@ -0,0 +1,19 @@
+#!/bin/bash
+
+mkdir /opt/xtensa/licenses
+
+mkdir -p /opt/xtensa/XtDevTools/install/tools/
+tar xvzf XtensaTools_RI_2022_9_linux.tgz --dir /opt/xtensa/XtDevTools/install/tools/
+
+
+###########
+#  Hifimini
+###########
+cd /opt/xtensa/
+tar xvzf mini1m1m_RI_2019_2_linux_w_keys.tgz --dir /opt/xtensa/licenses/
+cd /opt/xtensa/licenses/RI-2019.2-linux/mini1m1m_RG/
+
+./install --xtensa-tools \
+  /opt/xtensa/XtDevTools/install/tools/RI-2019.2-linux/XtensaTools/ \
+  --no-default \
+  --no-replace
diff --git a/ci/install_cores_xplorer_13.sh b/ci/install_cores_xplorer_13.sh
new file mode 100755
index 0000000..a24b1f3
--- /dev/null
+++ b/ci/install_cores_xplorer_13.sh
@@ -0,0 +1,39 @@
+#!/bin/bash
+
+mkdir /opt/xtensa/licenses
+
+##############
+#  Fusion F1
+##############
+cd /opt/xtensa/
+tar xvzf F1_190305_swupgrade_linux.tgz --dir /opt/xtensa/licenses/
+cd /opt/xtensa/licenses/RI-2020.4-linux/F1_190305_swupgrade/
+
+./install --xtensa-tools \
+  /opt/xtensa/XtDevTools/install/tools/RI-2020.4-linux/XtensaTools/ \
+  --no-default \
+  --no-replace
+
+##############
+#  Vision P6
+##############
+cd /opt/xtensa/
+tar xvzf P6_200528_linux.tgz --dir /opt/xtensa/licenses/
+cd /opt/xtensa/licenses/RI-2020.4-linux/P6_200528/
+
+./install --xtensa-tools \
+  /opt/xtensa/XtDevTools/install/tools/RI-2020.4-linux/XtensaTools/ \
+  --no-default \
+  --no-replace
+
+##############
+#  Hifi3Z
+##############
+cd /opt/xtensa/
+tar xvzf HIFI_190304_swupgrade_linux.tgz --dir /opt/xtensa/licenses/
+cd /opt/xtensa/licenses/RI-2020.4-linux/HIFI_190304_swupgrade/
+
+./install --xtensa-tools \
+  /opt/xtensa/XtDevTools/install/tools/RI-2020.4-linux/XtensaTools/ \
+  --no-default \
+  --no-replace
diff --git a/ci/install_cores_xplorer_solo.sh b/ci/install_cores_xplorer_solo.sh
new file mode 100755
index 0000000..559c67a
--- /dev/null
+++ b/ci/install_cores_xplorer_solo.sh
@@ -0,0 +1,19 @@
+#!/bin/bash
+
+mkdir /opt/xtensa/licenses
+
+mkdir -p /opt/xtensa/XtDevTools/install/tools/
+tar xvzf XtensaTools_RI_2022_9_linux.tgz --dir /opt/xtensa/XtDevTools/install/tools/
+
+
+###########
+#  Hifi5
+###########
+cd /opt/xtensa/
+tar xvzf PRD_H5_RDO_07_01_2022_linux.tgz --dir /opt/xtensa/licenses/
+cd /opt/xtensa/licenses/RI-2022.9-linux/PRD_H5_RDO_07_01_2022/
+
+./install --xtensa-tools \
+  /opt/xtensa/XtDevTools/install/tools/RI-2022.9-linux/XtensaTools/ \
+  --no-default \
+  --no-replace
diff --git a/ci/sync_from_upstream_tf.sh b/ci/sync_from_upstream_tf.sh
index 094df65..bb5d098 100755
--- a/ci/sync_from_upstream_tf.sh
+++ b/ci/sync_from_upstream_tf.sh
@@ -47,6 +47,7 @@
 git checkout tensorflow/lite/kernels/internal/optimized/neon_check.h
 # http://b/149862813
 git checkout tensorflow/lite/kernels/internal/runtime_shape.h
+git checkout tensorflow/lite/kernels/internal/runtime_shape.cc
 # http://b/187728891
 git checkout tensorflow/lite/kernels/op_macros.h
 # http://b/242077843
@@ -57,8 +58,8 @@
 bazel build tensorflow/lite/python:schema_py
 /bin/cp bazel-bin/tensorflow/lite/python/schema_py_generated.py tensorflow/lite/python/schema_py_generated.py
 
-bazel build tensorflow/lite/schema:schema_fbs_srcs
-/bin/cp ./bazel-bin/tensorflow/lite/schema/schema_generated.h tensorflow/lite/schema/schema_generated.h
+bazel build tensorflow/compiler/mlir/lite/schema:schema_fbs_srcs
+/bin/cp ./bazel-bin/tensorflow/compiler/mlir/lite/schema/schema_generated.h tensorflow/lite/schema/schema_generated.h
 
 # Must clean the bazel directories out after building as we don't check these in.
 bazel clean
diff --git a/ci/tflite_files.txt b/ci/tflite_files.txt
index 51381ce..6514137 100644
--- a/ci/tflite_files.txt
+++ b/ci/tflite_files.txt
@@ -1,3 +1,6 @@
+tensorflow/compiler/mlir/lite/schema/schema.fbs
+tensorflow/compiler/mlir/lite/schema/schema_utils.h
+tensorflow/compiler/mlir/lite/schema/schema_utils.cc
 tensorflow/lite/array.h
 tensorflow/lite/array.cc
 tensorflow/lite/builtin_op_data.h
@@ -12,7 +15,6 @@
 tensorflow/lite/kernels/internal/tensor_ctypes.cc
 tensorflow/lite/kernels/internal/reference/comparisons.cc
 tensorflow/lite/kernels/kernel_util.cc
-tensorflow/lite/schema/schema_utils.cc
 tensorflow/lite/c/builtin_op_data.h
 tensorflow/lite/c/c_api_types.h
 tensorflow/lite/c/common.h
@@ -108,7 +110,6 @@
 tensorflow/lite/portable_type_to_tflitetype.h
 tensorflow/lite/python/schema_util.py
 tensorflow/lite/schema/schema_utils.h
-tensorflow/lite/schema/schema.fbs
 tensorflow/lite/tools/flatbuffer_utils.py
 tensorflow/lite/tools/flatbuffer_utils_test.py
 tensorflow/lite/tools/randomize_weights.py
diff --git a/codegen/BUILD b/codegen/BUILD
new file mode 100644
index 0000000..ae62c04
--- /dev/null
+++ b/codegen/BUILD
@@ -0,0 +1,71 @@
+load("@rules_python//python:defs.bzl", "py_binary", "py_library")
+load("@tflm_pip_deps//:requirements.bzl", "requirement")
+
+package(
+    default_visibility = ["//:__subpackages__"],
+    licenses = ["notice"],
+)
+
+py_library(
+    name = "graph",
+    srcs = [
+        "graph.py",
+    ],
+    deps = [
+        ":tensor",
+        ":utils",
+        "//codegen/operators:factory",
+        "//codegen/operators:operator",
+        "//tensorflow/lite/python:schema_py",
+        "//tensorflow/lite/tools:visualize",
+    ],
+)
+
+py_library(
+    name = "inference_generator",
+    srcs = [
+        "inference_generator.py",
+    ],
+    data = [
+        "templates/inference.cc.mako",
+        "templates/inference.h.mako",
+    ],
+    deps = [
+        ":graph",
+        requirement("mako"),
+    ],
+)
+
+py_library(
+    name = "tensor",
+    srcs = [
+        "tensor.py",
+    ],
+    deps = [
+        ":utils",
+        "//tensorflow/lite/python:schema_py",
+    ],
+)
+
+py_library(
+    name = "utils",
+    srcs = [
+        "utils.py",
+    ],
+)
+
+py_binary(
+    name = "code_generator",
+    srcs = [
+        "code_generator.py",
+    ],
+    python_version = "PY3",
+    srcs_version = "PY3",
+    deps = [
+        ":graph",
+        ":inference_generator",
+        "//tensorflow/lite/tools:flatbuffer_utils",
+        "@absl_py//absl:app",
+        "@absl_py//absl/flags",
+    ],
+)
diff --git a/codegen/README.md b/codegen/README.md
new file mode 100644
index 0000000..ff7e9d2
--- /dev/null
+++ b/codegen/README.md
@@ -0,0 +1,3 @@
+# TFLM Code Generator
+
+This is a work in progress experiment. It is not ready for use.
diff --git a/codegen/build_def.bzl b/codegen/build_def.bzl
new file mode 100644
index 0000000..28b6232
--- /dev/null
+++ b/codegen/build_def.bzl
@@ -0,0 +1,44 @@
+""" Build rule for generating ML inference code from TFLite model. """
+
+load("//tensorflow/lite/micro:build_def.bzl", "micro_copts")
+
+def tflm_inference_library(
+        name,
+        tflite_model,
+        visibility = None):
+    """Creates a C++ library capable of performing ML inference of the provided
+    model.
+
+    Args:
+      name: Target name.
+      tflite_model: TFLite Model to generate inference from.
+      visibility: Visibility for the C++ library.
+    """
+    generated_target = name + "_gen"
+    native.genrule(
+        name = generated_target,
+        srcs = [tflite_model],
+        outs = [name + ".h", name + ".cc"],
+        tools = ["//codegen:code_generator"],
+        cmd = "$(location //codegen:code_generator) " +
+              "--model=$< --output_dir=$(RULEDIR) --output_name=%s" % name,
+        visibility = ["//visibility:private"],
+    )
+
+    native.cc_library(
+        name = name,
+        hdrs = [name + ".h"],
+        srcs = [name + ".cc"],
+        deps = [
+            generated_target,
+            "//codegen/runtime:micro_codegen_context",
+            "//tensorflow/lite/c:common",
+            "//tensorflow/lite/c:c_api_types",
+            "//tensorflow/lite/kernels/internal:compatibility",
+            "//tensorflow/lite/micro/kernels:micro_ops",
+            "//tensorflow/lite/micro:micro_common",
+            "//tensorflow/lite/micro:micro_context",
+        ],
+        copts = micro_copts(),
+        visibility = visibility,
+    )
diff --git a/codegen/code_generator.py b/codegen/code_generator.py
new file mode 100644
index 0000000..91cab73
--- /dev/null
+++ b/codegen/code_generator.py
@@ -0,0 +1,66 @@
+# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ==============================================================================
+""" Generates C/C++ source code capable of performing inference for a model. """
+
+import os
+
+from absl import app
+from absl import flags
+from collections.abc import Sequence
+
+from tflite_micro.codegen import inference_generator
+from tflite_micro.codegen import graph
+from tflite_micro.tensorflow.lite.tools import flatbuffer_utils
+
+# Usage information:
+# Default:
+#   `bazel run codegen:code_generator -- \
+#        --model=</path/to/my_model.tflite>
+# Output will be located at: /path/to/my_model.h|cc
+
+_MODEL_PATH = flags.DEFINE_string(name="model",
+                                  default=None,
+                                  help="Path to the TFLite model file.",
+                                  required=True)
+
+_OUTPUT_DIR = flags.DEFINE_string(
+    name="output_dir",
+    default=None,
+    help="Path to write generated source to. Leave blank to use 'model' path.",
+    required=False)
+
+_OUTPUT_NAME = flags.DEFINE_string(
+    name="output_name",
+    default=None,
+    help=("The output basename for the generated .h/.cc. Leave blank to use "
+          "'model' basename."),
+    required=False)
+
+
+def main(argv: Sequence[str]) -> None:
+  output_dir = _OUTPUT_DIR.value or os.path.dirname(_MODEL_PATH.value)
+  output_name = _OUTPUT_NAME.value or os.path.splitext(
+      os.path.basename(_MODEL_PATH.value))[0]
+
+  model = flatbuffer_utils.read_model(_MODEL_PATH.value)
+
+  print("Generating inference code for model: {}".format(_MODEL_PATH.value))
+
+  inference_generator.generate(output_dir, output_name,
+                               graph.OpCodeTable([model]), graph.Graph(model))
+
+
+if __name__ == "__main__":
+  app.run(main)
diff --git a/codegen/examples/hello_world/BUILD b/codegen/examples/hello_world/BUILD
new file mode 100644
index 0000000..04425cb
--- /dev/null
+++ b/codegen/examples/hello_world/BUILD
@@ -0,0 +1,17 @@
+load("//codegen:build_def.bzl", "tflm_inference_library")
+
+package(default_visibility = ["//visibility:public"])
+
+tflm_inference_library(
+    name = "hello_world_model",
+    tflite_model = "//tensorflow/lite/micro/examples/hello_world/models:hello_world_int8.tflite",
+)
+
+cc_binary(
+    name = "hello_world",
+    srcs = ["hello_world.cc"],
+    deps = [
+        ":hello_world_model",
+        "//tensorflow/lite/c:c_api_types",
+    ],
+)
diff --git a/codegen/examples/hello_world/README.md b/codegen/examples/hello_world/README.md
new file mode 100644
index 0000000..62afee5
--- /dev/null
+++ b/codegen/examples/hello_world/README.md
@@ -0,0 +1,27 @@
+# Codegen Hello World Example
+
+This is a code-generated example of the hello world model. The generated source
+is checked in for now so that it can be reviewed during the prototyping stage.
+
+## Building the example executable
+Please note that this will execute Bazel from make as part of the process.
+
+```
+bazel build //codegen/examples/hello_world:hello_world
+```
+
+## Running the example
+
+TODO(rjascani): The command works, but it'll just crash as we don't have all of
+the data structures fully populated yet.
+
+```
+bazel run //codegen/examples/hello_world:hello_world
+```
+
+## Updating the generated sources
+To update the generated source, you can execute this make target:
+
+```
+./codegen/examples/hello_world/update_example_source.sh
+```
diff --git a/tensorflow/lite/micro/examples/micro_speech/simple_features/simple_model_settings.cc b/codegen/examples/hello_world/hello_world.cc
similarity index 62%
copy from tensorflow/lite/micro/examples/micro_speech/simple_features/simple_model_settings.cc
copy to codegen/examples/hello_world/hello_world.cc
index e2cf661..70d665b 100644
--- a/tensorflow/lite/micro/examples/micro_speech/simple_features/simple_model_settings.cc
+++ b/codegen/examples/hello_world/hello_world.cc
@@ -1,4 +1,4 @@
-/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
+/* Copyright 2023 The TensorFlow Authors. All Rights Reserved.
 
 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
@@ -13,11 +13,16 @@
 limitations under the License.
 ==============================================================================*/
 
-#include "tensorflow/lite/micro/examples/micro_speech/simple_features/simple_model_settings.h"
+#include "codegen/examples/hello_world/hello_world_model.h"
+#include "tensorflow/lite/c/c_api_types.h"
 
-const char* kCategoryLabels[kCategoryCount] = {
-    "silence",
-    "unknown",
-    "yes",
-    "no",
-};
+int main(int argc, char** argv) {
+  hello_world_model::Model hello_world{};
+
+  TfLiteStatus status = hello_world.Invoke();
+  if (status != kTfLiteOk) {
+    return -1;
+  }
+
+  return 0;
+}
diff --git a/codegen/examples/hello_world/hello_world_model.cc b/codegen/examples/hello_world/hello_world_model.cc
new file mode 100644
index 0000000..7d8290c
--- /dev/null
+++ b/codegen/examples/hello_world/hello_world_model.cc
@@ -0,0 +1,316 @@
+/* Copyright 2023 The TensorFlow Authors. All Rights Reserved.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+    http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+==============================================================================*/
+
+/* AUTOMATICALLY GENERATED DO NOT MODIFY */
+
+#include "hello_world_model.h"
+
+#include "codegen/runtime/micro_codegen_context.h"
+#include "tensorflow/lite/c/builtin_op_data.h"
+#include "tensorflow/lite/c/c_api_types.h"
+#include "tensorflow/lite/c/common.h"
+#include "tensorflow/lite/kernels/internal/compatibility.h"
+#include "tensorflow/lite/micro/kernels/micro_ops.h"
+#include "tensorflow/lite/micro/micro_common.h"
+#include "tensorflow/lite/micro/micro_context.h"
+
+namespace hello_world_model {
+namespace {
+// TODO(rjascani): We should probably split out the OpTable to a separate file
+// once we start generating for multiple models.
+enum OpCode { kFullyConnected, kCount };
+
+TFLMInferenceRegistration op_table[OpCode::kCount] = {
+    tflite::RegisterInference_FULLY_CONNECTED(),
+};
+
+// buffer_1 is located in the arena
+
+alignas(16) uint8_t buffer_2[4] = {
+    0xAD,
+    0x01,
+    0x00,
+    0x00,
+};
+
+alignas(16) uint8_t buffer_3[16] = {
+    0xD9, 0x3B, 0x27, 0x15, 0x1C, 0xE0, 0xDE, 0xDD,
+    0x0F, 0x1B, 0xC5, 0xD7, 0x12, 0xDD, 0xF9, 0x7F,
+};
+
+alignas(16) uint8_t buffer_4[64] = {
+    0x27, 0xFD, 0xFF, 0xFF, 0xA2, 0x07, 0x00, 0x00, 0x62, 0x02, 0x00,
+    0x00, 0x00, 0x00, 0x00, 0x00, 0xF1, 0x00, 0x00, 0x00, 0x29, 0xFE,
+    0xFF, 0xFF, 0xDD, 0xFF, 0xFF, 0xFF, 0x9D, 0xFC, 0xFF, 0xFF, 0x3B,
+    0x02, 0x00, 0x00, 0x45, 0x02, 0x00, 0x00, 0xA4, 0x10, 0x00, 0x00,
+    0x67, 0x0F, 0x00, 0x00, 0x4F, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00,
+    0x00, 0x87, 0xFC, 0xFF, 0xFF, 0x11, 0xEC, 0xFF, 0xFF,
+};
+
+alignas(16) uint8_t buffer_5[256] = {
+    0xF4, 0x1A, 0xED, 0x09, 0x19, 0x21, 0xF4, 0x24, 0xE0, 0x21, 0xEF, 0xBC,
+    0xF7, 0xF5, 0xFA, 0x19, 0x03, 0xDC, 0xD2, 0x02, 0x06, 0xF9, 0xF4, 0x02,
+    0xFF, 0xFA, 0xEF, 0xF1, 0xEF, 0xD3, 0x27, 0xE1, 0xFB, 0x27, 0xDD, 0xEB,
+    0xDB, 0xE4, 0x05, 0x1A, 0x17, 0xFC, 0x24, 0x12, 0x15, 0xEF, 0x1E, 0xE4,
+    0x10, 0xFE, 0x14, 0xDA, 0x1C, 0xF8, 0xF3, 0xF1, 0xEF, 0xE2, 0xF3, 0x09,
+    0xE3, 0xE9, 0xED, 0xE3, 0xE4, 0x15, 0x07, 0x0B, 0x04, 0x1B, 0x1A, 0xFE,
+    0xEB, 0x01, 0xDE, 0x21, 0xE6, 0x0B, 0xEC, 0x03, 0x23, 0x0A, 0x22, 0x24,
+    0x1E, 0x27, 0x03, 0xE6, 0x03, 0x24, 0xFF, 0xC0, 0x11, 0xF8, 0xFC, 0xF1,
+    0x11, 0x0C, 0xF5, 0xE0, 0xF3, 0x07, 0x17, 0xE5, 0xE8, 0xED, 0xFA, 0xDC,
+    0xE8, 0x23, 0xFB, 0x07, 0xDD, 0xFB, 0xFD, 0x00, 0x14, 0x26, 0x11, 0x17,
+    0xE7, 0xF1, 0x11, 0xEA, 0x02, 0x26, 0x04, 0x04, 0x25, 0x21, 0x1D, 0x0A,
+    0xDB, 0x1D, 0xDC, 0x20, 0x01, 0xFA, 0xE3, 0x37, 0x0B, 0xF1, 0x1A, 0x16,
+    0xEF, 0x1C, 0xE7, 0x03, 0xE0, 0x16, 0x02, 0x03, 0x21, 0x18, 0x09, 0x2E,
+    0xD9, 0xE5, 0x14, 0x0B, 0xEA, 0x1A, 0xFC, 0xD8, 0x13, 0x00, 0xC4, 0xD8,
+    0xEC, 0xD9, 0xFE, 0x0D, 0x19, 0x20, 0xD8, 0xD6, 0xE2, 0x1F, 0xE9, 0xD7,
+    0xCA, 0xE2, 0xDD, 0xC6, 0x13, 0xE7, 0x04, 0x3E, 0x00, 0x01, 0x14, 0xC7,
+    0xDB, 0xE7, 0x15, 0x15, 0xF5, 0x06, 0xD6, 0x1A, 0xDC, 0x09, 0x22, 0xFE,
+    0x08, 0x02, 0x13, 0xEF, 0x19, 0x1E, 0xE2, 0x09, 0xFD, 0xF3, 0x14, 0xDD,
+    0xDA, 0x20, 0xD9, 0x0F, 0xE3, 0xF9, 0xF7, 0xEE, 0xE9, 0x24, 0xE6, 0x29,
+    0x00, 0x07, 0x16, 0xE2, 0x1E, 0x0D, 0x23, 0xD3, 0xDD, 0xF7, 0x14, 0xFA,
+    0x08, 0x22, 0x26, 0x21, 0x09, 0x08, 0x0F, 0x0B, 0xE0, 0x12, 0xF4, 0x7F,
+    0xDC, 0x58, 0xE5, 0x26,
+};
+
+alignas(16) uint8_t buffer_6[64] = {
+    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xC2, 0xEA, 0xFF,
+    0xFF, 0x75, 0xEA, 0xFF, 0xFF, 0xB8, 0xFA, 0xFF, 0xFF, 0x24, 0xFA,
+    0xFF, 0xFF, 0xC8, 0xEF, 0xFF, 0xFF, 0xAC, 0xFF, 0xFF, 0xFF, 0x44,
+    0x0D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xBD, 0x07, 0x00, 0x00,
+    0x33, 0xEA, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0xCC, 0xE4, 0xFF,
+    0xFF, 0x4F, 0x0D, 0x00, 0x00, 0xCF, 0xE3, 0xFF, 0xFF,
+};
+
+alignas(16) uint8_t buffer_7[16] = {
+    0xF7, 0xCA, 0x39, 0x47, 0x68, 0x73, 0x62, 0x63,
+    0x40, 0xE6, 0x7F, 0x19, 0xAE, 0x44, 0x5F, 0x56,
+};
+
+// buffer_8 is located in the arena
+
+// buffer_9 is located in the arena
+
+// buffer_10 is located in the arena
+
+constexpr size_t kSubgraph0Inputs[1] = {0};
+
+constexpr size_t kSubgraph0Outputs[1] = {9};
+
+struct Node0_0 {
+  struct Inputs {
+    int size = 3;
+    int data[3] = {0, 6, 5};
+  } inputs;
+  struct Outputs {
+    int size = 1;
+    int data[1] = {7};
+  } outputs;
+  // No intermediates
+  TfLiteFullyConnectedParams builtin_data = {
+      .activation = kTfLiteActRelu,
+      .weights_format = kTfLiteFullyConnectedWeightsFormatDefault,
+      .keep_num_dims = false,
+      .asymmetric_quantize_inputs = false,
+      .quantized_bias_type = kTfLiteNoType};
+} node_0_0;
+
+struct Node0_1 {
+  struct Inputs {
+    int size = 3;
+    int data[3] = {7, 4, 3};
+  } inputs;
+  struct Outputs {
+    int size = 1;
+    int data[1] = {8};
+  } outputs;
+  // No intermediates
+  TfLiteFullyConnectedParams builtin_data = {
+      .activation = kTfLiteActRelu,
+      .weights_format = kTfLiteFullyConnectedWeightsFormatDefault,
+      .keep_num_dims = false,
+      .asymmetric_quantize_inputs = false,
+      .quantized_bias_type = kTfLiteNoType};
+} node_0_1;
+
+struct Node0_2 {
+  struct Inputs {
+    int size = 3;
+    int data[3] = {8, 2, 1};
+  } inputs;
+  struct Outputs {
+    int size = 1;
+    int data[1] = {9};
+  } outputs;
+  // No intermediates
+  TfLiteFullyConnectedParams builtin_data = {
+      .activation = kTfLiteActNone,
+      .weights_format = kTfLiteFullyConnectedWeightsFormatDefault,
+      .keep_num_dims = false,
+      .asymmetric_quantize_inputs = false,
+      .quantized_bias_type = kTfLiteNoType};
+} node_0_2;
+
+struct Tensor0_0Dims {
+  int size = 2;
+  int data[2] = {1, 1};
+} tensor0_0_dims;
+
+struct Tensor0_1Dims {
+  int size = 1;
+  int data[1] = {1};
+} tensor0_1_dims;
+
+struct Tensor0_2Dims {
+  int size = 2;
+  int data[2] = {1, 16};
+} tensor0_2_dims;
+
+struct Tensor0_3Dims {
+  int size = 1;
+  int data[1] = {16};
+} tensor0_3_dims;
+
+struct Tensor0_4Dims {
+  int size = 2;
+  int data[2] = {16, 16};
+} tensor0_4_dims;
+
+struct Tensor0_5Dims {
+  int size = 1;
+  int data[1] = {16};
+} tensor0_5_dims;
+
+struct Tensor0_6Dims {
+  int size = 2;
+  int data[2] = {16, 1};
+} tensor0_6_dims;
+
+struct Tensor0_7Dims {
+  int size = 2;
+  int data[2] = {1, 16};
+} tensor0_7_dims;
+
+struct Tensor0_8Dims {
+  int size = 2;
+  int data[2] = {1, 16};
+} tensor0_8_dims;
+
+struct Tensor0_9Dims {
+  int size = 2;
+  int data[2] = {1, 1};
+} tensor0_9_dims;
+
+TfLiteStatus InvokeSubgraph0(TfLiteContext* context,
+                             tflite::Span<TfLiteNode> nodes) {
+  TFLITE_DCHECK(nodes.size() == 3);
+  TF_LITE_ENSURE_OK(
+      context, op_table[OpCode::kFullyConnected].invoke(context, &nodes[0]));
+  TF_LITE_ENSURE_OK(
+      context, op_table[OpCode::kFullyConnected].invoke(context, &nodes[1]));
+  TF_LITE_ENSURE_OK(
+      context, op_table[OpCode::kFullyConnected].invoke(context, &nodes[2]));
+
+  return kTfLiteOk;
+}
+
+}  // namespace
+
+Model::Model()
+  : subgraphs_{
+      {.inputs = {&kSubgraph0Inputs[0], 1},
+       .outputs = {&kSubgraph0Outputs[0], 1},
+       .nodes = {&subgraph0_nodes_[0], 3},
+       .tensors = {&subgraph0_tensors_[0], 10},
+       .invoke = &InvokeSubgraph0},
+    },
+    micro_context_{&context_, {&subgraphs_[0], 1}} {
+  context_.impl_ = static_cast<void*>(&micro_context_);
+  context_.ReportError = nullptr;
+  context_.GetTensor = nullptr;
+  context_.GetEvalTensor = tflite::MicroContextGetEvalTensor;
+  context_.profiler = nullptr;
+  context_.GetExternalContext = nullptr;
+  context_.GetScratchBuffer = nullptr;
+
+  subgraph0_nodes_[0] = TfLiteNode{
+      .inputs = reinterpret_cast<TfLiteIntArray*>(&node_0_0.inputs),
+      .outputs = reinterpret_cast<TfLiteIntArray*>(&node_0_0.outputs),
+      .intermediates = nullptr,
+      .user_data = nullptr,
+      .builtin_data = static_cast<void*>(&node_0_0.builtin_data),
+      .custom_initial_data = nullptr,
+      .custom_initial_data_size = 0};
+  subgraph0_nodes_[1] = TfLiteNode{
+      .inputs = reinterpret_cast<TfLiteIntArray*>(&node_0_1.inputs),
+      .outputs = reinterpret_cast<TfLiteIntArray*>(&node_0_1.outputs),
+      .intermediates = nullptr,
+      .user_data = nullptr,
+      .builtin_data = static_cast<void*>(&node_0_1.builtin_data),
+      .custom_initial_data = nullptr,
+      .custom_initial_data_size = 0};
+  subgraph0_nodes_[2] = TfLiteNode{
+      .inputs = reinterpret_cast<TfLiteIntArray*>(&node_0_2.inputs),
+      .outputs = reinterpret_cast<TfLiteIntArray*>(&node_0_2.outputs),
+      .intermediates = nullptr,
+      .user_data = nullptr,
+      .builtin_data = static_cast<void*>(&node_0_2.builtin_data),
+      .custom_initial_data = nullptr,
+      .custom_initial_data_size = 0};
+
+  subgraph0_tensors_[0] = TfLiteEvalTensor{
+      .data = {.data = static_cast<void*>(nullptr /* buffer_1 */)},
+      .dims = reinterpret_cast<TfLiteIntArray*>(&tensor0_0_dims),
+      .type = kTfLiteInt8};
+  subgraph0_tensors_[1] = TfLiteEvalTensor{
+      .data = {.data = static_cast<void*>(&buffer_2)},
+      .dims = reinterpret_cast<TfLiteIntArray*>(&tensor0_1_dims),
+      .type = kTfLiteInt32};
+  subgraph0_tensors_[2] = TfLiteEvalTensor{
+      .data = {.data = static_cast<void*>(&buffer_3)},
+      .dims = reinterpret_cast<TfLiteIntArray*>(&tensor0_2_dims),
+      .type = kTfLiteInt8};
+  subgraph0_tensors_[3] = TfLiteEvalTensor{
+      .data = {.data = static_cast<void*>(&buffer_4)},
+      .dims = reinterpret_cast<TfLiteIntArray*>(&tensor0_3_dims),
+      .type = kTfLiteInt32};
+  subgraph0_tensors_[4] = TfLiteEvalTensor{
+      .data = {.data = static_cast<void*>(&buffer_5)},
+      .dims = reinterpret_cast<TfLiteIntArray*>(&tensor0_4_dims),
+      .type = kTfLiteInt8};
+  subgraph0_tensors_[5] = TfLiteEvalTensor{
+      .data = {.data = static_cast<void*>(&buffer_6)},
+      .dims = reinterpret_cast<TfLiteIntArray*>(&tensor0_5_dims),
+      .type = kTfLiteInt32};
+  subgraph0_tensors_[6] = TfLiteEvalTensor{
+      .data = {.data = static_cast<void*>(&buffer_7)},
+      .dims = reinterpret_cast<TfLiteIntArray*>(&tensor0_6_dims),
+      .type = kTfLiteInt8};
+  subgraph0_tensors_[7] = TfLiteEvalTensor{
+      .data = {.data = static_cast<void*>(nullptr /* buffer_8 */)},
+      .dims = reinterpret_cast<TfLiteIntArray*>(&tensor0_7_dims),
+      .type = kTfLiteInt8};
+  subgraph0_tensors_[8] = TfLiteEvalTensor{
+      .data = {.data = static_cast<void*>(nullptr /* buffer_9 */)},
+      .dims = reinterpret_cast<TfLiteIntArray*>(&tensor0_8_dims),
+      .type = kTfLiteInt8};
+  subgraph0_tensors_[9] = TfLiteEvalTensor{
+      .data = {.data = static_cast<void*>(nullptr /* buffer_10 */)},
+      .dims = reinterpret_cast<TfLiteIntArray*>(&tensor0_9_dims),
+      .type = kTfLiteInt8};
+}
+
+TfLiteStatus Model::Invoke() { return micro_context_.InvokeSubgraph(0); }
+
+}  // namespace hello_world_model
diff --git a/codegen/examples/hello_world/hello_world_model.h b/codegen/examples/hello_world/hello_world_model.h
new file mode 100644
index 0000000..80cfe2c
--- /dev/null
+++ b/codegen/examples/hello_world/hello_world_model.h
@@ -0,0 +1,40 @@
+/* Copyright 2023 The TensorFlow Authors. All Rights Reserved.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+    http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+==============================================================================*/
+
+/* AUTOMATICALLY GENERATED DO NOT MODIFY */
+
+#pragma once
+
+#include "codegen/runtime/micro_codegen_context.h"
+#include "tensorflow/lite/c/c_api_types.h"
+#include "tensorflow/lite/c/common.h"
+
+namespace hello_world_model {
+
+class Model {
+ public:
+  Model();
+
+  TfLiteStatus Invoke();
+
+ private:
+  TfLiteContext context_ = {};
+  tflite::Subgraph subgraphs_[1];
+  tflite::MicroCodegenContext micro_context_;
+  TfLiteNode subgraph0_nodes_[3] = {};
+  TfLiteEvalTensor subgraph0_tensors_[10] = {};
+};
+
+}  // namespace hello_world_model
diff --git a/codegen/examples/hello_world/update_example_source.sh b/codegen/examples/hello_world/update_example_source.sh
new file mode 100755
index 0000000..a381fed
--- /dev/null
+++ b/codegen/examples/hello_world/update_example_source.sh
@@ -0,0 +1,32 @@
+#!/usr/bin/env bash
+# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ==============================================================================
+
+#
+# Syncs the generated example source code in the repository.
+#
+
+set -e
+
+SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
+ROOT_DIR=${SCRIPT_DIR}/../../..
+cd "${ROOT_DIR}"
+
+bazel build //codegen/examples/hello_world:hello_world_model
+cp ./bazel-bin/codegen/examples/hello_world/hello_world_model.h ${SCRIPT_DIR}
+cp ./bazel-bin/codegen/examples/hello_world/hello_world_model.cc ${SCRIPT_DIR}
+clang-format --style=google -i \
+  ${SCRIPT_DIR}/hello_world_model.h \
+  ${SCRIPT_DIR}/hello_world_model.cc
diff --git a/codegen/graph.py b/codegen/graph.py
new file mode 100644
index 0000000..ad5a700
--- /dev/null
+++ b/codegen/graph.py
@@ -0,0 +1,262 @@
+# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ==============================================================================
+""" Provides object representation for the model that is conducive to code 
+    generation using templates. """
+
+from typing import Dict, List, Optional, Sequence
+import string
+import textwrap
+
+from tflite_micro.codegen.operators import factory
+from tflite_micro.codegen.operators import operator
+from tflite_micro.codegen import tensor
+from tflite_micro.codegen import utils
+from tflite_micro.tensorflow.lite.python import schema_py_generated as schema_fb
+from tflite_micro.tensorflow.lite.tools import visualize
+
+
+class OpCode(object):
+
+  def __init__(self, op_code: schema_fb.OperatorCodeT):
+    self._op_code: schema_fb.OperatorCodeT = op_code
+
+  @property
+  def name(self) -> str:
+    if self._op_code.customCode:
+      return self._op_code.customCode
+    return visualize.BuiltinCodeToName(self._op_code.builtinCode)
+
+  @property
+  def register_function(self) -> str:
+    return "tflite::RegisterInference_{}".format(self.name)
+
+  @property
+  def enum_name(self) -> str:
+    return "k{}".format(utils.to_pascal_case(self.name))
+
+  @property
+  def full_enum_name(self) -> str:
+    return "OpCode::" + self.enum_name
+
+
+class Subgraph(object):
+
+  def __init__(self, model: schema_fb.ModelT, buffers: Sequence[tensor.Buffer],
+               subgraph_idx: int, subgraph: schema_fb.SubGraphT):
+    self._subgraph_idx: int = subgraph_idx
+    self._subgraph: schema_fb.SubGraphT = subgraph
+    self._op_codes: List[OpCode] = [
+        OpCode(op_code) for op_code in model.operatorCodes
+    ]
+    self._tensors: List[Tensor] = []
+    for t in subgraph.tensors:
+      self._tensors.append(tensor.Tensor(buffers[t.buffer], t))
+
+    self._operators: List[operator.Operator] = []
+    for op in subgraph.operators:
+      op_code = model.operatorCodes[op.opcodeIndex]
+      self._operators.append(factory.create_operator(op_code, op))
+
+  @property
+  def index(self) -> int:
+    return self._subgraph_idx
+
+  @property
+  def inputs(self) -> Sequence[int]:
+    return self._subgraph.inputs
+
+  @property
+  def outputs(self) -> Sequence[int]:
+    return self._subgraph.outputs
+
+  @property
+  def operators(self) -> Sequence[operator.Operator]:
+    return self._operators
+
+  @property
+  def tensors(self) -> Sequence[tensor.Tensor]:
+    return self._tensors
+
+  @property
+  def needs_zero_length_int_array(self) -> bool:
+    return any(t.needs_zero_length_int_array for t in self.tensors)
+
+  @property
+  def invoke_fn_name(self) -> str:
+    return f"InvokeSubgraph{self.index}"
+
+  @property
+  def inputs_array_name(self) -> str:
+    return f"kSubgraph{self.index}Inputs"
+
+  @property
+  def outputs_array_name(self) -> str:
+    return f"kSubgraph{self.index}Outputs"
+
+  @property
+  def nodes_array(self) -> str:
+    return f"subgraph{self.index}_nodes_"
+
+  def nodes_element(self, operator_idx: int) -> str:
+    return self.nodes_array + f"[{operator_idx}]"
+
+  def node_data_type(self, operator_idx: int) -> str:
+    return f"Node{self.index}_{operator_idx}"
+
+  def node_data_name(self, operator_idx: int) -> str:
+    return f"node_{self.index}_{operator_idx}"
+
+  def generate_c_node_data(self, indent: str) -> str:
+    node_data_strs: List[str] = []
+    for op_idx, op in enumerate(self.operators):
+      type_name = self.node_data_type(op_idx)
+      node_name = self.node_data_name(op_idx)
+      node_data_strs.append(op.generate_c_node_data(type_name, node_name))
+    return textwrap.indent("\n\n".join(node_data_strs), indent)
+
+  def generate_c_node_init(self, indent: str) -> str:
+    node_init_strs: List[str] = []
+    for op_idx, op in enumerate(self.operators):
+      tflite_node_name = self.nodes_element(op_idx)
+      node_data_name = self.node_data_name(op_idx)
+      node_init_strs.append(
+          op.generate_c_node_init(tflite_node_name, node_data_name))
+    return textwrap.indent("\n".join(node_init_strs), indent)
+
+  def generate_c_invoke(self, indent: str) -> str:
+    function_template = string.Template(
+        "TfLiteStatus ${function_name}(TfLiteContext* context,\n"
+        "                             tflite::Span<TfLiteNode> nodes) {\n"
+        "  TFLITE_DCHECK(nodes.size() == ${num_nodes});\n"
+        "${body}\n"
+        "  return kTfLiteOk;\n"
+        "}")
+
+    body_template = string.Template(
+        "  TF_LITE_ENSURE_OK(\n"
+        "      context, op_table[${op_code}].invoke(context, &${node}));\n")
+    invoke_strs: List[str] = []
+    for op_idx, op in enumerate(self.operators):
+      invoke_strs.append(
+          body_template.substitute(
+              op_code=self._op_codes[op.op_code_index].full_enum_name,
+              node=f"nodes[{op_idx}]"))
+
+    invoke = function_template.substitute(function_name=self.invoke_fn_name,
+                                          num_nodes=len(self.operators),
+                                          body="".join(invoke_strs))
+    return textwrap.indent(invoke, indent)
+
+  def generate_c_input_array(self, indent: str) -> str:
+    return utils.generate_c_int_array(indent, "size_t", self.inputs_array_name,
+                                      self.inputs)
+
+  def generate_c_output_array(self, indent: str) -> str:
+    return utils.generate_c_int_array(indent, "size_t",
+                                      self.outputs_array_name, self.outputs)
+
+  def generate_c_subgraph_init(self, indent: str) -> str:
+    init_template = string.Template(
+        "{.inputs = {&${input_array}[0], ${input_size}},\n"
+        " .outputs = {&${output_array}[0], ${output_size}},\n"
+        " .nodes = {&${node_array}[0], ${node_size}},\n"
+        " .tensors = {&${tensor_array}[0], ${tensor_size}},\n"
+        " .invoke = &${invoke}},")
+    return textwrap.indent(
+        init_template.substitute(input_array=self.inputs_array_name,
+                                 input_size=len(self.inputs),
+                                 output_array=self.outputs_array_name,
+                                 output_size=len(self.outputs),
+                                 node_array=self.nodes_array,
+                                 node_size=len(self.operators),
+                                 tensor_array=self.tensors_array,
+                                 tensor_size=len(self.tensors),
+                                 invoke=self.invoke_fn_name), indent)
+
+  @property
+  def tensors_array(self) -> str:
+    return f"subgraph{self.index}_tensors_"
+
+  def tensors_element(self, tensor_idx: int) -> str:
+    return self.tensors_array + f"[{tensor_idx}]"
+
+  def tensor_data_type(self, tensor_idx: int) -> str:
+    return f"Tensor{self.index}_{tensor_idx}"
+
+  def tensor_data_name(self, tensor_idx: int) -> str:
+    return f"tensor{self.index}_{tensor_idx}"
+
+  def generate_c_tensor_data(self, indent: str) -> str:
+    tensor_dims_strs: List[str] = []
+    for tensor_idx, tensor in enumerate(self.tensors):
+      type_name = self.tensor_data_type(tensor_idx)
+      tensor_name = self.tensor_data_name(tensor_idx)
+      tensor_dims_strs.append(
+          tensor.generate_c_tensor_dims(type_name, tensor_name))
+    return textwrap.indent("\n\n".join(tensor_dims_strs), indent)
+
+  def generate_c_tensor_init(self, indent: str) -> str:
+    tensor_init_strs: List[str] = []
+    for tensor_idx, tensor in enumerate(self.tensors):
+      tflite_tensor_name = self.tensors_element(tensor_idx)
+      tensor_data_name = self.tensor_data_name(tensor_idx)
+      tensor_init_strs.append(
+          tensor.generate_c_tensor_init(tflite_tensor_name, tensor_data_name))
+    return textwrap.indent("\n".join(tensor_init_strs), indent)
+
+
+class Graph(object):
+
+  def __init__(self, model: schema_fb.ModelT):
+    buffers: List[tensor.Buffer] = [
+        tensor.Buffer("buffer_{}".format(idx), buffer)
+        for idx, buffer in enumerate(model.buffers)
+    ]
+    self._subgraphs: List[SubGraph] = [
+        Subgraph(model, buffers, idx, subgraph)
+        for idx, subgraph in enumerate(model.subgraphs)
+    ]
+
+  @property
+  def subgraphs(self) -> Sequence[Subgraph]:
+    return self._subgraphs
+
+  @property
+  def buffers(self) -> Sequence[tensor.Buffer]:
+    buffers: List[tensor.Buffer] = []
+    for subgraph in self.subgraphs:
+      for t in subgraph.tensors:
+        buffers.append(t.buffer)
+    return buffers
+
+  @property
+  def needs_zero_length_int_array(self) -> bool:
+    return any(subgraph.needs_zero_length_int_array
+               for subgraph in self.subgraphs)
+
+
+class OpCodeTable(object):
+
+  def __init__(self, models: Sequence[schema_fb.ModelT]):
+    op_codes = []
+    for model in models:
+      for op_code in model.operatorCodes:
+        op_codes.append(OpCode(op_code))
+
+    self._op_codes: List([OpCode]) = list(set(op_codes))
+
+  @property
+  def op_codes(self) -> Sequence[OpCode]:
+    return self._op_codes
diff --git a/codegen/inference_generator.py b/codegen/inference_generator.py
new file mode 100644
index 0000000..fe351f3
--- /dev/null
+++ b/codegen/inference_generator.py
@@ -0,0 +1,68 @@
+# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ==============================================================================
+""" Generates C/C++ inference source code. """
+
+import pathlib
+
+from mako import template
+from typing import TypedDict
+
+from tflite_micro.codegen import graph
+
+_TEMPLATE_DIR = pathlib.Path(__file__).parent / 'templates'
+_HEADER_TEMPLATE = _TEMPLATE_DIR / 'inference.h.mako'
+_SOURCE_TEMPLATE = _TEMPLATE_DIR / 'inference.cc.mako'
+
+
+class ModelData(TypedDict):
+  header_file: str
+  model_name: str
+  op_code_table: graph.OpCodeTable
+  graph: graph.Graph
+
+
+def _render(output_file: pathlib.Path, template_file: pathlib.Path,
+            model_data: ModelData) -> None:
+  print("Generating {}".format(output_file))
+  t = template.Template(filename=str(template_file))
+  with output_file.open('w+') as file:
+    file.write(t.render(**model_data))
+
+
+def _generate_header(header_path: pathlib.Path, model_data: ModelData) -> None:
+  _render(header_path, _HEADER_TEMPLATE, model_data)
+
+
+def _generate_source(source_path: pathlib.Path, model_data: ModelData) -> None:
+  _render(source_path, _SOURCE_TEMPLATE, model_data)
+
+
+def generate(output_dir: str, output_name: str,
+             op_code_table: graph.OpCodeTable, graph: graph.Graph) -> None:
+  """ Generate C/C++ inference code. """
+  header_file = f"{output_name}.h"
+  model_data: ModelData = {
+      'header_file': header_file,
+      'model_name': output_name,
+      'op_code_table': op_code_table,
+      'graph': graph,
+  }
+
+  # Ensure output directory exists
+  output_path = pathlib.Path(output_dir)
+  output_path.mkdir(parents=True, exist_ok=True)
+
+  _generate_header(output_path / header_file, model_data)
+  _generate_source(output_path / f"{output_name}.cc", model_data)
diff --git a/codegen/operators/BUILD b/codegen/operators/BUILD
new file mode 100644
index 0000000..3a7ae29
--- /dev/null
+++ b/codegen/operators/BUILD
@@ -0,0 +1,52 @@
+load("@rules_python//python:defs.bzl", "py_library")
+
+package(
+    default_visibility = ["//:__subpackages__"],
+    licenses = ["notice"],
+)
+
+py_library(
+    name = "constants",
+    srcs = [
+        "constants.py",
+    ],
+    deps = [
+        "//tensorflow/lite/python:schema_py",
+    ],
+)
+
+py_library(
+    name = "factory",
+    srcs = [
+        "factory.py",
+    ],
+    deps = [
+        ":fully_connected",
+        ":operator",
+        "//tensorflow/lite/python:schema_py",
+    ],
+)
+
+py_library(
+    name = "fully_connected",
+    srcs = [
+        "fully_connected.py",
+    ],
+    deps = [
+        ":constants",
+        ":operator",
+        "//codegen:utils",
+        "//tensorflow/lite/python:schema_py",
+    ],
+)
+
+py_library(
+    name = "operator",
+    srcs = [
+        "operator.py",
+    ],
+    deps = [
+        "//codegen:utils",
+        "//tensorflow/lite/python:schema_py",
+    ],
+)
diff --git a/codegen/operators/constants.py b/codegen/operators/constants.py
new file mode 100644
index 0000000..b9ff17a
--- /dev/null
+++ b/codegen/operators/constants.py
@@ -0,0 +1,50 @@
+# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ==============================================================================
+""" Operator Constants """
+
+from typing import Dict
+
+from tflite_micro.tensorflow.lite.python import schema_py_generated as schema_fb
+
+ACTIVATION_FUNCS: Dict[int, str] = {
+    schema_fb.ActivationFunctionType.NONE: "kTfLiteActNone",
+    schema_fb.ActivationFunctionType.RELU: "kTfLiteActRelu",
+    schema_fb.ActivationFunctionType.RELU_N1_TO_1: "kTfLiteActReluN1To1",
+    schema_fb.ActivationFunctionType.RELU6: "kTfLiteActRelu6",
+    schema_fb.ActivationFunctionType.TANH: "kTfLiteActTanh",
+    schema_fb.ActivationFunctionType.SIGN_BIT: "kTfLiteActSignBit",
+}
+
+TFLITE_TYPE: Dict[int, str] = {
+    0: "kTfLiteNoType",
+    1: "kTfLiteFloat32",
+    2: "kTfLiteInt32",
+    3: "kTfLiteUInt8",
+    4: "kTfLiteInt64",
+    5: "kTfLiteString",
+    6: "kTfLiteBool",
+    7: "kTfLiteInt16",
+    8: "kTfLiteComplex64",
+    9: "kTfLiteInt8",
+    10: "kTfLiteFloat16",
+    11: "kTfLiteFloat64",
+    12: "kTfLiteComplex128",
+    13: "kTfLiteUInt64",
+    14: "kTfLiteResource",
+    15: "kTfLiteVariant",
+    16: "kTfLiteUInt32",
+    17: "kTfLiteUInt16",
+    18: "kTfLiteInt4",
+}
diff --git a/codegen/operators/factory.py b/codegen/operators/factory.py
new file mode 100644
index 0000000..f62cacb
--- /dev/null
+++ b/codegen/operators/factory.py
@@ -0,0 +1,28 @@
+# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ==============================================================================
+""" A factory function for creating operators """
+
+from tflite_micro.codegen.operators import fully_connected
+from tflite_micro.codegen.operators import operator
+from tflite_micro.tensorflow.lite.python import schema_py_generated as schema_fb
+
+_BUILTIN_OPERATORS: dict[int, operator.Operator.__class__] = {
+    schema_fb.BuiltinOperator.FULLY_CONNECTED: fully_connected.FullyConnected,
+}
+
+
+def create_operator(op_code: schema_fb.OperatorCodeT, op: schema_fb.Operator):
+  operator_class = _BUILTIN_OPERATORS[op_code.builtinCode]
+  return operator_class(op)
diff --git a/codegen/operators/fully_connected.py b/codegen/operators/fully_connected.py
new file mode 100644
index 0000000..f756bef
--- /dev/null
+++ b/codegen/operators/fully_connected.py
@@ -0,0 +1,56 @@
+# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ==============================================================================
+""" FullyConnected operator """
+
+from typing import Dict
+import string
+
+from tflite_micro.codegen.operators import constants
+from tflite_micro.codegen.operators import operator
+from tflite_micro.codegen import utils
+from tflite_micro.tensorflow.lite.python import schema_py_generated as schema_fb
+
+_WEIGHTS_FORMATS: Dict[int, str] = {
+    schema_fb.FullyConnectedOptionsWeightsFormat.DEFAULT:
+    "kTfLiteFullyConnectedWeightsFormatDefault",
+    schema_fb.FullyConnectedOptionsWeightsFormat.SHUFFLED4x16INT8:
+    "kTfLiteFullyConnectedWeightsFormatShuffled4x16Int8",
+}
+
+
+class FullyConnected(operator.Operator):
+
+  def __init__(self, op: schema_fb.OperatorT):
+    assert op.builtinOptionsType == schema_fb.BuiltinOptions.FullyConnectedOptions
+    super(FullyConnected, self).__init__(op)
+    self._builtin_options: schema_fb.FullyConnectedOptionsT = op.builtinOptions
+
+  def generate_c_builtin_data(self) -> str:
+    builtin_template = string.Template(
+        "TfLiteFullyConnectedParams builtin_data = {\n"
+        "    .activation = ${activation},\n"
+        "    .weights_format = ${weights_format},\n"
+        "    .keep_num_dims = ${keep_num_dims},\n"
+        "    .asymmetric_quantize_inputs = ${asymmetric_quantize_inputs},\n"
+        "    .quantized_bias_type = ${quantized_bias_type}};")
+    return builtin_template.substitute(
+        activation=constants.ACTIVATION_FUNCS[
+            self._builtin_options.fusedActivationFunction],
+        weights_format=_WEIGHTS_FORMATS[self._builtin_options.weightsFormat],
+        keep_num_dims=utils.bool_to_c_str(self._builtin_options.keepNumDims),
+        asymmetric_quantize_inputs=utils.bool_to_c_str(
+            self._builtin_options.asymmetricQuantizeInputs),
+        quantized_bias_type=constants.TFLITE_TYPE[
+            self._builtin_options.quantizedBiasType])
diff --git a/codegen/operators/operator.py b/codegen/operators/operator.py
new file mode 100644
index 0000000..2879d37
--- /dev/null
+++ b/codegen/operators/operator.py
@@ -0,0 +1,92 @@
+# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ==============================================================================
+""" Provides object representation for the model that is conducive to code 
+    generation using templates. """
+
+import abc
+from typing import Optional
+import string
+import textwrap
+
+from tflite_micro.codegen import utils
+from tflite_micro.tensorflow.lite.python import schema_py_generated as schema_fb
+
+
+class Operator(abc.ABC):
+
+  def __init__(self, operator: schema_fb.OperatorT):
+    self._operator: schema_fb.OperatorT = operator
+    self._inputs: utils.IntArray = utils.IntArray(self._operator.inputs)
+    self._outputs: utils.IntArray = utils.IntArray(self._operator.outputs)
+    self._intermediates: Optional[utils.IntArray] = utils.IntArray(
+        self._operator.intermediates) if self._operator.intermediates else None
+
+  def generate_c_node_data(self, type_name: str, node_name: str) -> str:
+    struct_template = string.Template("struct ${type_name} {\n"
+                                      "${body}"
+                                      "} ${node_name};")
+    body_template = string.Template("${inputs}\n"
+                                    "${outputs}\n"
+                                    "${intermediates}\n"
+                                    "${builtin_data}\n")
+    if self._intermediates:
+      intermediates = self._intermediates.generate_c_struct(
+          "Intermediates", "intermediates")
+    else:
+      intermediates = "// No intermediates"
+
+    body = body_template.substitute(
+        inputs=self._inputs.generate_c_struct("Inputs", "inputs"),
+        outputs=self._outputs.generate_c_struct("Outputs", "outputs"),
+        intermediates=intermediates,
+        builtin_data=self.generate_c_builtin_data())
+
+    return struct_template.substitute(type_name=type_name,
+                                      node_name=node_name,
+                                      body=textwrap.indent(body, "  "))
+
+  def generate_c_node_init(self, tflite_node_name: str,
+                           node_data_name: str) -> str:
+    init_template = string.Template(
+        "${tflite_node_name} = TfLiteNode{\n"
+        "    .inputs ="
+        " reinterpret_cast<TfLiteIntArray*>(&${node_data_name}.inputs),\n"
+        "    .outputs ="
+        " reinterpret_cast<TfLiteIntArray*>(&${node_data_name}.outputs),\n"
+        "    .intermediates = ${intermediates},\n"
+        "    .user_data = nullptr,\n"
+        "    .builtin_data ="
+        " static_cast<void*>(&${node_data_name}.builtin_data),\n"
+        "    .custom_initial_data = nullptr,\n"
+        "    .custom_initial_data_size = 0};")
+
+    if self._intermediates:
+      intermediates = (
+          "reinterpret_cast<TfLiteIntArray*>(&{}.intermediates)".format(
+              self._intermediates))
+    else:
+      intermediates = "nullptr"
+
+    return init_template.substitute(tflite_node_name=tflite_node_name,
+                                    node_data_name=node_data_name,
+                                    intermediates=intermediates)
+
+  @property
+  def op_code_index(self) -> int:
+    return self._operator.opcodeIndex
+
+  @abc.abstractmethod
+  def generate_c_builtin_data(self) -> str:
+    raise NotImplementedError(f"Generating builtin data in {self.__name__}")
diff --git a/codegen/runtime/BUILD b/codegen/runtime/BUILD
new file mode 100644
index 0000000..d23cb70
--- /dev/null
+++ b/codegen/runtime/BUILD
@@ -0,0 +1,19 @@
+load("//tensorflow/lite/micro:build_def.bzl", "micro_copts")
+
+package(default_visibility = ["//visibility:public"])
+
+cc_library(
+    name = "micro_codegen_context",
+    srcs = ["micro_codegen_context.cc"],
+    hdrs = ["micro_codegen_context.h"],
+    copts = micro_copts(),
+    deps = [
+        "//tensorflow/lite/c:common",
+        "//tensorflow/lite/kernels:op_macros",
+        "//tensorflow/lite/kernels/internal:compatibility",
+        "//tensorflow/lite/micro:micro_context",
+        "//tensorflow/lite/micro:micro_graph",
+        "//tensorflow/lite/micro:micro_log",
+        "//tensorflow/lite/micro:span",
+    ],
+)
diff --git a/codegen/runtime/micro_codegen_context.cc b/codegen/runtime/micro_codegen_context.cc
new file mode 100644
index 0000000..858c823
--- /dev/null
+++ b/codegen/runtime/micro_codegen_context.cc
@@ -0,0 +1,139 @@
+/* Copyright 2023 The TensorFlow Authors. All Rights Reserved.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+    http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+==============================================================================*/
+
+#include "codegen/runtime/micro_codegen_context.h"
+
+#include "tensorflow/lite/c/common.h"
+#include "tensorflow/lite/kernels/internal/compatibility.h"
+#include "tensorflow/lite/kernels/op_macros.h"
+#include "tensorflow/lite/micro/micro_log.h"
+
+namespace tflite {
+
+MicroCodegenContext::MicroCodegenContext(TfLiteContext* context,
+                                         Span<Subgraph> subgraphs)
+    : context_(context), subgraphs_(subgraphs) {}
+
+void* MicroCodegenContext::GetScratchBuffer(int buffer_idx) {
+  // TODO(rjascani): Implement scratch buffers
+  return nullptr;
+}
+
+TfLiteEvalTensor* MicroCodegenContext::GetEvalTensor(int tensor_idx) {
+  TFLITE_DCHECK(static_cast<size_t>(tensor_idx) <
+                subgraphs_[current_subgraph_idx_].tensors.size());
+  return &subgraphs_[current_subgraph_idx_].tensors[tensor_idx];
+}
+
+TfLiteStatus MicroCodegenContext::set_external_context(
+    void* external_context_payload) {
+  if (external_context_payload == nullptr ||
+      external_context_payload_ != nullptr) {
+    MicroPrintf(
+        "Attempting to set external context to %x but it was %x already",
+        external_context_payload, external_context_payload_);
+    return kTfLiteError;
+  }
+
+  external_context_payload_ = external_context_payload;
+  return kTfLiteOk;
+}
+
+void* MicroCodegenContext::external_context() {
+  return external_context_payload_;
+}
+
+MicroGraph& MicroCodegenContext::graph() { return *this; }
+
+void* MicroCodegenContext::AllocatePersistentBuffer(size_t) {
+  // Not allowed at Eval
+  TFLITE_ABORT;
+  return nullptr;
+}
+
+TfLiteStatus MicroCodegenContext::RequestScratchBufferInArena(size_t, int*) {
+  // Not allowed at Eval
+  TFLITE_ABORT;
+  return kTfLiteError;
+}
+
+TfLiteTensor* MicroCodegenContext::AllocateTempTfLiteTensor(int) {
+  // Not allowed at Eval
+  TFLITE_ABORT;
+  return nullptr;
+}
+
+void MicroCodegenContext::DeallocateTempTfLiteTensor(TfLiteTensor*) {
+  // Not allowed at Eval
+  TFLITE_ABORT;
+}
+
+uint8_t* MicroCodegenContext::AllocateTempBuffer(size_t, size_t) {
+  // Not allowed at Eval
+  TFLITE_ABORT;
+  return nullptr;
+}
+
+void MicroCodegenContext::DeallocateTempBuffer(uint8_t*) {
+  // Not allowed at Eval
+  TFLITE_ABORT;
+}
+
+TfLiteStatus MicroCodegenContext::InvokeSubgraph(int subgraph_idx) {
+  TF_LITE_ENSURE(context_,
+                 static_cast<size_t>(subgraph_idx) < subgraphs_.size());
+  size_t previous_subgraph_idx = current_subgraph_idx_;
+  current_subgraph_idx_ = subgraph_idx;
+  TfLiteStatus status =
+      subgraphs_[subgraph_idx].invoke(context_, subgraphs_[subgraph_idx].nodes);
+  current_subgraph_idx_ = previous_subgraph_idx;
+  return status;
+}
+
+size_t MicroCodegenContext::NumSubgraphInputs(int subgraph_idx) {
+  TFLITE_DCHECK(static_cast<size_t>(subgraph_idx) < subgraphs_.size());
+  return subgraphs_[subgraph_idx].inputs.size();
+}
+
+TfLiteEvalTensor* MicroCodegenContext::GetSubgraphInput(int subgraph_idx,
+                                                        int input_idx) {
+  TFLITE_DCHECK(static_cast<size_t>(subgraph_idx) < subgraphs_.size());
+  TFLITE_DCHECK(static_cast<size_t>(input_idx) <
+                subgraphs_[subgraph_idx].inputs.size());
+  const size_t tensor_idx = subgraphs_[subgraph_idx].inputs[input_idx];
+  return &subgraphs_[subgraph_idx].tensors[tensor_idx];
+}
+
+size_t MicroCodegenContext::NumSubgraphOutputs(int subgraph_idx) {
+  TFLITE_DCHECK(static_cast<size_t>(subgraph_idx) < subgraphs_.size());
+  return subgraphs_[subgraph_idx].outputs.size();
+}
+
+TfLiteEvalTensor* MicroCodegenContext::GetSubgraphOutput(int subgraph_idx,
+                                                         int output_idx) {
+  TFLITE_DCHECK(static_cast<size_t>(subgraph_idx) < subgraphs_.size());
+  TFLITE_DCHECK(static_cast<size_t>(output_idx) <
+                subgraphs_[subgraph_idx].outputs.size());
+  const size_t tensor_idx = subgraphs_[subgraph_idx].outputs[output_idx];
+  return &subgraphs_[subgraph_idx].tensors[tensor_idx];
+}
+
+int MicroCodegenContext::NumSubgraphs() { return subgraphs_.size(); }
+
+MicroResourceVariables* MicroCodegenContext::GetResourceVariables() {
+  return nullptr;
+}
+
+}  // namespace tflite
diff --git a/codegen/runtime/micro_codegen_context.h b/codegen/runtime/micro_codegen_context.h
new file mode 100644
index 0000000..3693ad2
--- /dev/null
+++ b/codegen/runtime/micro_codegen_context.h
@@ -0,0 +1,75 @@
+/* Copyright 2023 The TensorFlow Authors. All Rights Reserved.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+    http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+==============================================================================*/
+
+#ifndef CODEGEN_RUNTIME_MICRO_CODEGEN_CONTEXT_H_
+#define CODEGEN_RUNTIME_MICRO_CODEGEN_CONTEXT_H_
+
+#include "tensorflow/lite/c/common.h"
+#include "tensorflow/lite/micro/micro_context.h"
+#include "tensorflow/lite/micro/micro_graph.h"
+#include "tensorflow/lite/micro/span.h"
+
+namespace tflite {
+
+struct Subgraph {
+  Span<const size_t> inputs;
+  Span<const size_t> outputs;
+  Span<TfLiteNode> nodes;
+  Span<TfLiteEvalTensor> tensors;
+  TfLiteStatus (*invoke)(TfLiteContext*, Span<TfLiteNode>);
+};
+
+class MicroCodegenContext : public MicroContext, MicroGraph {
+ public:
+  MicroCodegenContext(TfLiteContext* context, Span<Subgraph> subgraphs);
+
+  ~MicroCodegenContext() = default;
+
+  // MicroContext API
+  void* AllocatePersistentBuffer(size_t bytes) override;
+  TfLiteStatus RequestScratchBufferInArena(size_t bytes,
+                                           int* buffer_idx) override;
+  void* GetScratchBuffer(int buffer_idx) override;
+  TfLiteTensor* AllocateTempTfLiteTensor(int tensor_idx) override;
+  void DeallocateTempTfLiteTensor(TfLiteTensor* tensor) override;
+  uint8_t* AllocateTempBuffer(size_t size, size_t alignment) override;
+  void DeallocateTempBuffer(uint8_t* buffer) override;
+  TfLiteEvalTensor* GetEvalTensor(int tensor_idx) override;
+  TfLiteStatus set_external_context(void* external_context_payload) override;
+  void* external_context() override;
+  MicroGraph& graph() override;
+
+  // MicroGraph API
+  TfLiteStatus InvokeSubgraph(int subgraph_idx) override;
+  size_t NumSubgraphInputs(int subgraph_idx) override;
+  TfLiteEvalTensor* GetSubgraphInput(int subgraph_idx, int input_idx) override;
+  size_t NumSubgraphOutputs(int subgraph_idx) override;
+  TfLiteEvalTensor* GetSubgraphOutput(int subgraph_idx,
+                                      int output_idx) override;
+  int NumSubgraphs() override;
+  MicroResourceVariables* GetResourceVariables() override;
+
+ private:
+  TfLiteContext* context_;
+  Span<Subgraph> subgraphs_;
+  size_t current_subgraph_idx_ = 0;
+  void* external_context_payload_ = nullptr;
+
+  TF_LITE_REMOVE_VIRTUAL_DELETE
+};
+
+}  // namespace tflite
+
+#endif  // CODEGEN_RUNTIME_MICRO_CODEGEN_CONTEXT_H_
diff --git a/codegen/templates/inference.cc.mako b/codegen/templates/inference.cc.mako
new file mode 100644
index 0000000..cb6e59a
--- /dev/null
+++ b/codegen/templates/inference.cc.mako
@@ -0,0 +1,93 @@
+/* Copyright 2023 The TensorFlow Authors. All Rights Reserved.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+    http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+==============================================================================*/
+
+/* AUTOMATICALLY GENERATED DO NOT MODIFY */
+
+#include "${header_file}"
+
+#include "codegen/runtime/micro_codegen_context.h"
+#include "tensorflow/lite/c/builtin_op_data.h"
+#include "tensorflow/lite/c/c_api_types.h"
+#include "tensorflow/lite/c/common.h"
+#include "tensorflow/lite/kernels/internal/compatibility.h"
+#include "tensorflow/lite/micro/kernels/micro_ops.h"
+#include "tensorflow/lite/micro/micro_common.h"
+#include "tensorflow/lite/micro/micro_context.h"
+
+namespace ${model_name} {
+namespace {
+// TODO(rjascani): We should probably split out the OpTable to a separate file
+// once we start generating for multiple models.
+enum OpCode {
+% for op_code in op_code_table.op_codes:
+  ${op_code.enum_name},
+% endfor
+  kCount
+};
+
+TFLMInferenceRegistration op_table[OpCode::kCount] = {
+% for op_code in op_code_table.op_codes:
+    ${op_code.register_function}(),
+% endfor
+};
+
+% for buffer in graph.buffers:
+${buffer.generate_c_buffer_array("")}
+% endfor
+% for subgraph in graph.subgraphs:
+${subgraph.generate_c_input_array("")}
+
+${subgraph.generate_c_output_array("")}
+
+${subgraph.generate_c_node_data("")}
+
+${subgraph.generate_c_tensor_data("")}
+% endfor
+% if graph.needs_zero_length_int_array:
+
+TfLiteIntArray zero_length_int_array = {};
+% endif
+
+% for subgraph in graph.subgraphs:
+${subgraph.generate_c_invoke("")}
+% endfor
+
+}  // namespace
+
+Model::Model()
+  : subgraphs_{
+%for subgraph in graph.subgraphs:
+${subgraph.generate_c_subgraph_init("      ")}
+%endfor
+    },
+    micro_context_{&context_, {&subgraphs_[0], ${len(graph.subgraphs)}}} {
+  context_.impl_ = static_cast<void*>(&micro_context_);
+  context_.ReportError = nullptr;
+  context_.GetTensor = nullptr;
+  context_.GetEvalTensor = tflite::MicroContextGetEvalTensor;
+  context_.profiler = nullptr;
+  context_.GetExternalContext = nullptr;
+  context_.GetScratchBuffer = nullptr;
+
+% for subgraph in graph.subgraphs:
+${subgraph.generate_c_node_init("  ")}
+
+${subgraph.generate_c_tensor_init("  ")}
+% endfor
+}
+
+TfLiteStatus Model::Invoke() { return micro_context_.InvokeSubgraph(0); }
+
+}  // namespace ${model_name}
diff --git a/codegen/templates/inference.h.mako b/codegen/templates/inference.h.mako
new file mode 100644
index 0000000..5ab64e1
--- /dev/null
+++ b/codegen/templates/inference.h.mako
@@ -0,0 +1,44 @@
+/* Copyright 2023 The TensorFlow Authors. All Rights Reserved.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+    http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+==============================================================================*/
+
+/* AUTOMATICALLY GENERATED DO NOT MODIFY */
+
+#pragma once
+
+#include "codegen/runtime/micro_codegen_context.h"
+#include "tensorflow/lite/c/c_api_types.h"
+#include "tensorflow/lite/c/common.h"
+
+namespace ${model_name} {
+
+class Model {
+ public:
+  Model();
+
+  TfLiteStatus Invoke();
+
+ private:
+  TfLiteContext context_ = {};
+  tflite::Subgraph subgraphs_[${len(graph.subgraphs)}];
+  tflite::MicroCodegenContext micro_context_;
+% for subgraph in graph.subgraphs:
+  TfLiteNode ${subgraph.nodes_array}[${len(subgraph.operators)}] = {};
+% endfor
+% for subgraph in graph.subgraphs:
+  TfLiteEvalTensor ${subgraph.tensors_array}[${len(subgraph.tensors)}] = {};
+% endfor
+};
+
+}  // namespace ${model_name}
diff --git a/codegen/tensor.py b/codegen/tensor.py
new file mode 100644
index 0000000..83870fc
--- /dev/null
+++ b/codegen/tensor.py
@@ -0,0 +1,127 @@
+# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ==============================================================================
+""" Tensor class """
+
+from typing import Dict, Optional
+import string
+import textwrap
+
+from tflite_micro.codegen import utils
+from tflite_micro.tensorflow.lite.python import schema_py_generated as schema_fb
+
+_TENSOR_TYPES: Dict[int, str] = {
+    schema_fb.TensorType.FLOAT16: "kTfLiteFloat16",
+    schema_fb.TensorType.FLOAT32: "kTfLiteFloat32",
+    schema_fb.TensorType.FLOAT64: "kTfLiteFloat64",
+    schema_fb.TensorType.INT16: "kTfLiteInt16",
+    schema_fb.TensorType.UINT16: "kTfLiteUInt16",
+    schema_fb.TensorType.INT32: "kTfLiteInt32",
+    schema_fb.TensorType.UINT32: "kTfLiteUInt32",
+    schema_fb.TensorType.UINT8: "kTfLiteUInt8",
+    schema_fb.TensorType.INT8: "kTfLiteInt8",
+    schema_fb.TensorType.INT64: "kTfLiteInt64",
+    schema_fb.TensorType.UINT64: "kTfLiteUInt64",
+    schema_fb.TensorType.STRING: "kTfLiteString",
+    schema_fb.TensorType.BOOL: "kTfLiteBool",
+    schema_fb.TensorType.COMPLEX64: "kTfLiteComplex64",
+    schema_fb.TensorType.COMPLEX128: "kTfLiteComplex128",
+    schema_fb.TensorType.RESOURCE: "kTfLiteResource",
+    schema_fb.TensorType.VARIANT: "kTfLiteVariant",
+    schema_fb.TensorType.INT4: "kTfLiteInt4",
+}
+
+
+class Buffer(object):
+  """ This buffer could be either a static array or a pointer into the arena """
+
+  def __init__(self, buffer_name: str, buffer: schema_fb.BufferT):
+    # TODO(rjascani): Get arena allocation offsets from preprocessor
+    self._buffer_name = buffer_name
+    self._buffer = buffer
+
+  @property
+  def address(self) -> str:
+    if self._buffer is None or self._buffer.data is None:
+      # TODO(rjascani): This needs to point into the arena
+      return f"nullptr /* {self._buffer_name} */"
+    return f"&{self._buffer_name}"
+
+  def generate_c_buffer_array(self, indent: str) -> str:
+    if self._buffer is None or self._buffer.data is None:
+      return f"// {self._buffer_name} is located in the arena\n"
+
+    buffer_template = string.Template(
+        "alignas(16) uint8_t ${buffer_name}[${size}] = {\n"
+        "${body}\n"
+        "};\n")
+
+    byte_strs = ['0x{:02X}'.format(b) for b in self._buffer.data]
+
+    lines = []
+    for byte_strs_for_line in utils.split_into_chunks(byte_strs, 12):
+      bytes_segment = ', '.join(byte_strs_for_line)
+      lines.append(f'    {bytes_segment},')
+
+    return textwrap.indent(
+        buffer_template.substitute(buffer_name=self._buffer_name,
+                                   size=len(self._buffer.data),
+                                   body='\n'.join(lines)), indent)
+
+
+class Tensor(object):
+
+  def __init__(self, buffer: Buffer, tensor: schema_fb.TensorT):
+    self._buffer = buffer
+    self._tensor: schema_fb.TensorT = tensor
+
+  @property
+  def buffer_index(self) -> bool:
+    return self._tensor.buffer
+
+  @property
+  def buffer(self) -> Buffer:
+    return self._buffer
+
+  @property
+  def has_shape(self) -> bool:
+    return self._tensor.shape is not None
+
+  @property
+  def needs_zero_length_int_array(self) -> bool:
+    return not self.has_shape
+
+  def generate_c_tensor_dims(self, type_name: str, tensor_name: str) -> str:
+    if not self.has_shape:
+      return f"// No data dims necessary for {tensor_name}"
+    return utils.IntArray(self._tensor.shape).generate_c_struct(
+        type_name + "Dims", tensor_name + "_dims")
+
+  def generate_c_tensor_init(self, tflite_tensor_name: str,
+                             tensor_name: str) -> str:
+    init_template = string.Template(
+        "${tflite_tensor_name} = TfLiteEvalTensor{\n"
+        "    .data = {.data = static_cast<void*>(${data})},\n"
+        "    .dims = ${dims},\n"
+        "    .type = ${tflite_type}};")
+    dims = "reinterpret_cast<TfLiteIntArray*>(&{})".format(
+        f"{tensor_name}_dims" if self._tensor.
+        shape is not None else "zero_length_int_array")
+
+    return init_template.substitute(
+        tflite_tensor_name=tflite_tensor_name,
+        tensor_name=tensor_name,
+        data=self._buffer.address,
+        dims=dims,
+        tflite_type=_TENSOR_TYPES[self._tensor.type])
diff --git a/codegen/utils.py b/codegen/utils.py
new file mode 100644
index 0000000..c6c31c8
--- /dev/null
+++ b/codegen/utils.py
@@ -0,0 +1,101 @@
+# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ==============================================================================
+""" Utility functions and classes for code generation. """
+
+from typing import Any, Generator, Iterable, List, Optional, Sequence, Tuple
+import string
+import textwrap
+import itertools
+
+
+def to_pascal_case(s: str) -> str:
+  """ Basic function for converting snake_case to PascalCase. """
+  # This isn't perfect, as there might be some cases where we want underscores
+  # to remain if they are used as number separators.
+  return s.title().replace('_', '')
+
+
+def bool_to_c_str(b: bool) -> str:
+  """ Convert a python bool value to a C bool string. Ie, False -> 'false' """
+  return str(b).lower()
+
+
+def split_into_chunks(
+    data: Iterable[Any],
+    chunk_size: int) -> Generator[Tuple[Any, ...], None, None]:
+  """Splits an iterable into chunks of a given size."""
+  data_iterator = iter(data)
+  while True:
+    chunk = tuple(itertools.islice(data_iterator, chunk_size))
+    if not chunk:
+      break
+    yield chunk
+
+
+def generate_c_int_array(indent: str, int_type: str, name: str,
+                         ints: Sequence[int]) -> str:
+  int_strs = ['{}'.format(i) for i in ints]
+
+  # Try to do it on a single line first
+  single_line_array_template = string.Template(
+      "constexpr ${int_type} ${name}[${size}] = {${data}};")
+  single_line = textwrap.indent(
+      single_line_array_template.substitute(int_type=int_type,
+                                            name=name,
+                                            size=len(int_strs),
+                                            data=', '.join(int_strs)), indent)
+
+  if len(single_line) < 81:
+    return single_line
+
+  # Couldn't fit, so split it across multiple lines
+  multi_line_array_template = string.Template(
+      "constexpr ${int_type} ${name}[${size}] = {\n"
+      "${body}\n"
+      "};\n")
+
+  lines = []
+  for int_strs_for_line in split_into_chunks(int_strs, 12):
+    ints_segment = ', '.join(int_strs_for_line)
+    lines.append(f'    {ints_segment},')
+
+  return textwrap.indent(
+      multi_line_array_template.substitute(int_type=int_type,
+                                           name=name,
+                                           size=len(ints),
+                                           body='\n'.join(lines)), indent)
+
+
+class IntArray(object):
+  """ A helper class for generating int arrays that can be used to provide the
+      backing storage for a TfLiteIntArray. """
+
+  def __init__(self, data: List[int]):
+    self._data = data
+
+  def generate_c_struct(self, type_name: str,
+                        variable_name: Optional[str]) -> str:
+    struct_template = string.Template("struct ${type_name} {\n"
+                                      "  int size = ${size};\n"
+                                      "  int data[${size}] = {${data}};\n"
+                                      "}")
+    # TODO(rjascani): Make this pretty print in multi-line chunks
+    int_strs = ['{}'.format(i) for i in self._data]
+    c_struct_str = struct_template.substitute(type_name=type_name,
+                                              size=len(int_strs),
+                                              data=', '.join(int_strs))
+    if variable_name:
+      return c_struct_str + " {};".format(variable_name)
+    return c_struct_str + ";"
diff --git a/debugging_output.md b/debugging_output.md
new file mode 100644
index 0000000..59aa14e
--- /dev/null
+++ b/debugging_output.md
@@ -0,0 +1,76 @@
+# How to debug invalid output
+
+The TFLM debugging output tools allow TFLM users to easily debug their models
+by providing a tool that will compare the intermediate  values(output of each OP/Kernel)
+from a model post invoke between the TFLM and TfLite. As well as a way to
+compare intermediate values between TFLM x86 implementations and Optimized 
+Implementations.
+
+## How to debug TFLM Interpreter output on embedded targets
+
+First you call a C++ binary that takes a TfLite model and returns a file that has
+random inputs and their corresponding output values for each layer of the model
+it was provided.
+
+The second is you provide a TfLite model and file outputted by C++ binary above
+to a  python script. The script runs TFLM x86 inference comparison to the 
+expected output.
+
+## How to debug TFLM Python Interpreter output
+
+Using a python script mentioned in the section above when only a TfLite model is
+provided as input, the script generates random input and compares TFLM vs TfLite
+inference outputs for each layer of the model.
+
+## C++ Expected Layer by Layer Output Tool on TFLite Micro
+
+This C++ binary allows you to pass in a TfLite model and returns a flatbuffer
+file with input and the corresponding output values appended into it that can be
+passed into a python debugging tool which can compare those golden values vs
+the x86 TFLM reference kernel implementation.
+
+The C++ Tool/binary will write a debugging file to the path provide in
+2nd arg using the tflite_model provided in the 1st arg.
+
+##### Command bazel/blaze:
+
+```
+ bazel run tensorflow/lite/micro/tools:layer_cc -- \
+    </path/to/input_model.tflite>
+   </path/to/output.file_name>
+```
+
+##### How to Build using Makefile :
+
+```
+make -f tensorflow/lite/micro/tools/make/Makefile layer_by_layer_output_tool -j24
+```
+
+## Python Layer by Layer Debugging Tool 
+
+The Python Tool/Script can first be used to compare TFLM vs Tflite outputs for
+random inputs by only providing a TfLite file.
+
+#### TfLite vs TFLM command:
+``` 
+ bazel run tensorflow/lite/micro/tools:layer_by_layer_debugger -- \
+    --input_tflite_file=</path/to/my_model.tflite>
+```
+
+The Python Tool/Script can also be used to compare TFLM's python x86 output
+vs expected output provided by the C++ Tool/binary.
+
+#### TFLM vs Expected Command:
+``` 
+  bazel run tensorflow/lite/micro/tools:layer_by_layer_debugger -- \
+    --input_tflite_file=</path/to/my_model.tflite> \
+    --layer_by_layer_data_file=</path/to/my_debug_flatbuffer_file>
+```
+
+#### Optional Flags:
+ ` --print_dump  `
+When this flag is set, it will print the TFLM output for each layer that is
+compared.
+
+ ` --rng`
+Integer random number seed for generating input data for comparisons against TFLite. (Default: 42)
diff --git a/python/tflite_micro/BUILD b/python/tflite_micro/BUILD
index 68321fd..282e9db 100644
--- a/python/tflite_micro/BUILD
+++ b/python/tflite_micro/BUILD
@@ -1,5 +1,8 @@
+load("@bazel_skylib//rules:common_settings.bzl", "string_flag")
+load("@rules_python//python:defs.bzl", "py_library", "py_test")
 load("@pybind11_bazel//:build_defs.bzl", "pybind_extension")
 load("//python:py_namespace.bzl", "py_namespace")
+load("//tools:expand_stamp_vars.bzl", "expand_stamp_vars")
 load("@rules_python//python:packaging.bzl", "py_package", "py_wheel")
 load("@tflm_pip_deps//:requirements.bzl", "requirement")
 load(
@@ -70,9 +73,7 @@
     srcs = [
         "runtime.py",
     ],
-    data = [
-        ":_runtime.so",
-    ],
+    data = [":_runtime.so"],
     srcs_version = "PY3",
     visibility = ["//visibility:public"],
     deps = [
@@ -91,9 +92,10 @@
         "noubsan",
     ],
     deps = [
-        requirement("numpy"),
-        requirement("tensorflow-cpu"),
         ":runtime",
+        requirement("numpy"),
+        requirement("tensorflow"),
+        "//tensorflow/lite/micro/examples/recipes:add_four_numbers",
         "//tensorflow/lite/micro/testing:generate_test_models_lib",
     ],
 )
@@ -108,6 +110,14 @@
     ],
 )
 
+# Generate a version attribute, imported as tflite_micro.__version__, using
+# stamp (a.k.a. workspace status) variables.
+expand_stamp_vars(
+    name = "version",
+    out = "_version.py",
+    template = "_version.py.in",
+)
+
 # Collect the `deps` and their transitive dependences together into a set of
 # files to package. The files retain their full path relative to the workspace
 # root, which determines the subpackage path at which they're located within
@@ -128,6 +138,7 @@
     deps = [
         ":postinstall_check",
         ":runtime",
+        ":version",
     ],
 )
 
@@ -150,16 +161,78 @@
     ],
 )
 
+expand_stamp_vars(
+    name = "description_file",
+    out = "README.pypi.md",
+    template = "README.pypi.md.in",
+)
+
+# Building the :whl or its descendants requires the following build setting to
+# supply the Python compatibility tags for the wheel metadata.
+string_flag(
+    name = "compatibility_tag",
+    build_setting_default = "local",
+    values = [
+        "cp310_cp310_manylinux_2_28_x86_64",
+        "cp311_cp311_manylinux_2_28_x86_64",
+        "local",
+    ],
+)
+
+config_setting(
+    name = "cp310_cp310_manylinux_2_28_x86_64",
+    flag_values = {
+        ":compatibility_tag": "cp310_cp310_manylinux_2_28_x86_64",
+    },
+)
+
+config_setting(
+    name = "cp311_cp311_manylinux_2_28_x86_64",
+    flag_values = {
+        ":compatibility_tag": "cp311_cp311_manylinux_2_28_x86_64",
+    },
+)
+
+config_setting(
+    name = "local",
+    flag_values = {
+        ":compatibility_tag": "local",
+    },
+)
+
 py_wheel(
     name = "whl",
+    # This macro yields additional targets:
+    #
+    # - whl.dist: build a properly named file under whl_dist/
+    #
+    abi = select({
+        ":cp310_cp310_manylinux_2_28_x86_64": "cp310",
+        ":cp311_cp311_manylinux_2_28_x86_64": "cp311",
+        ":local": "none",
+    }),
+    description_file = ":description_file",
     distribution = "tflite_micro",
+    platform = select({
+        ":cp310_cp310_manylinux_2_28_x86_64": "manylinux_2_28_x86_64",
+        ":cp311_cp311_manylinux_2_28_x86_64": "manylinux_2_28_x86_64",
+        ":local": "any",
+    }),
+    python_tag = select({
+        ":cp310_cp310_manylinux_2_28_x86_64": "cp310",
+        ":cp311_cp311_manylinux_2_28_x86_64": "cp311",
+        ":local": "py3",
+    }),
     requires = [
         "flatbuffers",
         "numpy",
         "tensorflow",
     ],
+    stamp = 1,  # 1 == always stamp
     strip_path_prefixes = [package_name()],
-    version = "0.1.0",
+    summary = "TensorFlow Lite for Microcontrollers",
+    twine = "@tflm_pip_deps_twine//:pkg",
+    version = "{BUILD_EMBED_LABEL}.dev{STABLE_GIT_COMMIT_TIME}",
     deps = [
         ":namespace",
     ],
@@ -176,4 +249,7 @@
     data = [
         ":whl",
     ],
+    tags = [
+        "notap",  # See http://b/294278650#comment4 for more details.
+    ],
 )
diff --git a/python/tflite_micro/README.md b/python/tflite_micro/README.md
index cf5f638..927705f 100644
--- a/python/tflite_micro/README.md
+++ b/python/tflite_micro/README.md
@@ -1,25 +1,127 @@
-# TFLM Python Interpreter
+# The `tflite_micro` Python Package
 
-The TFLM interpreter can be invoked from Python by using the Python interpreter
-wrapper in this directory.
+This directory contains the `tflite_micro` Python package. The following is
+mainly documentation for its developers.
 
-## Usage
+The `tflite_micro` package contains a complete TFLM interpreter built as a
+CPython extension module. The build of simple Python packages may be driven by
+standard Python package builders such as `build`, `setuptools`, and `flit`;
+however, as TFLM is first and foremost a large C/C++ project, `tflite_micro`'s
+build is instead driven by its C/C++ build system Bazel.
 
-There are two ways to import the Python wrapper, either by using Bazel/Blaze, or
-in near future by installing a PyPi package.
+## Building and installing locally
 
-### Bazel
+### Building
 
-#### Build
+The Bazel target `//python/tflite_micro:whl.dist` builds a `tflite_micro`
+Python *.whl* under the output directory `bazel-bin/python/tflite_micro/whl_dist`. For example:
+```
+% bazel build //python/tflite_micro:whl.dist
+....
+Target //python/tflite_micro:whl.dist up-to-date:
+  bazel-bin/python/tflite_micro/whl_dist
+
+% tree bazel-bin/python/tflite_micro/whl_dist
+bazel-bin/python/tflite_micro/whl_dist
+└── tflite_micro-0.dev20230920161638-py3-none-any.whl
+```
+
+### Installing
+
+Install the resulting *.whl* via pip. For example, in a Python virtual
+environment:
+```
+% python3 -m venv ~/tmp/venv
+% source ~/tmp/venv/bin/activate
+(venv) $ pip install bazel-bin/python/tflite_micro/whl_dist/tflite_micro-0.dev20230920161638-py3-none-any.whl
+Processing ./bazel-bin/python/tflite_micro/whl_dist/tflite_micro-0.dev20230920161638-py3-none-any.whl
+....
+Installing collected packages: [....]
+```
+
+The package should now be importable and usable. For example:
+```
+(venv) $ python
+Python 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] on linux
+Type "help", "copyright", "credits" or "license" for more information.
+>>> import tflite_micro
+>>> tflite_micro.postinstall_check.passed()
+True
+>>>  i = tflite_micro.runtime.Interpreter.from_file("foo.tflite")
+>>> # etc.
+```
+
+## Building and uploading to PyPI
+
+The *.whl* generated above is unsuitable for distribution to the wider world
+via PyPI. The extension module is inevitably compiled against a particular
+Python implementation and platform C library. The resulting package is only
+binary-compatible with a system running the same Python implementation and a
+compatible (typically the same or newer) C library.
+
+The solution is to distribute multiple *.whl*s, one built for each Python
+implementation and platform combination. TFLM accomplishes this by running
+Bazel builds from within multiple, uniquely configured Docker containers. The
+images used are based on standards-conforming images published by the Python
+Package Authority (PyPA) for exactly such use.
+
+Python *.whl*s contain metadata used by installers such as `pip` to determine
+which distributions (*.whl*s) are compatible with the target platform. See the PyPA
+specification for [platform compatibility
+tags](https://packaging.python.org/en/latest/specifications/platform-compatibility-tags/).
+
+### Building
+
+In an environment with a working Docker installation, run the script
+`python/tflite_micro/pypi_build.sh <python-tag>` once for each tag. The
+script's online help (`--help`) lists the available tags. The script builds an
+appropriate Docker container and invokes a Bazel build and test within it.
+For example:
+```
+% python/tflite_micro/pypi_build.sh cp310
+[+] Building 2.6s (7/7) FINISHED
+=> writing image sha256:900704dad7fa27938dcc1c5057c0e760fb4ab0dff676415182455ae66546bbd4
+bazel build //python/tflite_micro:whl.dist \
+    --//python/tflite_micro:compatibility_tag=cp310_cp310_manylinux_2_28_x86_64
+bazel test //python/tflite_micro:whl_test \
+    --//python/tflite_micro:compatibility_tag=cp310_cp310_manylinux_2_28_x86_64
+//python/tflite_micro:whl_test
+Executed 1 out of 1 test: 1 test passes.
+Output:
+bazel-pypi-out/tflite_micro-0.dev20230920031310-cp310-cp310-manylinux_2_28_x86_64.whl
+```
+
+By default, *.whl*s are generated under the output directory `bazel-pypi-out/`.
+
+### Uploading to PyPI
+
+Upload the generated *.whl*s to PyPI with the script
+`python/tflite_micro/pypi_upload.sh`. This script lightly wraps the standard
+upload tool `twine`. A PyPI authentication token must be assigned to
+`TWINE_PASSWORD` in the environment. For example:
+```
+% export TWINE_PASSWORD=pypi-AgENdGV[....]
+% ./python/tflite_micro/pypi_upload.sh --test-pypi bazel-pypi-out/tflite_micro-*.whl
+Uploading distributions to https://test.pypi.org/legacy/
+Uploading tflite_micro-0.dev20230920031310-cp310-cp310-manylinux_2_28_x86_64.whl
+Uploading tflite_micro-0.dev20230920031310-cp311-cp311-manylinux_2_28_x86_64.whl
+View at:
+https://test.pypi.org/project/tflite-micro/0.dev20230920031310/
+```
+
+See the script's online help (`--help`) for more.
+
+## Using `tflite_micro` from within the TFLM source tree
+
+:construction:
+*The remainder of this document is under construction and may contain some
+obsolete information.*
+:construction:
 
 The only package that needs to be included in the `BUILD` file is
 `//python/tflite_micro:runtime`. It contains all
 the correct dependencies to build the Python interpreter.
 
-### PyPi
-
-Work in progress.
-
 ### Examples
 
 Depending on the workflow, the package import path may be slightly different.
@@ -55,7 +157,7 @@
 print(tflm_interpreter.get_output_details(0))
 ```
 
-## Technical Details
+### Technical Details
 
 The Python interpreter uses [pybind11](https://github.com/pybind/pybind11) to
 expose an evolving set of C++ APIs. The Bazel build leverages the
@@ -64,7 +166,7 @@
 The most updated Python APIs can be found in
 `python/tflite_micro/runtime.py`.
 
-## Custom Ops
+### Custom Ops
 
 The Python interpreter works with models with
 [custom ops](https://www.tensorflow.org/lite/guide/ops_custom) but special steps
@@ -126,7 +228,7 @@
 properly included in TFLM's op resolver. This approach is very similar to
 TFLite's custom op support.
 
-## Print Allocations
+### Print Allocations
 
 The Python interpreter can also be used to print memory arena allocations. This
 is very helpful to figure out actual memory arena usage.
diff --git a/python/tflite_micro/README.pypi.md.in b/python/tflite_micro/README.pypi.md.in
new file mode 100644
index 0000000..a04356e
--- /dev/null
+++ b/python/tflite_micro/README.pypi.md.in
@@ -0,0 +1,5 @@
+# TensorFlow Lite for Microcontrollers
+
+This package is built from commit
+[{STABLE_GIT_HASH}](https://github.com/tensorflow/tflite-micro/blob/{STABLE_GIT_HASH}/python/tflite_micro)
+of [github.com/tensorflow/tflite-micro](https://github.com/tensorflow/tflite-micro).
diff --git a/python/tflite_micro/__init__.py b/python/tflite_micro/__init__.py
index 940289c..9f15213 100644
--- a/python/tflite_micro/__init__.py
+++ b/python/tflite_micro/__init__.py
@@ -11,6 +11,7 @@
 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 # See the License for the specific language governing permissions and
 # limitations under the License.
+# ----
 
 # Define a public API for the package by providing aliases for modules which
 # are otherwise deeply nested in subpackages determined by their location in
@@ -20,5 +21,8 @@
 
 from tflite_micro.python.tflite_micro import runtime
 
+# Unambiguously identify the source used to build the package.
+from tflite_micro.python.tflite_micro._version import __version__
+
 # Ordered after `runtime` to avoid a circular dependency
 from tflite_micro.python.tflite_micro import postinstall_check
diff --git a/python/tflite_micro/_runtime.cc b/python/tflite_micro/_runtime.cc
index 824b3b4..246545f 100644
--- a/python/tflite_micro/_runtime.cc
+++ b/python/tflite_micro/_runtime.cc
@@ -24,14 +24,19 @@
 
 PYBIND11_MODULE(_runtime, m) {
   m.doc() = "TFLite Micro Runtime Extension";
-
+  py::enum_<tflite::InterpreterConfig>(m, "PythonInterpreterConfig")
+      .value("kAllocationRecording",
+             tflite::InterpreterConfig::kAllocationRecording)
+      .value("kPreserveAllTensors",
+             tflite::InterpreterConfig::kPreserveAllTensors);
   py::class_<InterpreterWrapper>(m, "InterpreterWrapper")
       .def(py::init([](const py::bytes& data,
                        const std::vector<std::string>& registerers_by_name,
-                       size_t arena_size, int num_resource_variables) {
+                       size_t arena_size, int num_resource_variables,
+                       tflite::InterpreterConfig config) {
         return std::unique_ptr<InterpreterWrapper>(
             new InterpreterWrapper(data.ptr(), registerers_by_name, arena_size,
-                                   num_resource_variables));
+                                   num_resource_variables, config));
       }))
       .def("PrintAllocations", &InterpreterWrapper::PrintAllocations)
       .def("Invoke", &InterpreterWrapper::Invoke)
@@ -55,6 +60,14 @@
           },
           py::arg("index"))
       .def(
+          "GetTensor",
+          [](InterpreterWrapper& self, size_t tensor_index,
+             size_t subgraph_index = 0) {
+            return tflite::PyoOrThrow(
+                self.GetTensor(tensor_index, subgraph_index));
+          },
+          py::arg("tensor_index"), py::arg("subgraph_index"))
+      .def(
           "GetOutputTensorDetails",
           [](InterpreterWrapper& self, size_t index) {
             return tflite::PyoOrThrow(self.GetOutputTensorDetails(index));
diff --git a/python/tflite_micro/_version.py.in b/python/tflite_micro/_version.py.in
new file mode 100644
index 0000000..77768f7
--- /dev/null
+++ b/python/tflite_micro/_version.py.in
@@ -0,0 +1 @@
+__version__ = "{BUILD_EMBED_LABEL}.dev{STABLE_GIT_COMMIT_TIME}-g{STABLE_GIT_HASH}"
diff --git a/python/tflite_micro/interpreter_wrapper.cc b/python/tflite_micro/interpreter_wrapper.cc
index 41c4f7a..53efe8e 100644
--- a/python/tflite_micro/interpreter_wrapper.cc
+++ b/python/tflite_micro/interpreter_wrapper.cc
@@ -15,6 +15,11 @@
 
 #include "python/tflite_micro/interpreter_wrapper.h"
 
+#include <cstddef>
+
+#include "tensorflow/lite/micro/micro_allocator.h"
+#include "tensorflow/lite/micro/micro_utils.h"
+
 // Disallow Numpy 1.7 deprecated symbols.
 #define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
 // See https://numpy.org/doc/1.16/reference/c-api.array.html#importing-the-api
@@ -187,6 +192,39 @@
   return result;
 }
 
+PyObject* GetEvalTensorDetails(const TfLiteEvalTensor* eval_tensor) {
+  PyObject* tensor_type =
+      PyArray_TypeObjectFromType(TfLiteTypeToPyArrayType(eval_tensor->type));
+  PyObject* np_size_array =
+      PyArrayFromIntVector(eval_tensor->dims->data, eval_tensor->dims->size);
+  PyObject* tensor_size =
+      PyArray_Return(reinterpret_cast<PyArrayObject*>(np_size_array));
+
+  size_t eval_tensor_bytes = tflite::EvalTensorBytes(eval_tensor);
+  void* data = malloc(eval_tensor_bytes);
+  memcpy(data, eval_tensor->data.data, eval_tensor_bytes);
+
+  std::vector<npy_intp> dims(eval_tensor->dims->data,
+                             eval_tensor->dims->data + eval_tensor->dims->size);
+  int py_type_num = TfLiteTypeToPyArrayType(eval_tensor->type);
+  PyObject* np_array =
+      PyArray_SimpleNewFromData(dims.size(), dims.data(), py_type_num, data);
+
+  // Transfer ownership to Python so that there's Python will take care of
+  // releasing this buffer
+  PyArray_ENABLEFLAGS(reinterpret_cast<PyArrayObject*>(np_array),
+                      NPY_ARRAY_OWNDATA);
+
+  PyObject* result = PyDict_New();
+  PyDict_SetItemString(result, "dtype", tensor_type);
+  PyDict_SetItemString(result, "shape", tensor_size);
+  PyDict_SetItemString(
+      result, "tensor_data",
+      PyArray_Return(reinterpret_cast<PyArrayObject*>(np_array)));
+
+  return result;
+}
+
 }  // namespace
 
 InterpreterWrapper::~InterpreterWrapper() {
@@ -204,7 +242,7 @@
 
 InterpreterWrapper::InterpreterWrapper(
     PyObject* model_data, const std::vector<std::string>& registerers_by_name,
-    size_t arena_size, int num_resource_variables) {
+    size_t arena_size, int num_resource_variables, InterpreterConfig config) {
   interpreter_ = nullptr;
 
   // `model_data` is used as a raw pointer beyond the scope of this
@@ -223,12 +261,6 @@
   const Model* model = GetModel(buf);
   model_ = model_data;
   memory_arena_ = std::unique_ptr<uint8_t[]>(new uint8_t[arena_size]);
-  allocator_ = RecordingMicroAllocator::Create(memory_arena_.get(), arena_size);
-  MicroResourceVariables* resource_variables_ = nullptr;
-  if (num_resource_variables > 0)
-    resource_variables_ =
-        MicroResourceVariables::Create(allocator_, num_resource_variables);
-
   for (const std::string& registerer : registerers_by_name) {
     if (!AddCustomOpRegistererByName(registerer.c_str(),
                                      &python_ops_resolver_)) {
@@ -237,6 +269,24 @@
     }
   }
 
+  switch (config) {
+    case InterpreterConfig::kAllocationRecording: {
+      recording_allocator_ =
+          RecordingMicroAllocator::Create(memory_arena_.get(), arena_size);
+      allocator_ = recording_allocator_;
+      break;
+    }
+    case InterpreterConfig::kPreserveAllTensors: {
+      allocator_ = MicroAllocator::Create(memory_arena_.get(), arena_size,
+                                          MemoryPlannerType::kLinear);
+      break;
+    }
+  }
+  MicroResourceVariables* resource_variables_ = nullptr;
+  if (num_resource_variables > 0)
+    resource_variables_ =
+        MicroResourceVariables::Create(allocator_, num_resource_variables);
+
   interpreter_ = new MicroInterpreter(model, python_ops_resolver_, allocator_,
                                       resource_variables_);
 
@@ -250,7 +300,13 @@
   ImportNumpy();
 }
 
-void InterpreterWrapper::PrintAllocations() { allocator_->PrintAllocations(); }
+void InterpreterWrapper::PrintAllocations() {
+  if (!recording_allocator_) {
+    ThrowValueError("Cannot print allocations as they were not recorded");
+    return;
+  }
+  return recording_allocator_->PrintAllocations();
+}
 
 int InterpreterWrapper::Invoke() {
   TfLiteStatus status = interpreter_->Invoke();
@@ -358,6 +414,18 @@
   return PyArray_Return(reinterpret_cast<PyArrayObject*>(np_array));
 }
 
+PyObject* InterpreterWrapper::GetTensor(size_t tensor_index,
+                                        size_t subgraph_index) {
+  if (!interpreter_->preserve_all_tensors()) {
+    ThrowRuntimeError(
+        "TFLM only supports GetTensor() when using a python interpreter with "
+        "the InterpreterConfig.kPeserverAllTensors interpreter_config");
+    return nullptr;
+  }
+  return GetEvalTensorDetails(
+      interpreter_->GetTensor(tensor_index, subgraph_index));
+}
+
 PyObject* InterpreterWrapper::GetInputTensorDetails(size_t index) const {
   return GetTensorDetails(interpreter_->input(index));
 }
diff --git a/python/tflite_micro/interpreter_wrapper.h b/python/tflite_micro/interpreter_wrapper.h
index 1ead5af..9bb31b0 100644
--- a/python/tflite_micro/interpreter_wrapper.h
+++ b/python/tflite_micro/interpreter_wrapper.h
@@ -18,16 +18,29 @@
 #include <Python.h>
 
 #include "python/tflite_micro/python_ops_resolver.h"
+#include "tensorflow/lite/micro/micro_allocator.h"
 #include "tensorflow/lite/micro/micro_interpreter.h"
 #include "tensorflow/lite/micro/recording_micro_allocator.h"
 
 namespace tflite {
 
+// Allocation Recording is mutually exclusive from the PreserveAllTensors
+// debugging feature because PreserveAllTensors uses the LinearMemoryPlanner.
+// This means that the Allocations recorded by the RecordingMicroAllocator
+// wouldn't be accurate because the GreedyMemoryPlanner would have to be used.
+// So this Enum was made to represent the two possible modes/configs you can use
+// the python interpreter for.
+enum InterpreterConfig {
+  kAllocationRecording = 0,
+  kPreserveAllTensors = 1,
+};
+
 class InterpreterWrapper {
  public:
-  InterpreterWrapper(PyObject* model_data,
-                     const std::vector<std::string>& registerers_by_name,
-                     size_t arena_size, int num_resource_variables);
+  InterpreterWrapper(
+      PyObject* model_data, const std::vector<std::string>& registerers_by_name,
+      size_t arena_size, int num_resource_variables,
+      InterpreterConfig config = InterpreterConfig::kAllocationRecording);
   ~InterpreterWrapper();
 
   void PrintAllocations();
@@ -37,9 +50,11 @@
   PyObject* GetOutputTensor(size_t index) const;
   PyObject* GetInputTensorDetails(size_t index) const;
   PyObject* GetOutputTensorDetails(size_t index) const;
+  PyObject* GetTensor(size_t tensor_index, size_t subgraph_index = 0);
 
  private:
-  tflite::RecordingMicroAllocator* allocator_;
+  tflite::MicroAllocator* allocator_ = nullptr;
+  tflite::RecordingMicroAllocator* recording_allocator_ = nullptr;
   const PyObject* model_;
   std::unique_ptr<uint8_t[]> memory_arena_;
   tflite::PythonOpsResolver python_ops_resolver_;
diff --git a/python/tflite_micro/numpy_utils.cc b/python/tflite_micro/numpy_utils.cc
index 4a4aad8..20f43c9 100644
--- a/python/tflite_micro/numpy_utils.cc
+++ b/python/tflite_micro/numpy_utils.cc
@@ -40,6 +40,9 @@
       return NPY_FLOAT32;
     case kTfLiteFloat16:
       return NPY_FLOAT16;
+    case kTfLiteBFloat16:
+      // TODO(b/329491949): NPY_BFLOAT16 currently doesn't exist
+      return NPY_FLOAT16;
     case kTfLiteFloat64:
       return NPY_FLOAT64;
     case kTfLiteInt32:
diff --git a/python/tflite_micro/pypi_build.dockerfile b/python/tflite_micro/pypi_build.dockerfile
new file mode 100644
index 0000000..a2ac320
--- /dev/null
+++ b/python/tflite_micro/pypi_build.dockerfile
@@ -0,0 +1,16 @@
+# Use the Python Packaging Authority's reference build environment
+# for binary extensions. Binary extensions are typically built and distributed
+# for each target Python version and OS platform. The reference build
+# environment contains Python installations for each version, and a C/C++
+# toolchain specified for maximum compatibility among x86_64 Linux paltforms.
+FROM quay.io/pypa/manylinux_2_28_x86_64
+
+# Install bazel (via bazelisk)
+ENV BAZELISK=https://github.com/bazelbuild/bazelisk/releases/download/v1.18.0/bazelisk-linux-amd64
+ENV BAZEL=/usr/local/bin/bazel
+RUN curl --output $BAZEL --location $BAZELISK && chmod 755 $BAZEL
+
+# Append the location of the C/C++ toolchain to the default PATH, where
+# bazel expects to find it. The reference environment provides the location
+# (typically somewhere under /opt) in DEVTOOLSET_ROOTPATH.
+RUN echo "PATH="${PATH}:/${DEVTOOLSET_ROOTPATH}"" >>/etc/environment
diff --git a/python/tflite_micro/pypi_build.sh b/python/tflite_micro/pypi_build.sh
new file mode 100755
index 0000000..0581225
--- /dev/null
+++ b/python/tflite_micro/pypi_build.sh
@@ -0,0 +1,119 @@
+#!/bin/sh
+
+# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+set -e
+
+OUT_DIR_DEFAULT=bazel-pypi-out
+
+USAGE="$(basename $0) <python-tag> [<output-directory>]
+
+Build a Python wheel for public release to PyPI using a special Docker build
+container. Uses bazel, but does not pollute the WORKSPACE's default cache.
+
+<python-tag> must be one of the supported interpreters:
+   cp310
+   cp311
+
+<output-directory> defaults to $OUT_DIR_DEFAULT.
+"
+
+case "$1" in
+    cp310|cp311)
+        PY_TAG=$1
+        OUTDIR=$(realpath ${2:-$OUT_DIR_DEFAULT})
+        mkdir -p $OUTDIR
+        break
+        ;;
+    *)
+        echo usage: "$USAGE" >&2
+        exit 1
+esac
+
+SRCDIR=$(realpath .)
+if ! test -f $SRCDIR/WORKSPACE; then
+    echo "error: must run from the top of the source tree" >&2
+    exit 1
+fi
+
+# Remove Bazel's workspace symlinks so they'll be rewritten below, pointing into
+# OUTDIR.
+find . -maxdepth 1 -type l -name bazel-\* | xargs rm -f
+
+# Build the Docker image from its source file. Don't pollute the public list of
+# images by tagging; just use the image's ID.
+DOCKERFILE=python/tflite_micro/pypi_build.dockerfile
+IMAGE_ID_FILE=$OUTDIR/image-id
+docker build - --iidfile $IMAGE_ID_FILE <$DOCKERFILE
+IMAGE_ID=$(cat $IMAGE_ID_FILE)
+
+# Build the Python package within an ephemeral container.
+docker run \
+    --rm \
+    --interactive \
+    --mount type=bind,source=$SRCDIR,destination=$SRCDIR \
+    --mount type=bind,source=$OUTDIR,destination=$OUTDIR \
+    --workdir $SRCDIR \
+    --env USER=$(id -un) \
+    $IMAGE_ID \
+    /bin/bash -s -e -x -u \
+<<EOF
+    # Setup the Python compatibility tags. The PY_ABI always matches the Python
+    # interpreter tag. The platform tag is supplied by the build image in the
+    # environment variable AUDITWHEEL_PLAT.
+    PY_ABI=$PY_TAG
+    PY_PLATFORM=\$AUDITWHEEL_PLAT
+    PY_COMPATIBILITY=${PY_TAG}_\${PY_ABI}_\${PY_PLATFORM}
+
+    # Link the desired Python version into the PATH, where bazel will find it.
+    # The build image contains many different Python versions as options.
+    ln -sf /opt/python/$PY_TAG-$PY_TAG/bin/* /usr/bin
+
+    # Bazelisk fails if it can't check HOME for a .rc file., and pip (in
+    # :whl_test) installation of some dependencies (e.g., wrapt) expects HOME.
+    export HOME=$OUTDIR
+
+    # Bazelisk, bazel, and pip all need a writable cache directory.
+    export XDG_CACHE_HOME=$OUTDIR/cache
+
+    # Relocate the bazel root to keep the cache used for each Python toolchain
+    # separate. Drop root privledges and run as the invoking user.
+    call_bazel() {
+        setpriv --reuid=$(id -u) --regid=$(id -g) --clear-groups \
+            bazel \
+                --output_user_root=$OUTDIR/$PY_TAG-out \
+                "\$@" \
+                --action_env=HOME `# help setuptools find HOME in container` \
+                --action_env=USER `# bazel reads USER via whoami` \
+                --action_env=XDG_CACHE_HOME `# locate pip's cache inside OUTDIR`
+    }
+
+    # Build the wheel via bazel, using the Python compatibility tag matching the
+    # build environment.
+    call_bazel build //python/tflite_micro:whl.dist \
+        --//python/tflite_micro:compatibility_tag=\$PY_COMPATIBILITY
+
+    # Test, in the container environment.
+    call_bazel test //python/tflite_micro:whl_test \
+            --//python/tflite_micro:compatibility_tag=\$PY_COMPATIBILITY
+EOF
+
+# Make the output directory tree writable so it can be removed easily by the
+# user with `rm -rf $OUTDIR`. Bazel leaves it write-protected.
+chmod -R +w $OUTDIR
+
+# Copy the generated wheel file to the root of the $OUTDIR.
+cp bazel-bin/python/tflite_micro/whl_dist/*.whl $OUTDIR
+echo "Output:\n$(ls $OUTDIR/*.whl)"
diff --git a/python/tflite_micro/pypi_upload.sh b/python/tflite_micro/pypi_upload.sh
new file mode 100755
index 0000000..a5194c4
--- /dev/null
+++ b/python/tflite_micro/pypi_upload.sh
@@ -0,0 +1,57 @@
+#!/bin/sh
+
+# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+set -e
+
+USAGE="$(basename $0) [--test-pypi] <whl>...
+
+Upload the given Python wheels to PyPI using the program twine. Requires an
+authentication token in the environment variable TWINE_PASSWORD. TWINE_USERNAME
+is set to \`__token__\` if not set in the environment.
+"
+
+die () {
+    echo "$*" >&2
+    exit 1
+}
+
+case "$1" in
+    --test-pypi)
+        export TWINE_REPOSITORY=testpypi
+        shift
+        ;;
+    -h|--help)
+        echo "$USAGE"
+        exit
+esac
+
+if [ ! "$#" -ge 1 ]; then
+    die "$USAGE"
+fi
+
+if [ ! -x $(command -v twine) ]; then
+    die "error: twine not found. On Debian and derivatives, try \`apt install twine\`."
+fi
+
+if [ ! "$TWINE_PASSWORD" ]; then
+    die "error: TWINE_PASSWORD is not set"
+fi
+
+: ${TWINE_USERNAME:="__token__"}
+
+export TWINE_PASSWORD
+export TWINE_USERNAME
+twine upload "$@"
diff --git a/python/tflite_micro/python_ops_resolver.cc b/python/tflite_micro/python_ops_resolver.cc
index a47a261..f5d6e63 100644
--- a/python/tflite_micro/python_ops_resolver.cc
+++ b/python/tflite_micro/python_ops_resolver.cc
@@ -28,6 +28,7 @@
   AddArgMin();
   AddAssignVariable();
   AddAveragePool2D();
+  AddBatchMatMul();
   AddBatchToSpaceNd();
   AddBroadcastArgs();
   AddBroadcastTo();
@@ -45,8 +46,9 @@
   AddDequantize();
   AddDetectionPostprocess();
   AddDiv();
-  AddEnergy();
   AddElu();
+  AddEmbeddingLookup();
+  AddEnergy();
   AddEqual();
   AddEthosU();
   AddExp();
@@ -55,8 +57,8 @@
   AddFill();
   AddFilterBank();
   AddFilterBankLog();
-  AddFilterBankSquareRoot();
   AddFilterBankSpectralSubtraction();
+  AddFilterBankSquareRoot();
   AddFloor();
   AddFloorDiv();
   AddFloorMod();
@@ -75,11 +77,11 @@
   AddLess();
   AddLessEqual();
   AddLog();
+  AddLogSoftmax();
   AddLogicalAnd();
   AddLogicalNot();
   AddLogicalOr();
   AddLogistic();
-  AddLogSoftmax();
   AddMaxPool2D();
   AddMaximum();
   AddMean();
@@ -89,6 +91,7 @@
   AddNeg();
   AddNotEqual();
   AddOverlapAdd();
+  AddPCAN();
   AddPack();
   AddPad();
   AddPadV2();
@@ -117,8 +120,8 @@
   AddSquare();
   AddSquaredDifference();
   AddSqueeze();
-  AddStridedSlice();
   AddStacker();
+  AddStridedSlice();
   AddSub();
   AddSum();
   AddSvdf();
diff --git a/python/tflite_micro/runtime.py b/python/tflite_micro/runtime.py
index 06a62b0..fbf2f20 100644
--- a/python/tflite_micro/runtime.py
+++ b/python/tflite_micro/runtime.py
@@ -14,15 +14,64 @@
 # ==============================================================================
 """Python package for TFLM Python Interpreter"""
 
+import enum
 import os
-
-from tflite_micro.python.tflite_micro import _runtime
 from tflite_micro.tensorflow.lite.tools import flatbuffer_utils
+from tflite_micro.python.tflite_micro import _runtime
+
+
+class InterpreterConfig(enum.Enum):
+  """There are two mutually exclusive types of way you could use the TFLM python
+
+  interpreter, this enum is made so that users can clearly choose between the
+  two
+  different usage method for the interpreter.
+
+  The first default way is kRecordingAllocation where all memory usage by the
+  interpreter is recorded on inference. When using this config the GetTensor()
+  api is disabled by the interpreter since this interpreter configuration
+  doesn’t
+  guarantee that the valid data for all tensors is available post inference.
+
+  The second way is kPreserveAllTensors where the GetTensor() api is disabled by
+  the interpreter since this interpreter configuration doesn’t guarantee that
+  the
+  valid data for all tensors is available post inference. But the memory usage
+  by
+  the interpreter won’t be recorded on inference.
+
+  Usage:
+
+  default_interpreter = Interpreter(…
+        intrepreter_config=InterpreterConfig.kAllocationRecording)
+
+  preserve_interpreter = Interpreter(…
+        intrepreter_config=InterpreterConfig.kPreserveAllTensors)
+  """
+
+  kAllocationRecording = 0
+  kPreserveAllTensors = 1
+
+
+#TODO(b/297118768): Once Korko Docker contrainer for ubuntu x86 has imutabledict
+# added to it, this should be turned into an immutabledict.
+_ENUM_TRANSLATOR = {
+    InterpreterConfig.kAllocationRecording:
+    (_runtime.PythonInterpreterConfig.kAllocationRecording),
+    InterpreterConfig.kPreserveAllTensors:
+    (_runtime.PythonInterpreterConfig.kPreserveAllTensors),
+}
 
 
 class Interpreter(object):
 
-  def __init__(self, model_data, custom_op_registerers, arena_size):
+  def __init__(
+      self,
+      model_data,
+      custom_op_registerers,
+      arena_size,
+      intrepreter_config=InterpreterConfig.kAllocationRecording,
+  ):
     if model_data is None:
       raise ValueError("Model must not be None")
 
@@ -33,20 +82,28 @@
     # This is a heuristic to ensure that the arena is sufficiently sized.
     if arena_size is None:
       arena_size = len(model_data) * 10
-
     # Some models make use of resource variables ops, get the count here
     num_resource_variables = flatbuffer_utils.count_resource_variables(
         model_data)
     print("Number of resource variables the model uses = ",
           num_resource_variables)
 
-    self._interpreter = _runtime.InterpreterWrapper(model_data,
-                                                    custom_op_registerers,
-                                                    arena_size,
-                                                    num_resource_variables)
+    self._interpreter = _runtime.InterpreterWrapper(
+        model_data,
+        custom_op_registerers,
+        arena_size,
+        num_resource_variables,
+        _ENUM_TRANSLATOR[intrepreter_config],
+    )
 
   @classmethod
-  def from_file(self, model_path, custom_op_registerers=[], arena_size=None):
+  def from_file(
+      self,
+      model_path,
+      custom_op_registerers=[],
+      arena_size=None,
+      intrepreter_config=InterpreterConfig.kAllocationRecording,
+  ):
     """Instantiates a TFLM interpreter from a model .tflite filepath.
 
     Args:
@@ -65,10 +122,21 @@
     with open(model_path, "rb") as f:
       model_data = f.read()
 
-    return Interpreter(model_data, custom_op_registerers, arena_size)
+    return Interpreter(
+        model_data,
+        custom_op_registerers,
+        arena_size,
+        intrepreter_config,
+    )
 
   @classmethod
-  def from_bytes(self, model_data, custom_op_registerers=[], arena_size=None):
+  def from_bytes(
+      self,
+      model_data,
+      custom_op_registerers=[],
+      arena_size=None,
+      intrepreter_config=InterpreterConfig.kAllocationRecording,
+  ):
     """Instantiates a TFLM interpreter from a model in byte array.
 
     Args:
@@ -82,7 +150,12 @@
       An Interpreter instance
     """
 
-    return Interpreter(model_data, custom_op_registerers, arena_size)
+    return Interpreter(
+        model_data,
+        custom_op_registerers,
+        arena_size,
+        intrepreter_config,
+    )
 
   def print_allocations(self):
     """Invoke the RecordingMicroAllocator to print the arena usage.
@@ -157,6 +230,9 @@
 
     return self._interpreter.GetOutputTensor(index)
 
+  def GetTensor(self, tensor_index, subgraph_index):
+    return self._interpreter.GetTensor(tensor_index, subgraph_index)
+
   def get_input_details(self, index):
     """Get input tensor information
 
diff --git a/python/tflite_micro/runtime_test.py b/python/tflite_micro/runtime_test.py
index 6a127fc..2a9003c 100644
--- a/python/tflite_micro/runtime_test.py
+++ b/python/tflite_micro/runtime_test.py
@@ -21,13 +21,78 @@
 
 import gc
 import weakref
+
 import numpy as np
 import tensorflow as tf
 
 from tensorflow.python.framework import test_util
 from tensorflow.python.platform import test
-from tflite_micro.tensorflow.lite.micro.testing import generate_test_models
 from tflite_micro.python.tflite_micro import runtime
+from tflite_micro.tensorflow.lite.micro.examples.recipes import add_four_numbers
+from tflite_micro.tensorflow.lite.micro.testing import generate_test_models
+
+
+class PeserveAllTensorsTest(test_util.TensorFlowTestCase):
+
+  def AddFourNumbersTestInterpreterMaker(self, inputs):
+    """Returns a tflm interpreter with a simple model that loads 4 numbers loaded
+
+    into it and loads the 4 inputs into the model
+    """
+    model_data = add_four_numbers.generate_model(write_file=False)
+    tflm_interpreter = runtime.Interpreter.from_bytes(
+        model_data,
+        intrepreter_config=runtime.InterpreterConfig.kPreserveAllTensors,
+    )
+    self.assertEqual(len(inputs), 4)
+    tflm_interpreter.set_input(inputs[0], 0)
+    tflm_interpreter.set_input(inputs[1], 1)
+    tflm_interpreter.set_input(inputs[2], 2)
+    tflm_interpreter.set_input(inputs[3], 3)
+    return tflm_interpreter
+
+  def testGetTensorAccuratelyGetsAllTenors(self):
+    """Test checks that GetTensor() returns accurate values for each tensor in the
+
+    model based on inputs of 1 2 3 4 into the AddFourNumbers TfLite model
+    """
+    tflm_interpreter = self.AddFourNumbersTestInterpreterMaker(
+        [[np.float32(1)], [np.float32(2)], [np.float32(3)], [np.float32(4)]])
+
+    tflm_interpreter.invoke()
+
+    tflm_output = tflm_interpreter.get_output(0)
+    self.assertEqual(tflm_output[0].astype("float32"), 10.0)
+    self.assertEqual(tflm_interpreter.GetTensor(0, 0)["tensor_data"][0], 1.0)
+    self.assertEqual(tflm_interpreter.GetTensor(1, 0)["tensor_data"][0], 2.0)
+    self.assertEqual(tflm_interpreter.GetTensor(2, 0)["tensor_data"][0], 3.0)
+    self.assertEqual(tflm_interpreter.GetTensor(3, 0)["tensor_data"][0], 4.0)
+    self.assertEqual(tflm_interpreter.GetTensor(4, 0)["tensor_data"][0], 7.0)
+    self.assertEqual(tflm_interpreter.GetTensor(5, 0)["tensor_data"][0], 9.0)
+    self.assertEqual(tflm_interpreter.GetTensor(6, 0)["tensor_data"][0], 10.0)
+
+  def testGetTensorAllUniqueTensors(self):
+    """Test checks that GetTensor() returns all the tensors in the model.
+
+    Due to the values used as inputs all the Tensors have unique data values so
+    this test confirms that this is the case.
+    """
+    tflm_interpreter = self.AddFourNumbersTestInterpreterMaker(
+        [[np.float32(1)], [np.float32(2)], [np.float32(3)], [np.float32(4)]])
+
+    tflm_interpreter.invoke()
+    tensors = [
+        tflm_interpreter.GetTensor(0, 0)["tensor_data"][0],
+        tflm_interpreter.GetTensor(1, 0)["tensor_data"][0],
+        tflm_interpreter.GetTensor(2, 0)["tensor_data"][0],
+        tflm_interpreter.GetTensor(3, 0)["tensor_data"][0],
+        tflm_interpreter.GetTensor(4, 0)["tensor_data"][0],
+        tflm_interpreter.GetTensor(5, 0)["tensor_data"][0],
+        tflm_interpreter.GetTensor(6, 0)["tensor_data"][0],
+    ]
+
+    # Check that all tensors are unique
+    self.assertEqual(len(set(tensors)), 7)
 
 
 class ConvModelTests(test_util.TensorFlowTestCase):
diff --git a/python/tflite_micro/signal/BUILD b/python/tflite_micro/signal/BUILD
index 2bf5a94..0fce266 100644
--- a/python/tflite_micro/signal/BUILD
+++ b/python/tflite_micro/signal/BUILD
@@ -1,8 +1,10 @@
+load("@rules_python//python:defs.bzl", "py_library", "py_test")
 load("//python/tflite_micro/signal:tflm_signal.bzl", "py_tflm_signal_library")
 load("//tensorflow:extra_rules.bzl", "tflm_signal_friends")
 load("@tflm_pip_deps//:requirements.bzl", "requirement")
 
 package(
+    default_visibility = [":__subpackages__"],
     licenses = ["notice"],
 )
 
@@ -21,6 +23,7 @@
         ":filter_bank_ops_cc",
         ":framer_op_cc",
         ":overlap_add_op_cc",
+        ":pcan_op_cc",
         ":stacker_op_cc",
         ":window_op_cc",
     ],
@@ -33,7 +36,7 @@
         "ops/__init__.py",
     ],
     srcs_version = "PY3",
-    visibility = ["//python/tflite_micro/signal/utils:__subpackages__"],
+    visibility = ["//visibility:public"],
     deps = [
         ":delay_op",
         ":energy_op",
@@ -41,6 +44,7 @@
         ":filter_bank_ops",
         ":framer_op",
         ":overlap_add_op",
+        ":pcan_op",
         ":stacker_op",
         ":window_op",
     ],
@@ -53,6 +57,9 @@
     cc_op_kernels = [
         "//signal/tensorflow_core/kernels:delay_kernel",
     ],
+    deps = [
+        "//python/tflite_micro/signal/utils:util",
+    ],
 )
 
 py_test(
@@ -63,9 +70,8 @@
     srcs_version = "PY3",
     deps = [
         ":delay_op",
-        "//python/tflite_micro/signal/utils:util",
         requirement("numpy"),
-        requirement("tensorflow-cpu"),
+        requirement("tensorflow"),
     ],
 )
 
@@ -76,6 +82,9 @@
     cc_op_kernels = [
         "//signal/tensorflow_core/kernels:energy_kernel",
     ],
+    deps = [
+        "//python/tflite_micro/signal/utils:util",
+    ],
 )
 
 py_test(
@@ -89,9 +98,8 @@
     srcs_version = "PY3",
     deps = [
         ":energy_op",
-        "//python/tflite_micro/signal/utils:util",
         requirement("numpy"),
-        requirement("tensorflow-cpu"),
+        requirement("tensorflow"),
     ],
 )
 
@@ -102,6 +110,9 @@
     cc_op_kernels = [
         "//signal/tensorflow_core/kernels:fft_kernel",
     ],
+    deps = [
+        "//python/tflite_micro/signal/utils:util",
+    ],
 )
 
 py_test(
@@ -115,9 +126,8 @@
     srcs_version = "PY3",
     deps = [
         ":fft_ops",
-        "//python/tflite_micro/signal/utils:util",
         requirement("numpy"),
-        requirement("tensorflow-cpu"),
+        requirement("tensorflow"),
     ],
 )
 
@@ -130,6 +140,7 @@
     ],
     deps = [
         "//python/tflite_micro/signal/utils:freq_to_mel",
+        "//python/tflite_micro/signal/utils:util",
     ],
 )
 
@@ -149,9 +160,8 @@
     srcs_version = "PY3",
     deps = [
         ":filter_bank_ops",
-        "//python/tflite_micro/signal/utils:util",
         requirement("numpy"),
-        requirement("tensorflow-cpu"),
+        requirement("tensorflow"),
     ],
 )
 
@@ -162,6 +172,9 @@
     cc_op_kernels = [
         "//signal/tensorflow_core/kernels:framer_kernel",
     ],
+    deps = [
+        "//python/tflite_micro/signal/utils:util",
+    ],
 )
 
 py_test(
@@ -175,9 +188,8 @@
     srcs_version = "PY3",
     deps = [
         ":framer_op",
-        "//python/tflite_micro/signal/utils:util",
         requirement("numpy"),
-        requirement("tensorflow-cpu"),
+        requirement("tensorflow"),
     ],
 )
 
@@ -188,6 +200,9 @@
     cc_op_kernels = [
         "//signal/tensorflow_core/kernels:overlap_add_kernel",
     ],
+    deps = [
+        "//python/tflite_micro/signal/utils:util",
+    ],
 )
 
 py_test(
@@ -198,10 +213,42 @@
     srcs_version = "PY3",
     deps = [
         ":overlap_add_op",
-        "//python/tflite_micro/signal/utils:util",
         "@absl_py//absl/testing:parameterized",
         requirement("numpy"),
-        requirement("tensorflow-cpu"),
+        requirement("tensorflow"),
+    ],
+)
+
+py_tflm_signal_library(
+    name = "pcan_op",
+    srcs = ["ops/pcan_op.py"],
+    cc_op_defs = ["//signal/tensorflow_core/ops:pcan_op"],
+    cc_op_kernels = [
+        "//signal/tensorflow_core/kernels:pcan_kernel",
+    ],
+    deps = [
+        "//python/tflite_micro/signal/utils:util",
+        "//python/tflite_micro/signal/utils:wide_dynamic_func_lut",
+    ],
+)
+
+py_test(
+    name = "pcan_op_test",
+    srcs = ["ops/pcan_op_test.py"],
+    data = [
+        "//python/tflite_micro/signal/ops/testdata:pcan_op_test1.txt",
+    ],
+    python_version = "PY3",
+    srcs_version = "PY3",
+    tags = [
+        "noasan",
+        "nomsan",
+        "noubsan",
+    ],
+    deps = [
+        ":pcan_op",
+        requirement("numpy"),
+        requirement("tensorflow"),
     ],
 )
 
@@ -212,6 +259,9 @@
     cc_op_kernels = [
         "//signal/tensorflow_core/kernels:stacker_kernel",
     ],
+    deps = [
+        "//python/tflite_micro/signal/utils:util",
+    ],
 )
 
 py_test(
@@ -225,9 +275,8 @@
     srcs_version = "PY3",
     deps = [
         ":stacker_op",
-        "//python/tflite_micro/signal/utils:util",
         requirement("numpy"),
-        requirement("tensorflow-cpu"),
+        requirement("tensorflow"),
     ],
 )
 
@@ -238,6 +287,9 @@
     cc_op_kernels = [
         "//signal/tensorflow_core/kernels:window_kernel",
     ],
+    deps = [
+        "//python/tflite_micro/signal/utils:util",
+    ],
 )
 
 py_test(
@@ -250,8 +302,7 @@
     srcs_version = "PY3",
     deps = [
         ":window_op",
-        "//python/tflite_micro/signal/utils:util",
         requirement("numpy"),
-        requirement("tensorflow-cpu"),
+        requirement("tensorflow"),
     ],
 )
diff --git a/python/tflite_micro/signal/ops/pcan_op.py b/python/tflite_micro/signal/ops/pcan_op.py
new file mode 100644
index 0000000..753e76b
--- /dev/null
+++ b/python/tflite_micro/signal/ops/pcan_op.py
@@ -0,0 +1,70 @@
+# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ==============================================================================
+
+import tensorflow as tf
+from tflite_micro.python.tflite_micro.signal.utils import util
+from tflite_micro.python.tflite_micro.signal.utils import wide_dynamic_func_lut_wrapper
+
+gen_pcan_op = util.load_custom_op("pcan_op.so")
+
+PCAN_SNR_BITS = 12
+
+
+def _pcan_wrapper(pcan_fn, default_name):
+  """Wrapper around gen_pcan.pcan*."""
+
+  def _pcan(input_tensor,
+            noise_estimate,
+            strength,
+            offset,
+            gain_bits,
+            smoothing_bits,
+            input_correction_bits,
+            name=default_name):
+    with tf.name_scope(name) as scope:
+      input_tensor = tf.convert_to_tensor(input_tensor, dtype=tf.uint32)
+      noise_estimate = tf.convert_to_tensor(noise_estimate, dtype=tf.uint32)
+
+      input_bits = smoothing_bits - input_correction_bits
+      snr_shift = gain_bits - input_correction_bits - PCAN_SNR_BITS
+      if snr_shift < 1:
+        raise ValueError("SNR shift must be non-negative: %d" % snr_shift)
+
+      lut = wide_dynamic_func_lut_wrapper.wide_dynamic_func_lut(
+          strength, offset, input_bits, gain_bits)
+
+      lut_tensor = tf.convert_to_tensor(lut, dtype=tf.int16)
+
+      dim_list = input_tensor.shape.as_list()
+      if len(dim_list) != 1:
+        raise ValueError("Input tensor must have a rank of 1")
+      dim_list = noise_estimate.shape.as_list()
+      if len(dim_list) != 1:
+        raise ValueError("Noise estimate must have a rank of 1")
+
+      snr_shift = 6
+      return pcan_fn(input_tensor,
+                     noise_estimate,
+                     lut_tensor,
+                     snr_shift=snr_shift,
+                     name=scope)
+
+  return _pcan
+
+
+# TODO(b/286250473): change back name after name clash resolved
+pcan = _pcan_wrapper(gen_pcan_op.signal_pcan, "signal_pcan")
+
+tf.no_gradient("pcan")
diff --git a/python/tflite_micro/signal/ops/pcan_op_test.py b/python/tflite_micro/signal/ops/pcan_op_test.py
new file mode 100644
index 0000000..1400bf3
--- /dev/null
+++ b/python/tflite_micro/signal/ops/pcan_op_test.py
@@ -0,0 +1,83 @@
+# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ==============================================================================
+
+import os
+
+import numpy as np
+import tensorflow as tf
+
+from tensorflow.python.platform import resource_loader
+from tflite_micro.python.tflite_micro.signal.ops import pcan_op
+from tflite_micro.python.tflite_micro.signal.utils import util
+
+
+class PcanOpTest(tf.test.TestCase):
+
+  _PREFIX_PATH = resource_loader.get_path_to_datafile('')
+
+  def GetResource(self, filepath):
+    full_path = os.path.join(self._PREFIX_PATH, filepath)
+    with open(full_path, 'rt') as f:
+      file_text = f.read()
+    return file_text
+
+  def SinglePcanOpTest(self, filename):
+    lines = self.GetResource(filename).splitlines()
+    args = lines[0].split()
+    strength = float(args[0])
+    offset = float(args[1])
+    gain_bits = int(args[2])
+    smoothing_bits = int(args[3])
+    input_correction_bits = int(args[4])
+
+    func = tf.function(pcan_op.pcan)
+    channel_num = len(lines[1].split())
+
+    concrete_function = func.get_concrete_function(
+        tf.TensorSpec(channel_num, dtype=tf.uint32),
+        tf.TensorSpec(channel_num, dtype=tf.uint32),
+        strength=strength,
+        offset=offset,
+        gain_bits=gain_bits,
+        smoothing_bits=smoothing_bits,
+        input_correction_bits=input_correction_bits)
+    interpreter = util.get_tflm_interpreter(concrete_function, func)
+
+    # Read lines in pairs <input, noise_estimate, expected>
+    for i in range(1, len(lines), 3):
+      in_frame = np.array([int(j) for j in lines[i + 0].split()],
+                          dtype='uint32')
+      noise_estimate = np.array([int(j) for j in lines[i + 1].split()],
+                                dtype='uint32')
+      output_expected = np.array([int(j) for j in lines[i + 2].split()],
+                                 dtype='uint32')
+      # TFLM
+      interpreter.set_input(in_frame, 0)
+      interpreter.set_input(noise_estimate, 1)
+      interpreter.invoke()
+      output = interpreter.get_output(0)
+      self.assertAllEqual(output_expected, output)
+      # TF
+      output = self.evaluate(
+          pcan_op.pcan(in_frame, noise_estimate, strength, offset, gain_bits,
+                       smoothing_bits, input_correction_bits))
+      self.assertAllEqual(output_expected, output)
+
+  def testPcanOp(self):
+    self.SinglePcanOpTest('testdata/pcan_op_test1.txt')
+
+
+if __name__ == '__main__':
+  tf.test.main()
diff --git a/python/tflite_micro/signal/ops/testdata/BUILD b/python/tflite_micro/signal/ops/testdata/BUILD
index 87fd9f2..4c8d7bc 100644
--- a/python/tflite_micro/signal/ops/testdata/BUILD
+++ b/python/tflite_micro/signal/ops/testdata/BUILD
@@ -16,6 +16,7 @@
     "filter_bank_square_root_test1.txt",
     "filter_bank_spectral_subtraction_test1.txt",
     "framer_test1.txt",
+    "pcan_op_test1.txt",
     "rfft_test1.txt",
     "stacker_test1.txt",
     "window_test1.txt",
diff --git a/python/tflite_micro/signal/ops/testdata/pcan_op_test1.txt b/python/tflite_micro/signal/ops/testdata/pcan_op_test1.txt
new file mode 100644
index 0000000..68da771
--- /dev/null
+++ b/python/tflite_micro/signal/ops/testdata/pcan_op_test1.txt
@@ -0,0 +1,1348 @@
+0.950000 80.000000 21 10 3
+286 298 305 291 290 279 273 257 250 240 240 233 234 230 221 205 183 159 156 188 239 298 345 374 380 369 359 364 372 354 302 243 194 135 64 72 171 245 277 304
+7310 18308 7796 17878 7413 17141 6978 15789 6390 14745 6135 14314 5981 14130 5649 12594 4677 9768 3987 11550 6109 18308 8819 22977 9713 22670 9176 22363 9509 21748 7719 14929 4959 8294 1636 4423 4371 15052 7080 18677
+1301 836 1354 827 1312 811 1263 779 1192 753 1160 743 1140 738 1096 698 956 607 845 667 1157 836 1461 912 1546 908 1496 904 1527 895 1346 758 999 548 378 344 908 761 1274 843
+6 8 8 11 10 8 5 4 4 2 6 8 11 11 10 11 6 7 5 6 11 8 9 8 7 6 6 11 14 12 11 11 11 9 8 9 9 11 11 5
+7280 17701 7805 17481 7483 16604 6931 15087 6332 13983 6135 13946 6112 13958 5763 12514 4713 9612 4015 11225 6237 17701 8828 22089 9649 21678 9100 21697 9629 21180 7807 14709 5116 8349 1799 4710 4491 14824 7184 17863
+3 2 5 4 8 2 2 0 1 0 3 3 12 5 10 6 4 3 3 2 12 2 6 1 3 1 2 3 13 4 10 5 13 6 11 9 10 5 10 0
+8 5 9 7 12 10 9 7 5 4 4 6 8 8 12 8 8 10 9 8 16 12 10 10 9 7 5 12 9 9 12 8 10 11 10 11 10 9 9 7
+7302 16946 7840 16862 7602 16222 6988 14611 6301 13389 6084 13477 6163 13612 5925 12254 4799 9649 4144 11043 6490 17376 8863 21378 9638 20807 9000 21132 9618 20462 7918 14317 5243 8523 2009 5103 4634 14487 7234 17221
+5 0 6 1 12 4 7 2 2 0 1 1 6 3 15 3 7 7 10 3 24 5 7 2 5 1 1 4 5 2 12 2 11 9 17 13 12 3 7 1
+11 14 8 17 14 7 9 8 3 5 7 6 8 10 5 3 4 14 14 6 11 11 11 11 4 11 7 7 9 9 10 14 15 11 11 13 10 10 11 6
+7400 16789 7848 16894 7770 15678 7043 14225 6220 12892 6111 13037 6213 13409 5904 11703 4781 9930 4398 10749 6609 17009 8922 20771 9499 20234 8954 20294 9607 19787 7975 14318 5495 8687 2240 5595 4773 14232 7334 16556
+10 7 5 11 16 2 7 3 0 1 4 1 6 5 2 0 1 13 24 2 11 4 9 3 1 3 3 1 5 2 8 9 24 9 20 18 11 4 10 1
+6 8 3 5 6 5 7 8 7 8 10 9 10 6 8 7 7 12 10 8 12 8 13 9 7 12 9 9 8 13 10 12 17 12 8 9 8 9 10 8
+7368 16273 7728 16187 7729 15044 7046 13863 6243 12610 6214 12807 6313 12973 5961 11430 4840 10071 4543 10595 6750 16480 9031 20077 9440 19757 8960 19629 9571 19398 8031 14196 5792 8903 2388 5812 4858 13931 7406 16054
+3 2 0 1 3 1 4 3 4 3 10 4 9 1 6 2 5 9 12 4 13 2 12 2 3 4 6 2 4 5 8 6 30 10 10 8 7 3 8 2
+7 9 11 5 5 7 10 6 5 7 6 4 7 6 5 10 9 11 10 11 11 6 9 6 10 8 11 12 9 12 11 13 15 11 10 9 8 11 11 9
+7363 15849 7816 15523 7663 14571 7125 13399 6214 12283 6212 12284 6334 12563 5940 11358 4949 10142 4685 10635 6862 15859 9035 19241 9459 19063 9017 19188 9562 18971 8111 14142 6030 9044 2584 6016 4941 13770 7502 15643
+4 3 10 1 2 2 9 1 2 2 3 0 4 1 2 6 9 8 12 7 11 1 6 1 7 2 9 4 5 4 9 8 23 9 16 8 7 5 10 3
+7 15 13 7 6 7 6 5 10 9 4 8 7 3 9 11 7 9 5 5 11 10 6 5 8 8 10 14 9 7 8 11 13 13 16 10 8 8 5 5
+7358 15819 7953 15021 7625 14126 7100 12902 6314 12098 6159 12038 6354 11993 6021 11352 5004 10086 4695 10304 6971 15521 8962 18393 9427 18410 9047 18896 9553 18262 8113 13969 6211 9300 2928 6269 5022 13435 7442 15011
+4 9 14 2 3 2 3 1 9 4 1 3 4 0 8 7 5 5 3 1 11 4 2 0 4 2 7 6 5 1 5 5 17 12 39 10 7 3 2 1
+5 7 5 6 5 5 7 9 8 7 4 4 4 4 7 10 12 9 5 6 8 7 7 6 7 9 6 8 10 10 10 14 10 13 11 11 8 9 7 6
+7302 15299 7882 14488 7562 13585 7101 12680 6360 11802 6107 11561 6297 11519 6049 11285 5185 10033 4705 10054 7001 15019 8917 17658 9370 17858 8974 18253 9570 17780 8166 13991 6311 9540 3136 6568 5101 13181 7435 14479
+2 2 2 1 2 1 4 4 6 2 1 0 1 0 5 6 16 5 3 2 5 2 3 1 3 2 2 2 7 3 8 9 9 12 18 11 7 4 4 1
+3 1 3 5 4 5 10 8 6 8 3 3 2 4 6 6 6 8 7 5 7 8 8 5 11 10 10 11 11 6 8 10 9 11 12 9 10 10 9 10
+7196 14442 7761 13925 7475 13077 7179 12410 6354 11585 6031 11051 6190 11073 6051 10976 5208 9922 4766 9757 7005 14609 8898 16905 9417 17400 9005 17833 9612 17081 8166 13765 6383 9643 3364 6726 5229 13004 7479 14224
+0 0 0 1 1 1 9 3 3 3 0 0 0 0 3 2 4 4 5 1 4 2 4 0 8 3 7 4 8 1 5 4 7 8 20 7 11 5 7 4
+4 8 6 3 5 9 6 4 6 7 6 8 4 3 7 10 8 7 4 3 10 8 13 10 9 10 9 12 9 7 7 10 11 8 9 11 7 11 7 7
+7118 14067 7720 13273 7416 12845 7153 11911 6348 11319 6033 10879 6137 10592 6078 10931 5282 9756 4749 9355 7085 14223 9008 16505 9411 16970 9010 17500 9602 16486 8141 13553 6504 9555 3510 6998 5277 12899 7471 13800
+1 3 3 0 2 4 3 0 3 2 3 4 1 0 5 6 7 3 1 0 9 3 12 4 5 3 6 5 5 1 3 4 11 4 11 11 5 6 4 2
+7 13 9 9 8 8 5 4 5 5 4 6 8 5 5 6 6 6 7 5 7 8 12 9 4 9 8 6 6 8 5 9 10 9 9 10 9 11 8 6
+7119 14021 7757 13029 7435 12565 7102 11442 6317 10947 5984 10594 6188 10263 6054 10643 5303 9539 4809 9100 7087 13861 9089 16067 9278 16504 8989 16818 9515 15988 8065 13292 6597 9534 3652 7192 5375 12800 7488 13340
+4 8 6 4 5 3 2 0 2 1 1 2 6 1 2 2 4 2 5 1 4 3 10 3 1 3 4 1 2 2 2 4 9 5 11 9 9 6 5 1
+6 7 10 8 11 14 6 7 8 8 6 6 12 8 6 7 7 5 6 6 11 11 8 10 9 9 11 9 10 12 12 9 14 14 14 16 11 7 8 7
+7094 13609 7818 12738 7530 12671 7078 11185 6363 10781 5987 10327 6340 10138 6056 10434 5349 9273 4842 8922 7191 13705 9066 15717 9276 16066 9045 16361 9533 15766 8170 13047 6790 9822 3918 7743 5522 12462 7505 12969
+3 2 8 3 10 10 3 2 6 4 3 2 14 4 3 3 5 1 4 2 10 5 4 4 5 3 9 3 7 6 11 4 18 13 26 21 13 2 5 2
+7 7 3 4 4 6 6 8 8 5 5 6 8 6 4 7 6 9 10 8 6 9 14 11 8 10 9 14 10 9 11 9 11 16 11 9 10 9 6 6
+7095 13222 7699 12219 7444 12279 7054 11005 6408 10441 5965 10076 6386 9898 6007 10238 5368 9269 4976 8878 7164 13435 9197 15449 9248 15716 9049 16239 9550 15373 8247 12817 6901 10215 4101 7831 5639 12267 7471 12559
+4 2 0 0 1 1 3 3 6 1 2 2 6 2 1 3 4 5 11 4 3 4 14 5 4 4 6 7 7 3 9 4 11 17 15 6 10 4 3 1
+15 8 5 6 8 15 15 7 8 7 5 3 5 7 9 9 8 6 5 7 7 10 15 8 6 11 9 11 9 10 8 10 13 14 7 6 7 8 9 10
+7301 12920 7634 11854 7462 12463 7261 10774 6452 10244 5943 9655 6354 9734 6087 10176 5438 9081 4979 8775 7164 13243 9350 15013 9170 15448 9053 15940 9541 15065 8245 12662 7061 10462 4177 7729 5677 12022 7514 12419
+20 3 2 2 5 12 20 3 6 3 2 0 2 3 8 5 7 2 2 3 4 5 16 2 2 5 6 5 5 4 5 5 15 12 6 3 5 3 7 5
+10 9 6 3 5 9 13 11 5 3 10 8 6 4 7 9 9 9 5 5 10 15 7 7 8 8 7 5 8 9 10 11 11 11 12 9 9 10 9 10
+7374 12697 7596 11327 7403 12268 7412 10803 6418 9813 6050 9567 6348 9395 6113 10118 5532 9089 4982 8555 7240 13370 9295 14542 9145 15012 9005 15290 9507 14714 8294 12578 7165 10510 4379 7818 5765 11915 7556 12288
+8 4 3 0 2 4 14 7 2 0 10 4 3 1 4 5 8 6 2 1 8 11 3 2 4 2 3 1 4 3 8 6 10 7 18 6 8 5 7 5
+11 8 7 12 8 11 9 7 4 7 8 7 6 3 4 4 8 9 8 10 9 9 8 12 12 8 8 13 12 6 8 9 11 8 8 8 8 10 11 8
+7471 12426 7585 11384 7422 12207 7457 10584 6360 9654 6103 9423 6342 9015 6062 9756 5598 9096 5062 8656 7289 13120 9267 14406 9223 14602 8984 15171 9576 14199 8291 12376 7267 10370 4474 7840 5825 11814 7648 12042
+10 3 4 8 5 6 7 3 1 3 6 3 3 0 1 1 6 6 7 7 7 4 4 6 10 2 4 7 10 1 5 4 10 4 7 5 6 5 10 3
+14 13 18 9 10 6 6 5 4 6 7 5 3 5 4 4 8 10 8 12 13 10 7 4 5 12 14 9 13 9 12 7 9 13 10 8 12 9 9 9
+7642 12479 7855 11253 7492 11843 7424 10256 6303 9443 6129 9164 6260 8781 6012 9416 5662 9164 5140 8873 7439 12947 9214 13787 9120 14463 9117 14813 9669 13900 8390 12063 7315 10546 4617 7861 5986 11658 7687 11872
+16 9 27 4 8 2 3 1 1 2 4 1 0 1 1 1 6 7 7 10 14 5 3 0 1 6 14 3 11 3 11 2 7 10 12 5 14 4 6 4
+10 12 5 6 8 7 8 9 10 5 7 7 8 7 7 6 7 13 7 13 10 7 7 6 8 12 11 12 13 11 15 15 9 9 9 8 7 7 8 6
+7706 12467 7786 10946 7509 11562 7443 10193 6401 9183 6154 9044 6308 8684 6040 9219 5699 9412 5190 9139 7508 12600 9162 13328 9096 14332 9170 14661 9759 13741 8563 12260 7362 10466 4731 7880 6015 11388 7699 11528
+8 7 2 2 5 2 5 5 9 1 4 3 6 3 5 2 5 12 5 12 8 2 3 1 4 6 8 6 11 5 17 12 7 5 9 5 5 2 5 2
+13 10 6 11 8 7 9 7 7 10 9 5 5 4 7 5 5 6 7 10 16 8 9 7 7 12 12 8 9 10 15 8 10 10 11 8 6 8 9 7
+7845 12333 7745 10965 7526 11298 7487 10011 6420 9246 6230 8808 6278 8408 6068 8973 5684 9215 5239 9205 7729 12335 9163 12958 9047 14209 9247 14272 9745 13530 8732 12015 7433 10452 4894 7898 6018 11196 7736 11266
+14 5 3 7 5 2 7 3 4 7 8 1 2 1 5 1 2 2 5 7 21 3 5 2 3 6 10 3 5 4 17 3 8 6 14 5 3 3 6 2
+8 7 5 11 7 7 6 7 9 7 9 11 6 7 9 8 5 5 7 7 9 10 12 10 9 10 10 11 11 10 14 10 11 11 10 9 8 6 5 5
+7853 12023 7679 10982 7517 11050 7453 9840 6489 9121 6304 8955 6274 8333 6146 8926 5669 8969 5287 9082 7766 12209 9241 12794 9051 13970 9271 14091 9782 13332 8871 11908 7528 10500 5027 7977 6072 10892 7670 10897
+5 2 2 7 4 3 3 3 7 3 8 9 3 3 8 4 2 1 5 3 6 5 10 5 6 4 7 5 8 5 14 5 10 7 11 6 6 2 2 1
+10 8 5 8 6 4 11 9 5 10 11 12 6 5 9 6 4 8 9 14 9 9 12 9 8 6 9 10 9 11 9 13 14 13 10 11 9 9 8 7
+7912 11793 7615 10814 7482 10632 7548 9802 6454 9188 6427 9154 6270 8140 6222 8759 5629 8922 5385 9397 7802 12029 9317 12579 9029 13500 9269 13859 9767 13207 8879 11992 7697 10668 5157 8174 6150 10791 7683 10673
+8 3 2 4 3 1 10 5 2 7 11 10 3 2 8 2 1 4 9 14 6 4 10 4 4 1 5 4 5 6 6 9 16 10 11 9 8 5 5 3
+10 7 8 10 12 8 9 13 7 5 5 5 5 7 8 5 5 5 8 10 9 7 8 7 10 9 9 11 9 8 8 9 11 7 9 11 9 10 9 7
+7970 11515 7629 10779 7601 10485 7589 10012 6471 8943 6394 8911 6241 8081 6271 8540 5616 8693 5455 9447 7837 11737 9288 12254 9059 13242 9267 13703 9753 12906 8861 11825 7786 10458 5258 8359 6226 10757 7721 10462
+8 2 5 6 12 4 6 11 4 1 2 1 2 4 6 1 2 1 7 7 6 2 4 2 7 4 5 5 5 3 4 4 10 3 9 9 8 6 6 3
+8 7 11 10 12 6 11 10 7 10 5 5 10 5 6 8 8 7 8 6 8 9 11 6 6 7 5 12 14 10 9 12 11 10 14 11 8 5 5 7
+7975 11254 7719 10746 7718 10224 7680 10025 6488 9020 6362 8683 6340 7903 6267 8519 5680 8601 5523 9248 7845 11585 9337 11887 8986 12877 9163 13618 9867 12746 8869 11852 7872 10444 5484 8533 6275 10418 7656 10264
+5 2 10 6 12 2 10 6 4 7 2 1 9 2 3 5 6 3 6 2 5 4 8 2 2 2 1 7 13 5 6 8 10 6 21 9 6 1 2 3
+7 14 14 10 12 7 6 5 6 6 5 4 6 9 10 8 9 9 9 5 8 7 9 8 6 8 8 9 10 9 8 7 9 14 12 8 9 9 6 8
+7954 11438 7884 10715 7832 10040 7641 9730 6479 8847 6330 8407 6335 7981 6366 8499 5768 8637 5615 9000 7853 11319 9333 11665 8915 12595 9138 13353 9876 12534 8852 11570 7905 10677 5653 8512 6348 10345 7618 10139
+4 11 16 6 12 3 3 1 3 2 2 1 3 6 9 5 8 6 8 1 5 2 5 3 2 3 4 4 6 4 4 2 6 12 15 5 8 5 3 4
+6 8 7 5 6 6 3 3 7 5 4 4 7 4 5 7 10 7 7 4 7 8 12 8 7 7 6 11 14 11 9 7 9 9 8 10 11 8 6 6
+7908 11243 7866 10379 7789 9806 7526 9330 6496 8623 6274 8148 6355 7747 6334 8419 5879 8548 5653 8705 7835 11131 9406 11456 8871 12269 9063 13227 9987 12457 8861 11305 7937 10589 5716 8615 6470 10215 7581 9899
+3 3 4 1 3 2 0 0 4 1 1 1 4 1 2 3 10 3 5 1 4 3 10 3 3 2 2 6 13 6 6 2 6 5 6 7 11 4 3 2
+5 3 7 10 7 7 11 8 14 16 9 5 9 4 3 6 9 7 5 10 7 5 7 8 7 8 10 9 15 10 8 5 10 11 12 10 11 7 7 7
+7838 10752 7848 10370 7773 9647 7619 9261 6691 9088 6347 7966 6426 7527 6252 8282 5962 8465 5639 8797 7818 10770 9350 11260 8828 12024 9092 12986 10121 12323 8844 10933 7994 10629 5880 8712 6589 10032 7570 9735
+2 0 4 6 4 3 10 4 18 19 8 2 7 1 0 2 8 3 2 7 4 1 3 3 3 3 7 4 15 5 4 1 8 7 15 7 11 3 4 3
+5 7 8 8 13 14 10 7 9 10 8 5 7 7 6 12 10 6 6 10 9 6 7 8 11 10 13 8 10 10 8 12 9 9 15 11 10 9 11 9
+7770 10536 7856 10239 7911 9928 7684 9135 6754 9157 6393 7795 6444 7505 6249 8522 6068 8325 5651 8883 7852 10492 9295 11075 8888 11916 9197 12698 10123 12198 8827 11014 8024 10544 6116 8865 6680 9983 7662 9703
+2 3 5 4 14 13 8 3 7 7 6 2 4 4 3 11 10 2 3 7 6 2 3 3 9 5 12 3 6 5 4 8 6 5 22 9 9 5 10 5
+5 4 6 5 8 5 3 4 5 8 10 7 11 7 7 11 8 9 9 12 8 7 11 9 7 12 14 10 10 9 11 12 12 12 9 11 8 9 9 5
+7703 10149 7813 9931 7918 9639 7568 8832 6713 9099 6489 7757 6564 7484 6271 8686 6121 8378 5739 9087 7860 10292 9344 10963 8845 11938 9325 12550 10125 12019 8887 11090 8130 10648 6193 9008 6717 9936 7700 9428
+2 1 3 1 5 1 0 1 2 4 9 4 11 4 4 9 6 6 8 10 5 3 8 5 3 8 14 5 6 4 9 8 11 9 8 9 6 5 6 1
+3 6 4 3 4 3 2 2 3 5 3 4 10 10 5 5 10 7 8 8 8 7 8 6 8 10 5 8 10 13 10 12 10 9 7 7 9 10 9 6
+7587 9908 7720 9519 7822 9244 7430 8424 6622 8860 6403 7537 6655 7649 6242 8472 6223 8305 5800 9033 7868 10104 9315 10673 8828 11836 9220 12288 10127 12096 8920 11161 8182 10562 6217 8897 6779 9954 7737 9230
+0 2 1 0 1 0 0 0 0 1 0 1 9 8 2 1 10 3 6 4 5 3 4 2 4 5 1 3 6 9 7 8 8 5 4 3 7 6 6 2
+5 8 6 12 10 6 5 2 3 7 4 2 7 5 8 5 9 7 10 7 5 6 6 8 7 9 8 9 11 8 10 10 8 8 9 10 7 11 9 5
+7525 9805 7680 9685 7882 9058 7372 8041 6533 8758 6345 7207 6667 7497 6290 8270 6297 8236 5910 8921 7799 9866 9235 10524 8786 11678 9194 12103 10155 11861 8952 11105 8182 10419 6291 8977 6788 10032 7773 8983
+2 4 3 10 8 2 2 0 0 3 1 0 4 2 6 2 8 3 10 3 2 2 2 4 3 4 4 4 8 3 7 6 5 4 8 7 4 8 6 1
+5 3 3 5 3 5 9 6 4 4 7 6 12 6 10 10 10 7 10 13 12 10 8 7 11 9 11 12 9 7 14 12 8 11 10 10 8 7 8 5
+7464 9401 7564 9411 7761 8821 7418 7927 6472 8478 6365 7143 6807 7415 6388 8388 6395 8171 6018 9184 7911 9888 9208 10322 8847 11530 9245 12114 10131 11579 9086 11175 8182 10469 6389 9052 6823 9860 7783 8751
+2 0 0 1 0 1 7 3 1 1 4 3 13 3 9 7 9 3 10 12 12 6 4 3 9 4 8 8 5 2 14 8 5 7 9 7 6 3 5 1
+10 7 4 5 4 3 3 7 4 5 7 9 8 7 5 7 8 11 6 10 9 8 10 8 11 10 12 11 10 10 12 10 7 5 6 10 10 6 6 5
+7533 9267 7477 9153 7669 8476 7309 7881 6412 8276 6385 7267 6841 7400 6356 8314 6439 8356 6021 9247 7943 9786 9233 10194 8907 11452 9320 12063 10133 11498 9165 11118 8156 10148 6382 9123 6908 9637 7742 8533
+8 3 1 1 1 0 0 4 1 2 4 7 5 4 2 3 6 9 3 7 6 4 7 4 9 5 10 6 6 5 10 6 3 1 3 7 9 2 3 1
+10 9 4 6 7 8 8 4 7 7 6 5 5 5 8 6 6 6 4 8 7 7 9 9 11 11 14 16 14 9 11 8 7 8 10 9 10 9 8 7
+7600 9263 7392 8972 7656 8458 7331 7653 6430 8209 6378 7138 6798 7263 6401 8183 6431 8223 5972 9183 7923 9628 9232 10135 8965 11440 9445 12322 10237 11361 9217 10942 8131 10030 6478 9128 6991 9611 7753 8451
+8 5 1 2 4 5 5 1 4 3 3 2 2 2 6 2 3 2 1 4 4 3 5 5 9 7 14 14 13 4 8 4 4 4 9 6 9 5 5 3
+10 11 5 8 9 13 14 8 15 9 10 11 7 9 10 8 7 7 8 9 13 10 12 12 13 13 13 13 16 10 10 7 8 11 12 9 10 11 11 9
+7665 9383 7335 8925 7694 8749 7505 7685 6652 8269 6474 7385 6807 7380 6496 8183 6449 8159 6027 9184 8057 9664 9308 10264 9073 11552 9541 12381 10390 11293 9242 10715 8132 10104 6623 9133 7072 9710 7840 8496
+8 8 2 4 6 12 17 5 21 6 9 10 4 7 9 5 4 3 6 5 13 7 10 9 12 9 12 9 16 6 7 3 5 8 13 6 9 8 10 6
+6 6 4 4 5 10 11 10 8 8 5 6 8 9 7 6 8 8 10 10 7 7 7 7 8 8 9 7 9 8 9 10 8 12 12 9 12 10 7 8
+7627 9188 7254 8635 7629 8838 7598 7838 6690 8264 6440 7310 6841 7490 6512 8060 6492 8160 6132 9247 8034 9514 9254 10078 9051 11350 9532 12068 10360 11106 9241 10686 8133 10235 6764 9137 7202 9741 7823 8477
+3 2 1 1 2 7 10 8 6 5 2 3 5 7 4 2 6 5 10 7 4 3 3 3 4 3 5 2 5 3 5 6 5 9 13 5 12 6 4 5
+8 11 13 6 4 7 10 4 5 6 5 7 7 6 5 6 7 5 7 9 8 6 11 8 7 8 13 14 13 13 10 11 11 13 12 9 9 9 9 7
+7641 9312 7405 8485 7540 8737 7663 7613 6650 8136 6407 7301 6849 7409 6477 7945 6508 7977 6157 9245 8037 9311 9304 9964 9003 11160 9626 12204 10433 11238 9265 10720 8211 10419 6901 9141 7252 9709 7857 8398
+5 8 14 2 1 3 8 1 2 2 2 4 4 3 2 2 4 2 4 5 5 2 8 4 3 3 11 10 11 10 7 7 9 11 13 5 7 5 6 3
+3 1 8 8 4 10 14 7 5 3 7 5 6 6 5 10 7 5 10 9 4 11 8 12 15 11 16 12 11 17 10 10 11 12 9 9 9 8 6 6
+7526 8814 7424 8467 7454 8827 7829 7586 6611 7832 6425 7170 6831 7333 6443 8082 6524 7805 6258 9243 7938 9428 9276 10103 9161 11166 9794 12209 10453 11608 9289 10691 8287 10531 6958 9145 7301 9617 7814 8262
+0 0 5 5 1 7 16 4 2 0 4 2 3 3 2 8 4 2 10 5 1 8 4 9 16 7 17 8 7 17 7 6 9 9 7 5 7 4 3 2
+3 3 4 7 7 16 8 5 5 3 6 6 6 9 6 10 13 9 9 10 5 4 6 8 10 9 9 10 11 10 8 9 10 8 7 7 8 7 7 6
+7414 8469 7340 8389 7446 9280 7838 7438 6573 7546 6417 7108 6813 7445 6435 8211 6693 7889 6331 9302 7867 9108 9197 9988 9187 11049 9779 12090 10473 11525 9261 10602 8335 10390 6963 9026 7323 9470 7797 8134
+0 0 1 3 4 18 5 2 2 0 3 3 3 7 3 8 16 6 8 7 2 1 2 4 7 5 5 5 7 5 4 5 8 4 4 3 5 3 4 2
+6 4 8 9 11 10 13 8 4 6 5 8 6 7 11 16 12 9 12 12 9 7 8 9 6 6 7 11 8 9 6 7 8 7 9 6 6 6 9 6
+7382 8206 7361 8438 7541 9337 7974 7483 6511 7461 6384 7173 6796 7428 6555 8701 6832 7968 6479 9481 7900 8991 9171 9941 9111 10754 9713 12040 10416 11386 9183 10395 8331 10196 7019 8853 7293 9270 7832 8014
+3 1 5 6 10 7 14 5 1 3 2 5 3 4 11 19 13 6 14 10 6 3 4 5 2 2 3 6 4 4 2 3 5 3 7 2 3 2 6 2
+13 10 10 6 9 4 9 12 5 3 5 8 5 7 10 8 5 8 10 9 11 10 7 10 10 12 8 13 12 13 10 6 6 9 8 8 7 8 9 8
+7530 8328 7432 8300 7582 9022 8005 7771 6476 7197 6352 7234 6754 7412 6646 8670 6789 7981 6572 9465 7983 9065 9120 9958 9139 10846 9675 12116 10462 11501 9209 10139 8276 10137 7048 8813 7289 9205 7866 8024
+14 8 8 2 6 1 6 12 2 0 2 5 2 4 9 4 2 5 9 5 10 7 3 6 7 9 4 9 9 10 7 2 2 5 5 4 4 4 6 5
+5 5 5 3 6 8 11 9 6 8 10 12 7 5 8 6 11 12 9 9 4 6 6 7 5 8 9 9 10 10 14 10 8 9 11 10 11 9 9 7
+7469 8135 7374 7986 7546 8972 8086 7857 6467 7256 6449 7537 6764 7274 6684 8518 6900 8239 6638 9450 7885 8889 9045 9790 9038 10686 9663 11942 10456 11425 9336 10145 8273 10081 7153 8898 7388 9205 7899 7972
+2 2 2 0 3 4 9 6 3 5 9 12 4 2 6 2 11 11 7 5 1 2 2 3 1 4 5 4 6 5 14 6 5 5 10 7 10 5 6 4
+4 4 3 7 6 3 5 3 5 7 5 10 7 5 7 8 10 9 6 9 7 6 11 9 7 8 11 11 11 9 13 11 7 10 12 11 11 7 6 5
+7384 7892 7266 7936 7511 8618 8011 7569 6433 7250 6415 7699 6774 7144 6696 8498 6983 8297 6625 9435 7867 8724 9100 9755 8991 10536 9702 11901 10476 11292 9435 10212 8245 10090 7281 9039 7484 9082 7855 7800
+1 1 0 4 3 0 2 0 2 4 2 8 4 2 4 5 9 6 3 5 4 2 8 5 3 4 8 6 7 4 12 8 3 6 12 9 10 3 3 2
+13 12 6 6 5 4 6 9 5 3 5 4 4 4 6 6 6 9 8 7 7 6 10 13 10 12 10 12 10 12 14 11 10 9 8 10 11 9 8 6
+7531 8155 7237 7828 7451 8346 7964 7667 6400 6999 6382 7482 6707 6961 6682 8356 6962 8352 6664 9298 7849 8569 9128 9968 9022 10641 9715 11924 10470 11351 9557 10275 8294 10037 7303 9111 7578 9090 7863 7700
+14 11 3 3 2 1 2 6 2 0 2 1 1 1 3 2 3 6 6 3 4 2 7 11 7 9 7 8 6 8 13 8 8 5 5 7 10 6 5 3
+6 11 16 11 5 7 5 7 6 4 4 4 5 3 7 7 7 7 9 8 11 9 6 11 6 12 10 9 10 11 12 13 7 9 9 10 10 6 7 7
+7496 8341 7465 8034 7392 8275 7893 7637 6393 6824 6324 7278 6667 6727 6694 8284 6967 8280 6727 9231 7934 8607 9053 10045 8950 10739 9728 11761 10464 11345 9625 10457 8265 9987 7350 9178 7644 8913 7845 7668
+3 9 22 9 2 3 2 4 3 1 1 1 2 0 4 3 4 3 7 4 10 6 2 8 2 9 6 4 6 7 10 11 3 5 7 7 8 2 4 4
+4 3 5 8 7 3 5 4 7 7 4 8 11 7 5 6 4 6 6 10 8 7 8 8 12 10 12 10 7 13 14 14 7 11 10 8 10 9 9 5
+7411 8024 7406 8043 7386 7962 7823 7424 6412 6844 6268 7332 6781 6753 6654 8155 6895 8151 6712 9291 7940 8520 9031 9933 9033 10709 9791 11669 10381 11463 9742 10689 8237 10063 7422 9118 7708 8931 7879 7515
+1 0 2 5 4 0 2 1 4 4 1 5 11 4 2 2 1 2 3 7 5 3 4 4 10 6 10 5 3 10 13 12 3 8 8 4 8 6 6 2
+5 2 4 6 6 6 5 10 10 5 8 12 9 5 6 5 7 9 9 8 8 7 8 7 9 11 10 9 14 12 8 11 10 11 10 7 8 7 10 8
+7353 7665 7323 7929 7354 7852 7755 7592 6507 6740 6316 7629 6841 6655 6641 7972 6901 8214 6774 9225 7946 8438 9010 9767 9037 10742 9802 11521 10479 11512 9703 10723 8287 10135 7492 9001 7720 8825 7937 7555
+2 0 1 2 3 3 2 8 9 2 6 12 7 2 3 2 4 6 7 4 5 3 4 3 6 7 6 4 12 8 4 7 8 8 8 3 5 3 8 5
+9 5 10 6 2 4 5 5 9 6 6 8 12 9 5 8 7 11 7 6 6 5 5 6 10 9 8 7 9 9 9 7 9 12 7 10 9 8 7 7
+7399 7512 7395 7821 7221 7626 7689 7443 6574 6704 6311 7662 6976 6808 6603 7985 6907 8396 6783 9040 7901 8238 8912 9549 9067 10650 9761 11259 10447 11374 9690 10509 8310 10264 7483 9075 7757 8787 7917 7531
+7 2 8 3 0 1 2 2 7 3 3 5 13 7 2 5 4 9 4 2 3 2 1 2 7 5 4 2 5 4 5 3 6 9 4 7 6 4 4 4
+7 11 12 4 2 3 4 5 3 6 11 8 9 9 8 6 8 9 9 6 4 5 6 10 12 8 10 10 10 9 9 9 9 10 9 9 7 11 11 6
+7393 7737 7517 7597 7091 7352 7599 7303 6486 6670 6434 7693 7031 6952 6642 7874 6939 8445 6843 8866 7806 8050 8842 9590 9147 10502 9772 11197 10441 11244 9678 10431 8332 10262 7526 9083 7742 8935 8000 7447
+4 10 12 1 0 0 1 2 0 3 11 5 7 7 6 3 5 6 7 2 1 2 2 7 10 4 6 6 6 4 5 5 6 6 7 6 4 9 10 3
+12 6 11 9 6 4 6 7 6 12 9 4 6 9 7 9 6 9 10 11 7 5 14 12 9 9 9 10 9 9 11 13 9 11 16 9 10 10 9 8
+7515 7641 7610 7694 7067 7156 7562 7294 6477 7007 6503 7477 7008 7087 6655 7954 6919 8491 6927 9009 7790 7874 8979 9751 9148 10424 9758 11139 10410 11122 9717 10603 8354 10322 7747 9090 7804 9013 8030 7491
+12 3 10 6 3 1 3 4 3 13 7 1 3 7 4 6 3 6 9 9 4 2 14 10 5 5 5 6 5 4 8 10 6 8 21 6 8 7 6 5
+13 5 5 13 7 4 3 8 4 11 8 5 10 11 8 9 8 6 9 6 7 7 12 13 12 9 11 10 9 12 11 9 11 7 8 10 9 9 8 8
+7659 7489 7547 8031 7069 6972 7449 7347 6417 7262 6545 7335 7088 7337 6693 8029 6950 8350 6984 8837 7774 7831 9061 9964 9226 10351 9795 11085 10380 11191 9755 10519 8426 10132 7758 9158 7839 9025 8034 7533
+14 2 2 13 4 1 0 5 1 10 6 2 9 10 6 6 5 2 7 2 4 4 10 11 10 5 8 6 5 8 8 5 9 3 5 7 6 6 5 5
+9 8 10 12 12 8 4 8 4 7 6 8 8 6 8 10 7 8 8 5 7 7 12 11 8 10 9 10 11 13 9 15 10 9 8 11 10 7 8 8
+7697 7531 7614 8286 7199 7045 7365 7397 6359 7256 6534 7386 7115 7265 6730 8161 6955 8340 7014 8613 7758 7791 9141 10041 9200 10344 9780 11034 10402 11318 9741 10809 8471 10077 7768 9284 7898 8913 8037 7572
+6 5 8 11 12 5 1 5 1 4 3 5 5 3 6 8 4 5 5 1 4 4 10 8 4 6 5 6 7 10 5 14 7 5 5 8 8 3 5 5
+6 12 15 12 8 7 5 5 3 5 10 6 5 10 5 5 4 6 14 10 9 10 8 6 8 7 8 10 13 14 9 13 11 13 12 12 10 10 9 6
+7658 7816 7807 8526 7223 7052 7308 7260 6276 7127 6626 7311 7065 7443 6689 7978 6883 8208 7196 8710 7794 7937 9117 9807 9174 10153 9740 10986 10474 11499 9727 10959 8540 10271 7880 9464 7956 8992 8066 7486
+3 12 18 11 5 4 2 2 0 2 9 3 2 8 2 2 1 2 17 7 6 8 4 2 4 3 4 6 11 11 5 10 9 11 12 10 8 7 6 3
+9 10 14 10 5 7 8 7 3 5 8 7 7 11 10 7 5 7 6 7 6 7 10 7 10 6 9 15 14 8 9 10 9 13 9 9 7 7 8 7
+7696 7961 7969 8628 7170 7058 7330 7254 6196 7006 6665 7302 7067 7672 6777 7929 6838 8145 7169 8617 7752 7890 9145 9648 9200 9912 9726 11248 10570 11300 9714 10915 8556 10453 7913 9449 7936 8882 8069 7466
+6 8 16 7 2 4 5 4 0 2 6 4 4 10 9 4 2 3 3 3 3 4 7 3 7 2 5 13 12 3 5 6 6 11 6 5 4 3 5 4
+10 13 12 9 8 14 10 3 6 5 8 6 7 8 8 7 8 4 4 8 6 9 10 7 11 9 12 11 15 11 12 8 9 10 10 11 12 7 5 6
+7759 8282 8076 8663 7195 7494 7402 7003 6194 6892 6703 7232 7069 7703 6812 7883 6871 7902 7092 8591 7711 7969 9172 9499 9251 9870 9789 11248 10689 11297 9778 10751 8572 10440 7971 9557 8044 8779 7995 7386
+8 13 11 6 5 17 8 0 3 2 6 3 4 5 6 4 5 1 1 5 3 6 7 3 8 5 10 7 14 7 10 4 6 6 8 8 11 3 2 3
+15 12 11 4 5 7 5 7 8 4 6 7 7 5 8 7 7 8 6 11 8 9 8 7 7 8 7 9 8 14 12 8 8 9 10 12 7 8 10 7
+7948 8522 8155 8388 7143 7474 7345 7012 6243 6724 6689 7228 7071 7548 6846 7840 6878 7919 7068 8751 7723 8043 9147 9359 9199 9769 9723 11126 10626 11479 9840 10597 8562 10366 8027 9720 8022 8743 8051 7372
+18 11 9 1 2 4 2 4 6 1 3 4 4 2 5 4 4 5 3 9 5 6 4 3 3 4 3 4 4 11 9 4 5 5 8 10 4 4 8 4
+14 9 8 3 8 12 6 5 13 9 5 4 5 6 12 12 8 8 7 8 8 8 12 10 6 7 7 13 11 12 7 9 8 9 8 9 9 8 9 6
+8107 8563 8155 8069 7169 7762 7315 6898 6419 6873 6649 7040 7022 7463 6981 8106 6910 7935 7070 8717 7734 8051 9225 9411 9122 9612 9659 11257 10641 11527 9773 10514 8552 10297 8031 9689 8051 8709 8080 7298
+16 6 5 0 5 12 3 2 16 7 2 1 2 3 13 11 5 5 4 4 5 5 10 7 2 3 3 10 7 8 3 5 5 5 5 5 6 4 6 3
+7 6 6 8 9 14 8 5 14 7 5 12 8 4 7 7 8 6 5 5 6 3 8 10 5 6 6 11 10 13 10 11 13 14 11 9 7 9 7 6
+8083 8417 8104 8076 7220 8156 7336 6791 6616 6890 6610 7354 7051 7260 6985 8049 6942 7827 7021 8501 7694 7752 9199 9460 9022 9403 9571 11257 10630 11634 9784 10558 8670 10539 8111 9660 8028 8739 8057 7228
+4 2 2 5 7 15 5 2 18 4 2 12 5 1 4 4 5 3 2 1 3 0 4 7 1 2 2 7 6 9 6 7 13 12 9 5 4 6 4 3
+12 6 4 7 9 9 6 6 10 5 4 7 5 6 9 7 4 8 11 8 9 6 7 11 6 6 6 10 9 12 12 12 13 12 8 9 10 10 10 6
+8187 8280 8003 8021 7269 8219 7306 6752 6706 6783 6547 7342 7002 7193 7040 7996 6870 7848 7126 8482 7731 7655 9148 9568 8950 9207 9485 11195 10594 11673 9846 10661 8785 10643 8113 9633 8083 8829 8111 7162
+11 2 1 4 7 6 3 3 9 2 1 4 2 3 7 4 1 5 10 5 6 3 3 8 2 2 2 6 5 8 9 9 12 9 5 5 8 7 8 3
+8 7 4 2 4 5 11 7 5 6 8 6 6 7 6 6 11 9 8 7 10 7 7 10 10 14 10 6 8 8 8 12 11 10 9 6 6 9 7 6
+8187 8213 7905 7662 7189 8033 7404 6776 6666 6744 6588 7270 6980 7191 7017 7884 6979 7930 7152 8403 7793 7625 9098 9608 8982 9514 9503 10891 10534 11464 9804 10758 8846 10618 8140 9423 8034 8852 8087 7100
+5 3 1 0 1 2 10 4 2 3 6 3 3 4 3 3 11 6 5 3 8 4 3 7 7 14 7 2 4 3 4 9 9 6 6 2 2 6 4 3
+9 12 8 11 7 8 6 7 11 9 7 7 10 13 12 10 8 13 12 11 11 10 10 5 6 16 13 11 11 12 9 7 15 13 11 8 9 8 8 7
+8212 8457 7912 7878 7188 8042 7372 6799 6780 6892 6602 7263 7061 7558 7148 8025 7009 8252 7280 8574 7879 7781 9126 9338 8911 9926 9598 10913 10552 11513 9789 10542 9008 10779 8217 9349 8063 8812 8089 7104
+6 11 5 10 4 5 3 4 11 7 4 4 9 14 13 8 5 13 12 9 10 8 7 1 2 17 11 7 7 8 5 3 16 10 9 4 6 4 5 4
+13 11 13 13 8 9 7 6 6 4 10 7 4 11 11 8 9 9 11 9 15 8 9 17 11 14 7 9 11 9 11 10 10 11 9 12 10 6 10 9
+8339 8625 8046 8204 7213 8112 7366 6759 6764 6724 6692 7257 6986 7780 7250 8035 7064 8309 7379 8612 8065 7805 9128 9822 8969 10190 9537 10811 10569 11375 9825 10523 9038 10808 8241 9525 8117 8651 8142 7230
+13 9 13 13 5 6 4 3 3 1 9 4 1 10 10 5 7 6 10 6 18 5 6 20 9 13 3 5 7 4 8 6 7 7 6 10 8 2 8 7
+6 7 9 5 5 9 7 5 8 4 5 5 9 11 9 11 12 7 6 7 9 6 11 14 8 8 10 12 13 9 8 9 11 13 11 10 9 5 8 6
+8284 8537 8075 8018 7160 8178 7361 6660 6799 6566 6652 7128 7041 7989 7299 8228 7194 8240 7348 8525 8093 7705 9181 10092 8949 10070 9554 10899 10637 11245 9784 10444 9093 10958 8316 9567 8144 8439 8143 7164
+2 3 6 2 2 6 4 2 6 1 2 2 7 10 7 9 12 3 3 3 6 3 8 13 4 4 7 9 10 4 4 5 9 10 9 7 6 1 5 3
+5 11 8 2 4 7 6 10 8 6 8 11 10 10 10 6 8 11 10 6 7 9 9 6 9 8 7 9 10 15 12 13 10 11 11 8 7 9 8 7
+8205 8700 8077 7659 7083 8117 7330 6874 6833 6540 6690 7376 7120 8124 7372 8102 7218 8421 7420 8382 8069 7795 9181 9855 8955 9957 9494 10798 10627 11491 9846 10616 9121 10976 8389 9484 8119 8485 8144 7164
+2 9 5 0 1 4 3 9 5 3 6 10 9 8 8 2 5 9 8 2 4 6 5 2 6 4 3 5 6 13 9 10 7 7 9 4 4 6 5 4
+14 13 6 7 4 6 9 6 5 6 5 8 7 4 8 6 4 6 10 13 6 8 10 6 8 9 10 12 11 11 13 11 13 13 11 7 6 8 9 8
+8358 8976 8028 7629 7008 7998 7377 6830 6790 6516 6650 7424 7121 7882 7392 7984 7140 8284 7490 8677 8020 7818 9207 9632 8935 9912 9512 10887 10642 11477 9932 10654 9225 11116 8460 9345 8069 8467 8170 7225
+15 12 2 4 1 2 7 3 2 3 2 5 4 1 5 2 1 2 8 13 2 5 7 2 4 5 7 9 7 7 11 7 12 10 9 3 2 5 6 5
+7 8 10 6 4 8 11 5 6 4 5 4 6 8 5 6 9 6 4 7 8 11 9 6 8 10 15 13 9 11 12 10 9 12 8 10 9 9 9 9
+8328 8928 8083 7539 6935 8009 7474 6727 6773 6370 6611 7224 7096 7900 7335 7873 7191 8155 7405 8586 8024 8024 9207 9422 8916 9931 9657 11032 10606 11464 9990 10629 9224 11186 8453 9398 8097 8511 8196 7344
+3 4 8 3 1 5 10 2 3 1 2 1 3 5 2 3 7 2 1 3 5 9 5 2 4 6 15 10 5 7 9 6 5 8 5 7 6 6 6 7
+5 4 4 3 7 8 7 6 4 5 7 3 5 4 9 11 12 5 5 6 7 10 10 11 10 10 6 10 10 13 10 9 12 11 12 8 8 10 6 7
+8247 8638 7983 7270 6940 8019 7466 6692 6706 6295 6624 6974 7046 7671 7381 8076 7318 7972 7347 8439 8002 8156 9232 9532 8949 9949 9569 10984 10596 11574 9996 10544 9300 11190 8548 9325 8099 8614 8144 7333
+2 1 1 0 4 5 4 3 1 2 4 0 2 1 7 9 12 2 2 2 4 8 7 8 7 6 2 6 6 9 6 5 10 7 11 4 5 7 2 4
+6 4 6 3 6 7 8 7 13 15 10 4 7 9 10 7 7 7 8 8 6 9 11 9 6 12 11 10 9 10 12 15 14 11 11 11 9 10 8 7
+8194 8365 7937 7018 6920 7967 7484 6720 6870 6838 6714 6801 7049 7763 7452 8021 7314 7923 7368 8424 7955 8219 9282 9513 8878 10089 9611 10939 10561 11493 10053 10832 9425 11194 8615 9441 8126 8711 8145 7323
+2 1 2 0 3 4 5 4 15 21 9 1 4 6 8 4 4 4 5 5 2 6 8 5 2 9 8 6 5 5 9 14 14 7 9 8 6 7 5 4
+8 6 7 7 7 5 10 10 10 9 11 6 9 12 11 6 5 7 6 6 4 5 7 6 9 9 12 11 10 10 12 14 14 10 10 8 9 9 7 6
+8193 8231 7917 7026 6926 7796 7552 6931 6954 6980 6827 6761 7103 8034 7547 7908 7259 7877 7337 8287 7858 8033 9229 9310 8886 10036 9677 10958 10552 11417 10108 11042 9547 11136 8655 9366 8153 8741 8120 7252
+5 2 4 4 4 2 8 9 9 7 11 3 7 11 10 3 2 4 3 2 1 2 3 2 6 5 10 7 6 5 9 12 13 6 7 4 6 6 4 3
+7 12 8 6 7 6 11 7 3 6 9 10 7 8 9 5 7 5 3 8 7 6 12 10 7 12 11 8 9 8 14 12 12 8 10 9 10 10 6 5
+8167 8474 7923 6973 6932 7696 7644 6945 6857 6929 6886 6969 7104 8043 7588 7740 7256 7711 7230 8281 7840 7919 9305 9365 8843 10171 9716 10792 10518 11223 10213 11116 9615 10959 8694 9357 8205 8830 8070 7124
+3 11 5 3 4 3 10 4 0 3 7 9 4 5 6 2 4 2 0 5 4 3 10 7 3 9 8 4 5 3 13 8 10 3 7 5 8 7 2 2
+8 12 8 13 14 5 3 5 8 10 7 6 5 7 5 6 7 5 6 6 4 5 6 6 9 11 10 11 12 13 10 10 10 13 10 10 8 9 7 5
+8167 8702 7929 7353 7116 7541 7529 6835 6890 7127 6893 6919 7054 7990 7526 7644 7253 7555 7202 8152 7746 7751 9226 9171 8852 10236 9729 10820 10562 11348 10213 11063 9630 11100 8732 9409 8204 8853 8047 7003
+5 11 5 14 17 2 0 2 5 9 4 3 2 4 2 3 4 2 3 2 1 2 2 2 6 8 6 7 9 10 6 6 7 10 7 7 5 6 4 2
+3 3 10 8 8 5 8 7 6 8 9 9 10 9 9 5 10 7 6 8 7 9 9 7 10 14 11 9 9 13 14 14 10 10 10 11 7 8 8 5
+8039 8364 7986 7403 7142 7395 7545 6854 6871 7190 6950 7056 7133 8063 7568 7492 7327 7531 7175 8154 7731 7838 9225 9050 8886 10481 9767 10723 10528 11465 10315 11259 9645 11048 8769 9520 8178 8813 8050 6890
+0 0 8 5 5 2 5 4 3 5 7 7 9 6 7 2 8 4 3 5 4 6 5 3 7 12 8 5 5 10 12 11 7 6 7 8 3 4 5 2
+9 15 12 7 5 7 7 7 3 5 4 6 9 13 13 12 9 11 9 8 8 10 7 10 9 11 10 9 9 10 11 11 12 9 8 9 7 8 8 6
+8068 8783 8093 7388 7091 7381 7535 6872 6776 7065 6878 7001 7184 8377 7711 7779 7374 7754 7225 8156 7742 7982 9173 9121 8894 10527 9778 10632 10495 11391 10338 11259 9710 10938 8754 9501 8152 8775 8053 6845
+6 17 11 4 2 4 4 4 0 2 1 3 7 13 14 12 7 10 7 5 5 8 3 7 6 7 6 5 5 6 7 7 10 5 4 5 3 4 5 3
+3 7 7 9 5 3 4 4 5 4 3 4 7 8 7 7 12 8 6 7 10 11 9 8 10 9 12 10 12 10 10 10 9 7 8 9 8 8 9 8
+7943 8686 8069 7497 7041 7122 7449 6705 6734 6886 6782 6826 7183 8365 7697 7742 7496 7780 7198 8096 7804 8178 9174 9065 8927 10448 9840 10608 10539 11321 10335 11197 9697 10711 8739 9483 8152 8740 8082 6925
+0 3 4 7 2 0 1 1 2 1 0 1 4 5 4 4 12 5 3 4 8 9 5 4 7 5 9 6 9 6 6 6 5 3 4 5 5 4 6 5
+15 11 15 7 5 11 9 8 8 8 6 5 4 6 6 5 11 9 11 10 8 11 13 13 9 6 6 9 10 10 11 12 11 9 12 10 10 9 7 7
+8128 8840 8251 7477 6993 7370 7493 6794 6770 6964 6766 6723 7105 8231 7658 7584 7590 7866 7299 8224 7813 8363 9277 9319 8934 10189 9747 10524 10531 11256 10358 11262 9736 10621 8827 9528 8204 8768 8059 6939
+18 9 18 4 2 10 7 6 6 5 3 2 1 2 3 2 10 6 10 8 5 9 12 12 6 2 2 5 6 6 7 8 8 5 10 7 8 6 4 4
+10 14 13 7 8 6 6 5 6 10 12 9 9 5 7 8 7 13 12 11 7 5 6 7 9 12 11 9 9 8 8 10 12 10 12 7 10 10 7 7
+8180 9169 8377 7458 7022 7296 7459 6693 6754 7160 6903 6872 7157 8044 7645 7620 7579 8192 7423 8406 7796 8168 9198 9189 8941 10314 9784 10445 10498 11072 10303 11200 9799 10598 8913 9386 8254 8856 8036 6952
+8 14 13 4 5 3 3 2 3 9 13 7 7 2 4 5 4 13 12 9 4 2 2 3 6 9 8 5 5 3 4 6 10 6 10 3 8 7 4 4
+5 10 12 12 9 8 9 8 3 8 8 8 10 8 10 10 6 7 6 5 6 6 5 7 10 11 11 11 11 11 11 12 10 10 10 9 11 10 9 9
+8103 9233 8474 7747 7076 7349 7502 6782 6662 7221 6935 6951 7233 8052 7709 7777 7543 8130 7391 8208 7754 8046 9096 9067 8973 10370 9820 10494 10517 11083 10326 11265 9810 10576 8946 9375 8329 8939 8065 7087
+2 7 11 12 7 5 7 6 0 5 5 5 8 5 8 8 3 4 3 2 3 2 1 3 7 7 8 7 7 7 8 8 6 6 7 5 9 7 6 7
+7 5 8 19 14 4 6 4 1 6 9 4 5 3 7 7 4 8 5 7 7 8 6 8 9 11 9 8 12 12 12 8 8 10 9 9 8 9 8 5
+8079 8986 8466 8449 7257 7153 7468 6620 6521 7156 6991 6779 7180 7753 7695 7740 7456 8133 7334 8145 7739 8054 9022 9014 8979 10423 9804 10355 10561 11155 10374 11080 9769 10555 8952 9365 8325 8955 8068 6968
+4 1 5 28 17 1 3 1 0 3 7 1 2 0 4 4 1 5 2 3 4 5 2 4 6 7 5 4 9 8 9 3 4 6 6 5 5 6 5 2
+6 5 9 9 9 6 5 6 6 6 8 4 9 7 7 7 8 8 6 8 10 11 11 11 16 10 11 8 11 11 10 12 16 13 8 5 8 9 9 9
+8030 8754 8484 8495 7305 7092 7409 6591 6511 7095 7020 6618 7230 7717 7681 7705 7474 8136 7304 8147 7801 8246 9077 9148 9163 10412 9840 10225 10578 11161 10370 11152 9934 10720 8933 9110 8321 8970 8096 7102
+2 1 6 6 7 3 2 3 3 3 5 1 7 4 4 4 5 5 3 5 8 9 9 8 18 6 8 4 7 7 6 8 17 10 4 1 5 6 6 7
+6 9 6 6 9 10 8 6 4 4 5 4 10 13 11 6 8 8 6 5 9 12 10 8 11 7 7 7 6 9 7 10 13 14 8 10 9 9 6 6
+7982 8781 8425 8353 7352 7280 7428 6564 6450 6915 6972 6466 7305 8052 7770 7611 7491 8139 7275 7965 7836 8488 9106 9090 9215 10217 9773 10041 10467 11044 10290 11097 10018 10936 8914 9177 8343 8984 8047 7044
+2 6 2 2 7 8 5 3 1 1 2 1 8 13 10 3 5 5 3 2 6 11 7 4 8 3 3 3 2 5 3 6 11 12 4 7 6 6 2 3
+4 11 5 2 9 9 6 2 3 5 5 6 6 5 4 7 7 6 8 9 10 11 7 4 4 8 6 8 7 6 6 6 10 7 7 7 8 7 6 4
+7884 8929 8342 7974 7398 7396 7395 6293 6365 6807 6925 6446 7276 7876 7678 7584 7482 8019 7297 8040 7896 8654 9057 8790 9087 10095 9682 9930 10384 10750 10186 10799 10023 10709 8870 9056 8339 8875 7999 6867
+1 9 1 0 7 7 3 0 0 2 2 3 3 2 1 4 4 2 5 6 8 9 3 1 1 4 2 4 3 2 2 2 6 3 3 3 5 3 2 1
+9 19 21 18 12 10 6 7 6 4 5 8 6 6 8 12 9 10 12 10 9 12 12 8 8 9 8 7 7 8 12 11 10 10 8 6 7 9 11 5
+7917 9560 8670 8601 7520 7566 7363 6345 6359 6644 6879 6550 7247 7772 7690 7866 7525 8152 7421 8171 7928 8872 9137 8754 9064 10042 9644 9764 10303 10596 10238 10826 10028 10680 8853 8881 8309 8895 8080 6762
+6 25 34 25 12 8 3 4 3 1 2 6 3 3 5 12 7 8 12 8 6 10 10 4 4 5 4 3 3 4 9 7 6 6 4 2 3 6 9 2
+7 9 8 11 7 8 9 9 9 8 8 8 9 10 7 7 8 7 6 8 8 12 9 11 9 9 6 5 6 10 10 12 10 9 9 8 7 6 8 4
+7898 9539 8658 8760 7511 7603 7409 6517 6430 6736 6911 6648 7296 7920 7676 7824 7541 8092 7389 8172 7934 9076 9138 8904 9067 9992 9556 9485 10199 10574 10238 10913 10033 10592 8862 8839 8280 8729 8082 6602
+4 5 4 9 4 5 7 7 7 6 5 6 7 8 4 4 5 4 3 5 5 10 5 9 6 5 2 1 2 6 6 9 6 5 6 4 3 2 5 1
+4 10 10 9 5 8 5 9 9 9 13 9 8 11 8 5 9 8 8 4 7 11 9 12 12 8 6 11 11 8 6 7 9 13 11 9 7 9 10 6
+7803 9581 8697 8787 7451 7638 7351 6678 6499 6884 7070 6802 7318 8120 7688 7661 7582 8097 7409 7927 7914 9207 9139 9107 9147 9884 9470 9591 10225 10431 10135 10688 10012 10755 8921 8861 8252 8758 8135 6574
+1 7 7 6 2 5 2 7 7 7 15 7 5 9 5 2 6 5 5 1 4 8 5 10 10 4 2 8 8 4 2 3 5 10 9 6 3 6 8 3
+3 6 5 3 4 9 8 7 4 5 7 10 6 8 5 4 5 7 9 4 7 7 7 10 8 9 10 12 9 11 9 9 12 8 11 9 6 7 8 7
+7684 9374 8607 8444 7367 7732 7371 6707 6439 6778 7072 7008 7288 8124 7623 7447 7520 8041 7454 7697 7895 9084 9089 9174 9123 9843 9489 9752 10199 10480 10112 10599 10068 10601 8979 8882 8199 8662 8136 6609
+0 2 1 0 1 6 5 4 1 2 4 9 3 5 2 1 2 4 7 1 4 3 3 7 4 5 7 10 5 7 5 5 9 4 9 6 2 3 5 4
+9 5 9 7 4 4 7 5 3 5 5 5 5 7 4 4 7 8 13 12 8 7 8 9 12 9 8 15 11 9 11 7 10 13 12 9 9 8 8 7
+7722 9118 8622 8367 7285 7513 7365 6611 6354 6678 7023 6894 7233 8066 7534 7245 7511 8050 7600 7972 7902 8969 9066 9176 9202 9805 9456 10088 10225 10404 10140 10393 10072 10763 9061 8902 8224 8633 8137 6642
+6 1 6 3 1 1 4 2 0 2 2 2 2 4 1 1 4 5 14 11 5 3 4 5 10 5 4 15 8 5 8 3 6 10 10 6 6 4 5 4
+12 9 10 8 7 4 3 5 9 5 10 7 6 6 8 4 5 4 5 10 8 6 9 11 8 11 10 8 10 11 11 12 9 11 14 10 7 8 8 8
+7835 9123 8662 8356 7282 7307 7257 6521 6425 6584 7103 6910 7205 7950 7550 7056 7451 7812 7538 8108 7909 8799 9069 9301 9176 9892 9475 9974 10225 10455 10168 10506 10050 10793 9192 8982 8197 8606 8138 6734
+12 6 7 5 4 1 0 2 7 2 9 4 3 2 5 1 2 1 2 8 5 2 6 8 4 8 7 4 6 7 8 9 5 7 14 7 3 4 5 6
+5 13 9 9 5 7 11 12 10 9 4 2 6 7 6 6 8 7 6 7 7 9 7 13 8 11 9 12 6 9 7 11 10 8 11 11 7 8 8 5
+7767 9374 8675 8407 7228 7298 7357 6867 6520 6741 7027 6618 7178 7903 7514 7001 7469 7773 7503 8051 7890 8824 9021 9541 9151 9974 9468 10112 10123 10380 10093 10551 10054 10636 9243 9118 8171 8581 8139 6637
+2 12 6 6 2 4 10 13 9 7 1 0 3 4 3 3 5 4 3 4 4 6 3 12 4 8 5 9 2 5 3 7 6 4 8 8 3 5 5 2
+8 10 10 9 9 8 8 11 5 5 5 9 10 8 6 8 8 6 7 7 8 12 9 8 8 7 6 9 7 6 9 11 9 8 9 9 6 11 9 9
+7777 9425 8714 8455 7277 7351 7377 7130 6485 6643 6979 6773 7254 7920 7479 7072 7487 7675 7494 7998 7897 9031 9025 9460 9127 9805 9385 10058 10049 10125 10071 10593 10033 10489 9242 9123 8120 8741 8165 6791
+5 7 7 6 7 5 5 10 2 2 2 7 8 5 3 5 5 3 4 4 5 10 6 4 4 3 2 5 3 2 5 7 5 4 5 6 2 9 6 7
+5 6 6 3 6 8 4 2 7 10 5 6 12 10 8 6 9 10 12 10 10 12 12 10 11 8 8 11 8 8 9 8 10 7 8 9 6 9 8 8
+7710 9228 8649 8132 7248 7401 7295 6825 6502 6858 6932 6735 7379 8059 7496 7016 7530 7828 7613 8132 7955 9226 9106 9506 9180 9708 9355 10130 10002 10009 10049 10448 10038 10289 9215 9128 8070 8769 8165 6875
+2 2 2 0 3 5 1 0 4 9 2 3 12 8 5 3 7 8 12 8 8 10 10 7 8 4 4 8 4 4 5 4 6 3 4 6 2 6 5 5
+4 3 5 7 5 2 4 7 7 8 9 10 11 7 8 7 9 9 7 8 9 7 11 10 8 11 10 10 10 7 6 6 11 10 8 6 7 8 7 8
+7619 8858 8560 8074 7194 7079 7215 6845 6518 6938 6989 6945 7475 8005 7513 7025 7572 7911 7601 8135 7986 9102 9159 9550 9155 9801 9377 10136 10007 9838 9951 10189 10068 10286 9189 8948 8047 8734 8140 6954
+1 0 1 4 2 0 1 4 4 5 7 9 10 4 5 4 7 6 4 5 6 3 8 7 4 8 7 6 6 3 2 2 8 6 4 2 4 4 3 5
+4 11 11 5 8 10 8 11 6 6 4 7 9 6 6 8 6 5 6 6 5 7 8 8 10 8 13 11 10 10 12 15 11 11 10 9 7 10 7 5
+7531 9002 8627 7896 7218 7268 7239 7110 6508 6890 6916 6958 7518 7893 7478 7095 7536 7743 7564 8015 7914 8985 9134 9468 9182 9704 9475 10203 10012 9862 10009 10499 10097 10344 9215 8964 8025 8824 8115 6843
+1 9 9 2 5 8 5 11 3 3 1 4 7 3 3 5 3 2 3 2 2 3 4 4 7 4 12 8 6 6 9 14 8 7 7 6 4 7 4 2
+4 11 10 9 5 5 6 7 9 5 5 9 8 7 7 9 9 9 7 7 8 5 8 12 10 9 9 9 8 7 11 8 8 14 15 11 9 8 8 6
+7445 9137 8667 7975 7165 7139 7211 7113 6575 6783 6871 7093 7534 7849 7470 7222 7577 7831 7554 7964 7920 8753 9110 9637 9208 9674 9468 10143 9966 9700 10040 10360 10049 10583 9368 9101 8054 8786 8116 6801
+1 8 7 6 2 2 3 4 7 2 2 7 5 4 4 7 7 6 4 4 5 1 4 10 7 5 5 5 4 3 8 4 4 12 16 8 6 4 5 3
+4 7 12 9 12 6 3 9 8 6 10 5 8 5 7 8 12 6 7 8 5 7 7 11 13 12 11 7 10 13 14 14 10 11 9 10 10 11 10 6
+7361 9018 8757 8049 7292 7079 7107 7239 6615 6744 6955 6974 7550 7685 7462 7280 7694 7729 7544 7977 7850 8657 9061 9734 9310 9830 9512 9964 9972 9916 10147 10598 10053 10623 9364 9169 8108 8934 8169 6761
+1 3 11 6 12 3 0 7 6 3 9 2 5 2 4 5 12 3 4 5 2 3 3 8 12 9 8 3 6 11 13 12 6 7 5 7 8 9 8 3
+3 4 7 6 11 11 4 3 5 8 6 5 7 7 5 5 8 6 7 6 9 16 10 9 12 13 9 6 7 13 10 13 10 10 11 8 6 9 9 5
+7253 8722 8717 7934 7391 7330 7031 6988 6577 6830 6934 6862 7540 7653 7403 7150 7706 7633 7534 7867 7884 9120 9090 9702 9384 10038 9504 9734 9902 10119 10149 10760 10057 10600 9411 9110 8058 8950 8195 6662
+0 1 3 2 10 10 1 0 2 6 3 2 4 4 2 2 5 3 4 3 6 18 7 5 10 11 5 2 3 11 6 10 6 6 8 4 2 6 6 2
+9 11 12 8 12 7 5 3 3 3 3 6 8 6 7 7 8 7 8 7 11 9 8 11 7 7 10 12 6 9 11 10 8 10 10 7 6 11 10 8
+7302 8874 8806 7949 7513 7320 6983 6753 6489 6604 6837 6818 7556 7562 7397 7151 7718 7605 7550 7825 7968 9125 9067 9795 9328 9865 9522 9887 9808 10064 10176 10728 10010 10578 9431 8993 8010 9088 8246 6753
+7 9 11 5 12 4 2 0 0 0 0 3 5 3 4 4 5 4 5 4 10 6 4 8 3 3 7 9 2 5 8 6 4 6 7 3 2 9 8 6
+9 5 7 9 8 9 9 8 7 6 6 6 5 6 6 9 10 6 6 6 11 10 7 13 12 8 6 9 8 9 12 17 14 11 9 6 8 9 8 7
+7349 8648 8765 8025 7529 7433 7038 6839 6505 6576 6819 6777 7495 7476 7365 7274 7780 7517 7514 7724 8050 9191 9019 10006 9401 9764 9437 9846 9767 10013 10228 11128 10117 10619 9425 8822 8014 9095 8244 6777
+7 1 3 6 5 7 7 5 4 3 3 3 2 3 3 7 8 3 3 3 9 7 3 11 10 4 2 5 4 5 9 17 13 7 5 2 5 6 5 4
+7 4 6 12 8 7 10 6 12 13 14 7 5 4 5 4 7 10 11 5 11 13 8 10 10 10 9 10 9 9 10 11 10 8 9 8 10 10 12 8
+7344 8374 8699 8280 7545 7417 7117 6797 6649 6980 7006 6800 7435 7273 7308 7083 7764 7680 7607 7567 8130 9438 8998 10020 9421 9792 9431 9869 9753 9965 10228 11136 10120 10473 9419 8784 8069 9163 8344 6861
+4 1 2 11 5 4 9 3 13 15 18 4 2 1 2 1 4 8 10 2 9 12 4 6 7 6 5 6 5 5 6 7 6 4 5 4 8 7 11 5
+13 9 8 9 7 11 9 8 9 8 9 5 7 2 4 5 9 7 6 6 11 8 8 7 8 7 10 12 8 13 7 9 10 10 11 9 8 8 11 9
+7492 8424 8686 8336 7535 7647 7169 6880 6713 7052 7061 6699 7428 6959 7227 6965 7800 7649 7570 7481 8208 9363 8977 9848 9390 9634 9451 10014 9714 10165 10151 11020 10122 10459 9465 8809 8072 9104 8416 7002
+14 6 4 6 4 10 7 5 7 5 7 2 4 0 1 2 6 4 3 3 9 4 4 3 4 3 7 9 4 11 3 5 6 6 8 6 5 4 9 7
+5 10 3 1 4 10 7 8 8 6 6 8 5 4 9 8 8 6 7 8 7 6 7 8 8 9 9 9 11 9 7 9 9 11 9 9 8 8 9 6
+7432 8532 8545 7897 7449 7802 7168 6958 6749 6997 7038 6788 7370 6787 7276 7038 7809 7558 7559 7523 8182 9169 8931 9748 9360 9608 9445 9966 9752 10108 10076 10911 10099 10507 9458 8833 8074 9049 8435 6950
+2 7 0 0 1 8 4 5 6 3 3 6 2 1 7 5 5 3 4 5 3 2 3 4 4 5 5 5 8 5 3 5 5 7 5 6 5 4 6 3
+9 13 8 5 5 5 3 4 8 7 4 4 5 6 7 5 7 9 8 7 7 8 7 13 13 8 10 9 14 10 12 16 8 7 8 13 9 11 11 9
+7476 8818 8536 7730 7390 7641 7065 6786 6785 7007 6964 6626 7313 6748 7273 6922 7792 7657 7574 7501 8156 9110 8886 9961 9458 9523 9464 9921 9866 10115 10131 11239 10051 10306 9426 9101 8102 9181 8505 7085
+7 12 5 2 2 2 0 1 6 4 1 1 2 3 4 2 4 6 5 4 3 4 3 11 12 4 7 5 13 6 9 15 4 3 4 12 6 8 9 7
+6 9 7 13 12 6 3 3 7 12 9 7 6 8 8 6 7 11 13 9 8 10 12 10 17 10 9 10 14 9 8 11 13 10 9 9 10 11 10 7
+7442 8841 8501 8064 7512 7551 6965 6563 6794 7323 7020 6658 7283 6834 7295 6875 7776 7873 7717 7603 8156 9177 8970 9977 9656 9566 9457 9940 9977 10061 10082 11240 10132 10302 9420 9107 8155 9305 8548 7089
+3 6 3 13 12 3 0 0 4 12 7 4 3 5 5 3 4 10 14 6 5 7 10 6 20 7 5 6 13 5 4 7 11 6 5 6 8 8 7 4
+6 8 11 16 8 3 7 6 6 7 7 7 9 6 5 6 6 11 8 7 7 7 9 9 11 9 7 9 10 11 13 9 10 9 10 10 11 7 6 5
+7409 8802 8569 8563 7528 7282 6970 6537 6777 7313 7023 6688 7331 6792 7240 6831 7735 8076 7728 7576 8131 9056 8976 9931 9696 9545 9399 9896 9983 10133 10162 11118 10134 10236 9440 9174 8232 9176 8487 6970
+3 4 9 20 5 0 4 3 3 4 4 4 7 3 2 3 3 9 5 4 4 3 6 5 8 5 3 5 6 8 11 4 6 5 7 7 9 3 2 2
+7 14 11 10 13 13 8 7 6 4 5 8 12 7 14 12 9 16 26 17 13 13 6 9 17 8 10 11 11 12 10 10 7 8 13 13 16 16 13 11
+7402 9134 8636 8663 7672 7643 7000 6574 6761 7119 6975 6778 7454 6814 7417 7158 7771 8574 8199 8165 8260 9311 8905 9888 9888 9463 9419 9978 10014 10262 10163 11065 10059 10113 9536 9422 8435 9608 8607 7227
+4 14 9 7 14 14 5 4 3 1 2 6 12 4 17 13 6 20 54 23 13 12 2 5 19 4 7 8 8 9 6 6 3 4 12 12 20 18 13 10
+13 14 13 7 4 5 4 5 7 10 8 5 3 5 12 11 15 13 12 10 11 10 7 9 13 14 10 10 13 12 10 9 12 11 9 9 9 8 8 9
+7549 9446 8752 8573 7582 7491 6927 6486 6771 7306 7005 6678 7344 6712 7538 7404 7960 8858 8301 8289 8334 9366 8861 9847 9973 9755 9439 9993 10096 10383 10164 10954 10114 10182 9528 9409 8454 9523 8596 7346
+14 14 12 3 1 2 1 2 4 8 5 2 0 2 12 10 18 12 11 8 9 7 3 5 11 13 7 6 11 9 6 5 9 8 5 5 6 4 4 7
+11 9 11 3 2 7 8 4 8 8 3 4 4 8 7 8 5 6 8 13 7 5 7 7 11 13 7 10 11 12 13 8 7 11 7 7 7 8 10 7
+7641 9432 8814 8242 7443 7471 6958 6342 6806 7359 6906 6523 7262 6800 7528 7451 7889 8695 8298 8590 8304 9111 8818 9686 10005 9968 9382 10007 10125 10497 10242 10788 10040 10246 9469 9274 8421 9443 8637 7335
+10 5 9 0 0 4 5 1 6 5 0 1 1 6 4 5 2 2 5 13 3 1 3 3 8 11 3 6 8 9 11 4 3 8 3 3 3 4 7 4
+13 9 9 8 3 4 6 8 6 9 8 2 2 8 12 11 6 11 8 9 8 4 5 5 4 7 10 9 14 11 12 12 12 14 7 7 10 12 9 7
+7782 9419 8824 8239 7333 7268 6937 6452 6789 7470 6938 6254 7131 6883 7646 7679 7845 8849 8295 8627 8301 8810 8725 9412 9857 9800 9403 9959 10230 10543 10293 10877 10096 10491 9411 9147 8466 9613 8651 7324
+14 5 6 5 0 1 3 6 3 7 5 0 0 5 12 10 3 9 5 6 5 1 1 1 1 3 7 5 13 7 9 9 9 12 3 3 7 10 6 4
+19 11 2 9 10 4 7 7 3 6 5 3 3 5 5 5 5 13 9 10 11 9 8 7 6 6 14 14 11 8 10 10 13 11 11 8 8 11 8 7
+8073 9529 8654 8297 7405 7077 6942 6494 6696 7390 6892 6063 7029 6777 7582 7525 7776 9116 8317 8723 8374 8834 8711 9277 9764 9580 9526 10221 10255 10401 10291 10838 10176 10537 9457 9089 8459 9712 8639 7314
+29 8 0 6 8 1 4 4 0 3 2 0 0 2 2 2 2 12 6 7 9 6 4 3 2 2 13 13 8 4 6 6 11 7 8 4 5 8 4 4
+19 11 4 8 5 7 7 9 9 7 6 5 9 5 8 8 5 5 6 6 7 9 5 11 11 7 6 9 9 10 11 8 12 12 9 9 6 9 7 8
+8357 9633 8540 8290 7347 7082 6947 6657 6758 7376 6873 6006 7083 6677 7597 7565 7709 8876 8262 8568 8343 8856 8621 9396 9801 9435 9441 10160 10229 10391 10315 10679 10228 10642 9450 9096 8401 9682 8602 7366
+28 8 1 5 2 4 4 7 7 4 3 2 7 2 5 5 2 1 2 2 3 6 1 8 8 3 2 5 5 6 8 4 9 9 5 6 2 5 3 5
+17 17 10 7 7 9 7 10 9 6 5 14 11 7 7 7 8 9 5 4 5 12 7 13 14 10 9 7 5 12 12 6 9 8 7 9 10 9 8 9
+8582 10099 8582 8222 7342 7210 6952 6871 6819 7302 6829 6505 7187 6706 7586 7541 7721 8896 8183 8299 8262 9061 8584 9630 9914 9483 9435 9980 10101 10504 10364 10406 10202 10495 9393 9103 8446 9654 8591 7476
+22 19 7 3 4 7 4 9 7 3 2 19 10 4 4 4 5 6 2 1 2 10 3 11 13 7 5 3 1 9 9 2 5 4 3 6 7 5 5 7
+8 7 8 6 6 9 13 14 6 13 20 19 20 16 11 12 12 13 12 10 10 14 9 7 10 13 12 7 8 12 13 10 15 21 18 19 26 23 14 13
+8572 9923 8572 8097 7312 7330 7110 7318 6802 7662 7169 7282 7518 7286 7677 7825 7835 9160 8285 8415 8311 9377 8599 9482 9922 9712 9506 9811 10053 10611 10437 10396 10330 11155 9618 9724 8899 10487 8734 7826
+5 3 5 2 3 7 15 17 3 14 36 32 34 22 10 12 12 12 11 7 8 14 6 3 6 11 10 3 4 9 11 6 14 27 22 25 51 34 15 14
+7 5 12 7 4 12 15 10 9 8 13 9 7 10 14 11 7 9 7 5 13 14 10 7 8 9 9 7 7 11 6 8 9 12 12 10 15 12 8 11
+8536 9634 8664 8041 7231 7627 7315 7493 6862 7693 7322 7398 7509 7463 7843 8031 7818 9163 8257 8217 8435 9674 8639 9343 9878 9682 9498 9652 9980 10650 10329 10263 10302 11222 9684 9754 9060 10595 8720 8032
+3 1 11 4 1 12 20 8 7 5 15 7 4 8 16 9 4 5 3 2 13 13 7 3 4 5 5 3 3 7 2 4 5 8 10 6 16 9 4 9
+10 7 8 6 5 4 5 6 7 6 5 5 6 10 12 7 9 8 13 5 11 11 8 7 9 12 14 10 8 6 5 7 10 11 14 9 8 11 6 6
+8578 9486 8652 7927 7178 7415 7260 7412 6869 7600 7267 7261 7474 7629 7953 7979 7852 9104 8383 8031 8505 9769 8627 9212 9861 9838 9618 9687 9935 10379 10198 10077 10300 11224 9800 9721 9038 10635 8655 7918
+7 3 4 3 2 1 2 3 4 3 2 2 3 8 11 4 6 4 13 2 9 8 4 3 5 9 13 7 4 2 1 3 6 7 13 5 4 7 2 3
+11 6 8 8 12 11 4 7 5 5 7 12 7 6 4 7 8 10 5 4 8 12 7 6 8 8 13 12 13 11 11 12 9 9 8 9 8 11 7 6
+8645 9285 8640 7942 7305 7645 7181 7397 6825 7451 7264 7562 7466 7539 7856 7930 7860 9172 8301 7794 8497 9920 8590 9027 9819 9739 9710 9843 10019 10432 10224 10209 10272 11103 9759 9690 9016 10672 8617 7811
+9 2 4 5 12 10 1 4 2 2 4 12 4 3 1 4 5 7 2 1 5 9 3 2 4 4 11 9 11 7 8 9 5 4 4 5 4 7 3 3
+12 10 5 7 14 7 5 6 5 5 5 13 6 6 6 8 10 12 8 8 7 7 8 5 8 12 10 15 14 9 12 12 10 8 11 11 7 4 7 7
+8735 9342 8552 7895 7480 7616 7129 7321 6782 7311 7210 7906 7432 7455 7813 7945 7919 9358 8298 7817 8463 9754 8580 8792 9778 9891 9723 10174 10126 10359 10275 10333 10271 10928 9796 9784 8969 10277 8580 7772
+11 7 1 4 17 4 2 3 2 2 2 14 3 3 3 5 8 10 5 5 3 3 5 1 4 9 7 15 13 5 9 9 6 4 8 8 3 1 3 4
+1 5 7 7 5 5 6 5 10 9 6 4 6 13 7 10 8 5 7 12 7 7 6 9 10 7 5 9 14 13 8 11 8 7 10 8 9 8 10 9
+8542 9088 8517 7851 7421 7466 7104 7188 6868 7425 7183 7677 7399 7806 7796 8082 7925 9103 8269 8085 8430 9598 8519 8817 9789 9727 9608 10116 10231 10536 10223 10388 10219 10702 9807 9688 8975 10151 8621 7858
+0 1 3 4 2 2 3 2 9 7 3 1 3 14 4 8 5 1 3 11 3 3 2 6 6 3 1 5 13 10 4 7 4 3 6 4 6 4 7 6
+3 6 7 7 5 4 8 7 10 7 5 5 5 7 3 9 6 6 8 11 7 8 6 10 11 10 9 10 12 10 11 10 10 7 8 9 8 8 7 7
+8405 8911 8483 7810 7363 7263 7131 7186 6952 7409 7131 7523 7342 7767 7678 8150 7880 8925 8267 8275 8398 9513 8459 8902 9825 9757 9598 10123 10282 10518 10248 10379 10219 10489 9766 9659 8955 10033 8584 7816
+0 2 3 4 2 1 5 4 9 4 2 2 2 4 0 6 3 2 5 9 3 4 2 7 8 6 5 6 9 6 8 6 6 3 4 5 4 4 3 4
+6 6 4 10 5 4 5 5 11 9 6 8 16 15 11 12 9 12 12 12 10 7 6 12 12 11 12 11 13 9 9 10 6 8 9 9 7 7 7 6
+8348 8744 8373 7955 7307 7072 7080 7062 7059 7517 7106 7563 7567 8222 7767 8398 7913 9126 8367 8515 8443 9372 8401 9105 9886 9847 9665 10191 10357 10439 10222 10370 10117 10351 9752 9632 8910 9861 8548 7715
+2 2 1 8 2 1 2 2 11 7 3 5 22 18 10 11 6 10 11 11 7 3 2 10 9 8 10 8 11 5 5 6 2 4 5 5 3 3 3 3
+1 3 7 8 7 8 3 4 4 5 4 5 12 9 14 8 5 10 9 7 6 8 6 7 11 10 10 7 8 6 7 13 10 8 8 9 7 10 10 7
+8165 8403 8342 7969 7303 7139 6979 6884 6985 7373 7030 7416 7684 8281 7930 8385 7843 9192 8388 8434 8385 9301 8344 8988 9920 9870 9679 10009 10302 10181 10145 10546 10120 10221 9713 9607 8866 9883 8590 7682
+0 0 3 5 4 5 0 1 1 2 1 2 12 6 16 5 2 7 6 3 2 4 2 3 8 6 7 3 4 2 3 10 6 4 4 5 3 6 7 4
+4 6 4 3 5 5 6 6 9 9 7 6 4 5 5 5 7 6 14 10 7 10 9 11 8 16 17 10 8 8 11 12 13 9 9 9 8 8 8 5
+8063 8267 8236 7675 7248 7017 6958 6839 7040 7483 7033 7339 7594 8091 7859 8189 7826 9009 8536 8542 8354 9357 8365 9124 9876 10260 9871 10022 10249 10061 10172 10650 10199 10160 9700 9583 8849 9781 8580 7528
+1 2 1 0 2 2 3 3 7 7 4 3 1 2 2 2 4 2 15 7 3 7 6 8 4 17 19 6 4 4 8 9 11 5 5 5 4 4 5 2
+13 9 8 5 8 4 5 13 10 8 10 5 3 5 6 6 9 7 10 12 9 8 6 9 10 9 9 10 6 5 7 10 8 10 9 8 9 8 8 6
+8194 8323 8234 7521 7271 6841 6912 7227 7119 7525 7113 7205 7481 7912 7816 8066 7860 8898 8578 8766 8375 9287 8309 9129 9885 10197 9854 10035 10146 9764 10097 10625 10148 10164 9687 9499 8858 9685 8570 7444
+13 6 5 2 5 1 2 15 9 5 9 2 0 2 3 2 6 3 7 11 6 4 2 6 6 5 5 6 2 1 3 6 4 6 5 4 6 4 5 3
+12 16 15 14 8 7 10 6 6 8 7 4 6 5 7 10 6 6 7 11 8 11 12 7 10 6 7 7 9 10 15 11 13 11 10 7 9 8 11 8
+8296 8806 8411 7929 7293 6860 6995 7162 7094 7565 7114 7018 7447 7744 7799 8196 7817 8732 8542 8915 8370 9405 8408 9011 9893 9953 9786 9862 10122 9792 10228 10663 10226 10229 9700 9359 8866 9595 8637 7488
+11 19 17 16 5 4 9 3 3 5 4 1 3 2 4 8 3 2 3 9 5 8 11 3 6 2 3 3 5 6 15 7 11 8 7 3 6 4 9 5
+17 23 16 6 11 11 6 5 7 11 8 6 8 6 5 9 6 9 11 9 9 7 9 11 7 7 7 8 14 7 10 10 8 8 8 10 9 6 9 5
+8523 9690 8610 7821 7392 7124 6973 7039 7095 7786 7140 6965 7465 7648 7732 8257 7775 8761 8609 8933 8391 9270 8428 9146 9824 9785 9720 9761 10227 9634 10228 10637 10175 10106 9662 9411 8874 9387 8651 7345
+22 37 19 3 10 10 3 2 4 10 5 3 5 3 2 6 3 6 9 6 6 3 6 8 3 3 3 4 13 3 6 6 4 4 4 7 6 2 6 2
+14 8 11 8 4 6 5 13 11 7 5 7 9 6 4 5 6 9 11 8 7 8 8 8 9 8 10 11 9 12 9 9 7 10 7 7 11 9 8 8
+8668 9600 8676 7843 7309 7065 6926 7415 7199 7748 7089 6977 7508 7557 7641 8068 7734 8788 8675 8888 8360 9205 8422 9088 9808 9689 9732 9851 10201 9793 10202 10551 10099 10114 9599 9276 8933 9376 8639 7395
+15 4 9 5 1 3 2 14 10 4 2 4 7 3 1 2 3 6 9 4 3 4 5 4 5 4 6 8 5 10 5 5 3 6 3 3 9 5 4 5
+4 6 4 5 5 3 6 12 9 6 6 8 7 6 7 9 11 11 7 9 9 6 7 7 10 12 13 8 12 12 8 9 11 11 8 8 11 11 7 7
+8553 9392 8561 7679 7254 6825 6906 7707 7249 7651 7065 7049 7499 7472 7629 8136 7822 8936 8637 8907 8381 9021 8390 8972 9818 9844 9821 9751 10253 9942 10151 10470 10128 10182 9563 9210 8991 9489 8602 7381
+1 2 1 2 2 0 3 12 7 3 3 5 4 3 4 6 10 9 3 6 6 2 3 3 6 9 11 4 9 9 4 5 8 8 4 4 9 8 3 4
+6 10 5 4 3 5 10 7 6 6 4 6 12 6 4 7 6 8 7 9 5 7 9 11 8 14 12 9 19 10 7 10 10 12 11 12 11 8 8 7
+8492 9442 8475 7464 7149 6722 6989 7674 7221 7560 6990 6994 7618 7392 7540 8077 7780 8891 8600 8925 8299 8909 8410 9109 9777 10113 9882 9718 10482 9959 10076 10456 10130 10308 9605 9394 9047 9411 8591 7368
+2 7 1 1 0 2 9 4 3 3 1 3 12 3 1 4 3 4 3 6 2 3 6 8 4 13 9 5 23 6 3 6 6 9 8 10 9 4 5 4
+6 8 9 10 4 8 12 7 4 6 9 9 7 7 5 7 6 14 7 5 4 6 10 10 10 15 10 8 13 10 10 9 13 9 6 9 11 8 7 5
+8433 9367 8493 7630 7072 6810 7121 7643 7142 7475 7045 7127 7606 7378 7479 8022 7739 9217 8564 8696 8194 8743 8455 9176 9788 10427 9890 9626 10552 9975 10080 10381 10209 10242 9518 9383 9102 9337 8555 7233
+2 4 6 8 1 6 13 4 1 3 7 7 4 4 2 4 3 14 3 1 1 2 7 7 6 14 6 4 10 6 6 5 11 5 2 5 8 4 3 2
+9 9 7 11 10 15 13 8 10 11 9 5 5 4 2 5 6 6 5 5 5 5 5 9 9 9 11 9 8 8 10 10 12 12 9 8 10 10 7 8
+8452 9357 8459 7848 7151 7322 7275 7675 7219 7702 7099 7006 7543 7181 7343 7847 7699 9032 8478 8481 8117 8525 8371 9178 9773 10354 9924 9601 10493 9868 10083 10372 10260 10364 9510 9311 9130 9391 8520 7290
+6 5 3 10 9 19 15 5 8 10 7 2 2 1 0 2 3 2 1 1 2 1 1 5 5 5 8 5 4 4 6 6 9 9 5 4 7 7 3 5
+14 14 11 10 9 12 13 10 8 9 8 8 9 6 10 10 10 7 6 7 10 6 10 8 5 6 8 10 9 16 12 14 9 12 8 9 8 11 7 6
+8598 9655 8529 7991 7202 7619 7425 7828 7243 7792 7126 7077 7584 7118 7415 7990 7762 8920 8419 8402 8169 8382 8417 9118 9656 10101 9880 9639 10461 10258 10138 10609 10233 10479 9477 9305 9106 9503 8486 7221
+15 13 9 8 7 12 14 8 5 6 5 5 6 3 8 8 8 3 2 3 8 2 7 4 1 2 4 7 5 17 9 12 5 9 4 5 4 8 3 3
+9 13 8 10 13 11 16 8 8 7 2 5 8 6 15 11 4 5 7 8 4 7 16 9 10 9 10 8 10 10 15 14 10 10 9 10 8 11 8 6
+8613 9874 8520 8125 7354 7837 7648 7849 7266 7754 6999 6959 7599 7059 7613 8186 7670 8692 8387 8389 8067 8309 8615 9123 9670 10047 9888 9552 10455 10256 10268 10832 10233 10464 9470 9361 9083 9608 8478 7156
+6 11 5 8 14 10 21 5 5 4 0 2 5 3 19 9 1 1 3 5 1 3 19 6 7 5 6 4 6 6 14 12 6 6 5 7 4 8 5 3
+4 8 10 10 6 11 17 10 7 9 6 5 5 10 14 4 7 6 6 9 9 5 7 8 10 11 5 6 7 9 13 14 12 12 11 9 11 10 9 6
+8500 9773 8562 8251 7323 8042 7891 7992 7263 7841 6977 6848 7537 7249 7780 7940 7657 8539 8331 8438 8095 8117 8578 9067 9684 10120 9768 9347 10372 10193 10343 11042 10284 10573 9514 9352 9137 9645 8496 7095
+1 4 7 8 3 9 24 8 4 6 3 2 2 8 16 1 4 2 2 6 6 2 3 4 7 8 1 2 3 5 11 12 9 9 8 5 8 7 6 3
+8 10 4 8 5 6 4 2 2 7 8 4 7 7 8 6 4 5 7 5 8 10 8 10 9 9 10 9 9 11 9 7 12 11 11 8 8 9 7 7
+8492 9801 8450 8247 7268 7928 7796 7635 7132 7800 7007 6682 7527 7244 7790 7832 7568 8333 8301 8238 8097 8244 8568 9137 9672 10065 9779 9339 10343 10257 10314 10809 10334 10614 9557 9282 9113 9619 8462 7099
+5 6 1 5 2 2 1 0 0 4 5 1 4 4 5 3 1 2 3 2 5 8 5 7 5 5 6 5 5 8 5 3 9 7 8 4 4 5 3 4
+8 11 7 4 6 7 4 6 7 4 7 4 9 7 4 4 4 6 10 9 7 14 8 10 12 9 7 6 8 8 10 13 13 10 10 9 8 8 8 7
+8484 9888 8417 7997 7239 7882 7703 7545 7132 7577 7011 6526 7569 7239 7697 7607 7481 8201 8349 8296 8073 8609 8558 9203 9737 10014 9713 9147 10289 10133 10312 10959 10408 10591 9574 9278 9090 9533 8455 7103
+5 8 3 1 3 4 1 3 4 1 4 1 7 4 1 1 1 2 7 6 4 15 5 7 10 5 3 2 4 4 6 10 11 6 7 5 4 4 5 4
+6 5 5 8 6 3 6 7 7 6 9 10 8 12 10 7 6 19 18 10 6 8 8 11 9 5 9 10 10 10 11 12 8 6 8 12 11 9 7 9
+8425 9601 8334 8008 7211 7593 7664 7522 7132 7491 7066 6748 7584 7541 7760 7580 7447 8876 8600 8412 8024 8583 8548 9326 9723 9720 9700 9212 10287 10139 10335 11038 10352 10324 9539 9458 9144 9513 8422 7229
+2 1 2 5 3 0 3 4 4 3 7 9 5 12 8 4 3 27 25 7 2 5 5 8 5 1 5 7 6 6 8 8 4 2 4 10 8 5 3 7
+11 5 8 11 10 9 6 6 6 16 14 8 7 7 8 5 6 10 6 8 6 8 6 11 8 9 8 9 12 10 9 12 9 9 9 8 12 11 7 6
+8495 9332 8330 8203 7286 7690 7626 7439 7107 8024 7247 6834 7573 7518 7770 7432 7414 8957 8538 8398 7977 8559 8487 9442 9684 9689 9662 9212 10336 10145 10307 11112 10323 10257 9530 9382 9222 9618 8390 7163
+9 1 5 9 8 6 3 3 3 21 17 5 4 4 5 2 3 7 2 5 2 5 2 8 4 5 4 5 9 6 5 8 5 5 5 4 10 8 3 3
+7 8 15 19 12 10 13 12 11 6 7 4 4 5 7 7 7 9 7 10 6 7 7 6 10 9 11 11 8 10 15 9 10 10 13 8 10 10 7 4
+8461 9263 8505 8878 7410 7842 7767 7729 7210 7911 7245 6669 7486 7374 7754 7416 7407 8972 8503 8508 7931 8475 8454 9244 9697 9660 9701 9335 10282 10150 10433 10998 10320 10255 9624 9310 9247 9655 8359 6978
+3 4 17 27 12 8 14 12 10 3 4 1 1 2 4 4 4 6 3 7 2 3 3 2 7 5 8 8 4 6 14 5 6 6 11 4 7 7 3 1
+6 7 7 13 16 12 9 11 6 5 4 4 4 8 9 5 8 4 5 6 7 11 8 10 7 8 11 11 10 12 11 9 11 10 9 9 12 12 8 10
+8403 9137 8471 9144 7634 8108 7803 7941 7183 7743 7166 6514 7401 7423 7790 7278 7426 8679 8418 8366 7911 8642 8447 9303 9633 9571 9740 9450 10280 10278 10453 10891 10343 10254 9613 9304 9322 9812 8354 7173
+2 3 3 12 22 11 6 10 3 2 1 1 1 5 6 2 5 1 1 2 4 9 5 7 3 4 8 8 6 9 7 5 7 6 5 5 10 10 5 9
+7 7 6 8 8 9 7 10 8 8 7 5 7 11 9 10 6 6 9 7 8 6 6 9 8 7 6 6 7 14 9 13 8 12 16 13 12 12 10 9
+8372 9018 8412 9086 7647 8174 7787 8078 7208 7769 7166 6430 7395 7653 7825 7455 7393 8526 8437 8294 7918 8492 8389 9297 9597 9426 9650 9251 10202 10521 10422 11036 10289 10376 9782 9544 9396 9960 8401 7295
+3 3 2 4 5 6 4 8 5 5 4 2 4 10 6 8 3 2 6 3 5 2 2 5 4 3 2 2 3 12 5 10 4 9 17 12 10 9 7 7
+3 3 9 16 11 9 7 8 7 7 5 6 5 8 6 11 9 9 11 7 9 8 11 10 9 8 5 7 8 7 12 11 10 11 13 12 9 12 8 6
+8239 8661 8432 9523 7737 8236 7771 8084 7207 7732 7114 6412 7338 7685 7783 7683 7438 8567 8507 8226 7950 8474 8460 9353 9587 9351 9536 9126 10151 10319 10468 11049 10287 10429 9870 9708 9391 10099 8395 7225
+0 0 6 18 10 6 4 5 4 4 2 3 2 5 3 10 7 6 9 3 6 5 9 7 5 4 1 3 4 3 9 7 6 7 11 10 5 9 5 3
+9 12 6 14 13 10 7 13 9 7 3 9 11 8 4 11 13 10 6 6 8 8 6 11 7 8 9 6 10 10 11 6 9 11 10 11 7 12 9 7
+8263 8878 8374 9811 7876 8356 7755 8397 7257 7698 7013 6580 7436 7715 7690 7897 7584 8667 8448 8101 7956 8457 8402 9467 9526 9281 9528 8947 10153 10314 10487 10754 10260 10479 9879 9801 9335 10230 8415 7221
+6 10 2 13 14 7 4 13 7 4 0 7 10 5 1 10 14 7 2 2 5 5 2 8 3 4 5 2 6 6 7 2 5 7 6 8 3 9 6 4
+9 5 10 15 8 7 11 15 6 4 7 9 6 6 6 13 15 7 6 6 7 8 11 12 6 9 11 7 11 12 13 7 11 12 12 9 9 8 7 8
+8286 8652 8420 10143 7883 8284 7842 8814 7229 7481 7016 6738 7403 7620 7651 8221 7778 8577 8390 7983 7936 8441 8473 9636 9441 9277 9571 8840 10180 10432 10557 10538 10285 10587 9939 9765 9332 10107 8383 7279
+6 1 7 15 5 3 10 17 3 1 4 7 3 3 3 13 19 3 2 2 4 5 9 10 2 5 8 3 8 9 10 3 8 9 9 5 5 4 3 5
+10 5 14 15 8 6 11 9 6 7 13 11 7 8 6 7 5 6 3 7 10 8 10 12 5 7 8 10 11 9 10 9 11 10 14 13 12 8 7 6
+8334 8440 8567 10456 7890 8155 7927 8838 7201 7462 7173 7009 7397 7654 7613 8157 7711 8431 8257 7934 7993 8426 8517 9795 9333 9150 9536 8923 10207 10359 10549 10458 10309 10566 10048 9977 9405 9992 8352 7210
+8 1 15 14 5 2 10 6 3 4 15 11 4 5 3 3 2 2 0 4 8 5 7 10 1 3 4 7 8 5 6 5 8 6 13 11 10 4 3 3
+12 11 14 8 9 7 9 8 7 6 4 5 6 11 9 4 4 7 6 7 8 10 10 8 6 8 8 14 11 11 10 9 9 10 12 11 8 10 10 10
+8432 8609 8711 10320 7923 8095 7959 8799 7200 7382 7096 6895 7365 7870 7653 7913 7620 8355 8204 7888 7997 8534 8560 9698 9253 9092 9502 9247 10233 10413 10541 10383 10281 10546 10103 10054 9374 10006 8399 7391
+11 9 15 4 6 4 6 4 4 3 1 2 3 10 6 1 1 3 2 4 5 7 7 4 2 4 4 14 8 7 6 5 5 6 9 8 4 6 7 8
+6 3 6 7 8 9 6 5 4 8 10 7 8 11 8 6 8 7 7 7 8 9 7 6 8 12 9 13 11 9 11 11 9 8 10 8 8 6 9 9
+8374 8276 8646 10130 7929 8162 7913 8578 7122 7430 7174 6911 7385 8073 7666 7806 7634 8283 8178 7844 8001 8574 8525 9484 9226 9283 9494 9490 10258 10341 10559 10435 10254 10404 10106 9942 9344 9774 8419 7500
+2 0 2 3 5 6 3 1 1 5 9 4 5 9 5 3 5 3 3 4 5 6 3 2 4 10 5 12 8 5 7 7 5 4 6 4 4 2 6 7
+4 7 11 17 10 7 5 7 7 5 7 6 15 9 5 6 6 7 6 6 7 7 6 8 9 6 8 10 12 10 9 10 10 10 10 8 8 8 8 6
+8267 8209 8711 10566 7986 8102 7843 8493 7123 7291 7173 6864 7584 8141 7602 7706 7596 8216 8127 7742 7980 8489 8465 9406 9225 9094 9461 9534 10308 10334 10525 10423 10253 10394 10109 9837 9315 9679 8413 7418
+1 3 9 18 8 4 2 3 4 2 4 3 19 6 2 3 3 3 2 3 4 3 2 4 5 2 4 7 9 6 5 6 6 6 6 4 4 4 5 3
+8 5 6 7 7 3 3 4 8 3 7 9 14 11 5 5 10 9 10 11 8 6 8 6 6 7 10 10 9 10 11 8 6 9 11 11 10 10 11 7
+8265 8023 8646 10362 7965 7800 7723 8229 7149 7037 7172 7005 7752 8328 7540 7550 7662 8275 8179 7953 7985 8348 8458 9210 9148 8978 9480 9576 10280 10328 10543 10289 10150 10323 10137 9922 9338 9712 8484 7403
+5 2 2 3 4 0 0 1 5 0 4 7 16 9 2 2 8 6 8 10 5 2 5 2 2 3 7 7 5 6 7 4 2 5 8 8 7 7 9 4
+17 14 11 11 7 5 7 5 6 4 4 4 8 10 10 14 10 8 4 9 8 5 12 7 11 7 7 10 11 9 12 11 9 8 7 7 11 8 9 6
+8493 8401 8711 10416 7945 7639 7709 8042 7123 6860 7095 6830 7762 8442 7607 7957 7726 8270 8077 8028 7990 8154 8553 9087 9200 8869 9422 9615 10304 10261 10586 10347 10126 10195 10062 9756 9386 9620 8502 7327
+22 15 9 7 4 2 4 2 3 1 1 1 5 7 8 16 8 5 1 6 5 2 11 3 8 3 3 7 8 5 9 7 5 4 3 3 8 4 6 3
+25 19 6 12 7 5 5 6 7 4 9 7 4 7 11 6 5 5 4 8 8 7 8 8 5 8 6 5 8 9 10 14 10 8 9 9 11 9 9 5
+8920 9064 8646 10528 7925 7487 7644 7928 7124 6694 7147 6850 7670 8365 7698 7848 7660 8081 7977 8037 7995 8094 8543 9033 9098 8828 9340 9345 10251 10198 10577 10586 10128 10074 10040 9723 9432 9595 8519 7194
+47 26 2 9 4 2 2 2 4 1 7 4 1 3 10 3 2 2 1 5 5 4 5 4 1 4 2 1 4 5 6 12 6 4 5 5 8 5 6 2
+9 17 16 8 6 11 13 10 9 4 4 8 7 5 5 3 4 5 4 5 5 10 8 5 8 6 6 5 8 11 9 14 13 9 10 12 9 8 6 4
+8927 9564 8839 10387 7880 7713 7785 8066 7176 6538 7070 6930 7657 8170 7633 7561 7571 7903 7880 7861 7923 8222 8534 8798 9075 8666 9260 9091 10199 10261 10543 10810 10207 10022 10044 9876 9426 9510 8459 7008
+6 20 19 4 3 10 14 8 7 1 1 5 4 2 2 0 1 2 1 2 2 8 5 1 4 2 2 1 4 8 5 12 11 5 6 9 5 4 2 1
+6 7 5 3 9 15 10 6 5 5 6 5 6 6 8 9 3 7 6 5 12 15 11 8 7 8 9 10 10 11 9 10 11 8 9 7 11 11 9 6
+8857 9420 8746 9948 7913 8171 7846 7950 7124 6452 7046 6821 7619 8048 7646 7660 7458 7858 7836 7696 8031 8650 8602 8761 9027 8637 9258 9159 10200 10321 10509 10775 10233 9912 10023 9713 9471 9615 8477 6956
+2 3 1 0 6 18 8 2 2 2 3 2 3 2 5 6 0 4 3 2 11 17 9 4 3 4 5 7 6 8 5 6 8 4 5 3 8 8 6 3
+8 9 14 9 8 4 3 4 5 5 5 5 10 8 8 6 5 7 6 6 6 8 4 8 11 6 10 11 11 12 10 13 11 10 10 9 9 10 7 5
+8840 9407 8885 9904 7919 7926 7726 7718 7073 6372 6997 6718 7684 8056 7659 7569 7399 7816 7793 7602 7983 8622 8489 8726 9082 8487 9282 9285 10226 10439 10502 10927 10258 9931 10028 9683 9464 9652 8444 6845
+4 5 14 5 5 1 0 1 2 2 2 2 8 5 5 3 2 4 3 3 2 4 1 4 9 2 7 8 8 9 6 10 8 6 6 5 5 7 3 2
+7 14 15 17 20 9 8 5 3 5 9 6 9 6 8 8 5 8 7 7 9 11 9 9 13 10 12 8 9 9 10 16 14 12 7 8 12 7 7 7
+8798 9702 9046 10354 8232 8003 7737 7562 6973 6296 7052 6683 7722 7941 7672 7606 7342 7838 7777 7575 8013 8780 8507 8755 9187 8592 9357 9219 10200 10365 10495 11254 10359 10072 9956 9593 9534 9502 8412 6864
+3 13 16 19 32 6 5 2 0 2 7 3 6 2 5 5 2 5 4 4 6 9 6 6 12 7 10 4 5 5 6 15 12 9 3 4 10 3 3 4
+2 3 8 11 11 10 11 7 9 5 5 11 10 8 7 5 10 14 7 8 10 9 10 8 6 7 8 12 8 15 13 12 15 15 7 10 13 10 6 6
+8629 9304 9024 10408 8307 8137 7825 7538 7028 6225 7003 6957 7784 7956 7659 7456 7414 8227 7761 7612 8068 8806 8550 8721 9111 8506 9327 9403 10149 10664 10565 11316 10483 10389 9886 9631 9628 9546 8355 6820
+0 0 4 7 9 8 10 4 7 2 2 11 8 5 4 2 8 15 4 5 8 6 7 4 2 3 4 10 4 14 10 8 14 14 3 7 11 7 2 3
+9 9 7 5 6 8 7 6 7 6 7 10 8 8 7 3 5 6 3 7 8 6 12 11 6 10 9 11 8 14 8 7 10 11 10 8 10 8 7 8
+8643 9298 8977 10090 8253 8140 7808 7454 7031 6220 7007 7153 7794 7970 7646 7192 7356 8102 7643 7585 8071 8646 8643 8873 9036 8610 9324 9514 10100 10884 10505 11067 10476 10441 9894 9544 9643 9464 8325 6902
+6 5 3 1 2 5 4 3 4 3 4 9 5 5 4 0 2 2 0 4 5 2 11 9 2 7 5 8 4 12 4 3 6 7 6 4 7 4 3 5
+10 5 11 9 13 9 4 12 10 3 8 7 8 9 5 8 11 6 6 9 7 9 10 9 13 6 11 10 13 12 10 11 7 7 7 7 6 8 7 6
+8682 9047 9034 10037 8379 8204 7715 7744 7111 6031 7036 7153 7803 8044 7582 7251 7453 7984 7605 7682 8048 8680 8682 8893 9142 8462 9372 9557 10180 10968 10498 11078 10393 10244 9825 9401 9555 9387 8296 6856
+7 1 9 5 13 6 1 12 9 0 5 4 5 6 2 5 10 2 3 6 4 6 7 6 12 2 8 7 11 8 6 7 3 3 3 3 2 4 3 3
+5 8 14 10 8 6 7 6 6 3 6 6 9 11 8 5 6 6 6 6 11 13 10 10 10 7 11 8 11 12 13 13 11 12 9 7 7 7 7 5
+8593 8995 9166 10049 8374 8080 7701 7648 7086 5853 7013 7092 7838 8237 7597 7123 7420 7873 7568 7589 8128 8957 8720 8973 9169 8384 9419 9475 10207 11047 10568 11212 10414 10366 9809 9267 9495 9253 8267 6751
+1 4 14 6 5 2 4 3 3 0 3 3 6 9 5 2 3 3 3 3 9 12 7 7 7 3 8 4 8 8 10 10 7 9 5 3 3 3 3 2
+6 8 6 4 4 7 6 3 3 4 5 3 6 5 5 8 8 9 5 6 6 8 7 8 9 6 7 8 6 11 10 13 12 11 9 7 7 7 5 5
+8531 8946 9090 9691 8267 8025 7662 7373 6985 5747 6965 6850 7795 8049 7535 7187 7439 7953 7506 7502 8078 8911 8681 8926 9170 8249 9362 9398 10105 11060 10559 11337 10460 10419 9794 9141 9436 9127 8188 6653
+2 4 2 1 1 4 3 0 0 1 2 0 3 2 2 5 5 6 2 3 2 4 3 4 5 2 3 4 2 7 6 10 9 7 5 3 3 3 2 2
+5 14 12 5 8 10 5 7 4 5 13 5 3 4 3 6 15 8 7 7 5 5 6 8 10 8 7 8 10 9 10 17 13 10 12 7 9 7 6 5
+8445 9269 9169 9416 8265 8157 7598 7360 6912 5709 7123 6746 7677 7811 7423 7124 7636 7967 7497 7481 8004 8683 8617 8881 9196 8245 9307 9325 10108 10949 10551 11701 10531 10408 9856 9022 9430 9009 8136 6561
+1 14 10 1 5 8 2 4 1 2 15 2 0 1 0 3 19 5 4 4 2 1 2 4 7 5 3 4 6 5 6 16 10 6 9 3 5 3 2 2
+4 11 9 9 6 12 9 10 6 9 11 4 7 4 6 8 9 9 7 6 10 5 9 14 8 10 8 9 11 12 13 12 13 11 15 9 10 11 8 6
+8336 9388 9170 9404 8212 8404 7638 7532 6892 5919 7226 6587 7664 7588 7391 7188 7675 8041 7488 7400 8059 8469 8631 9208 9170 8364 9279 9318 10136 11029 10619 11736 10600 10459 9993 9033 9450 9144 8137 6535
+1 8 5 5 2 11 6 8 3 8 10 1 4 1 3 5 6 6 4 3 8 1 6 14 4 7 4 5 8 8 10 8 10 7 15 6 7 8 5 3
+8 10 6 10 8 3 3 4 4 9 11 6 8 3 5 7 7 5 7 4 8 6 8 9 10 11 8 7 9 13 13 10 9 14 11 7 8 7 7 5
+8332 9439 9094 9454 8211 8084 7524 7325 6822 6116 7326 6560 7677 7317 7334 7186 7662 7865 7480 7201 8062 8329 8620 9208 9196 8537 9251 9189 10113 11165 10686 11646 10565 10691 10024 8921 9418 9025 8112 6450
+5 7 2 7 5 0 0 1 1 8 10 3 5 0 2 4 4 2 4 1 5 2 4 5 7 9 4 3 5 10 10 5 5 12 8 3 4 3 4 2
+7 14 13 4 4 4 4 11 10 6 6 4 6 5 5 4 5 4 5 8 8 9 6 8 8 8 11 11 8 13 10 13 11 14 8 8 7 9 9 5
+8302 9732 9199 9132 8108 7844 7438 7561 6907 6117 7296 6412 7638 7185 7278 7000 7598 7638 7421 7260 8065 8382 8558 9147 9170 8516 9301 9313 10065 11293 10674 11745 10582 10909 9978 8877 9361 9036 8139 6370
+3 13 12 1 1 1 1 10 9 3 3 1 3 2 2 1 2 1 2 5 5 6 2 4 4 5 8 8 4 10 6 9 7 12 4 4 3 6 6 2
+14 17 14 6 7 8 6 6 10 8 8 10 12 7 5 6 9 7 4 8 8 9 7 9 8 10 7 8 8 13 12 13 9 11 13 13 12 10 10 9
+8452 10192 9327 8952 8084 7864 7405 7475 6990 6241 7318 6641 7754 7183 7224 6948 7638 7609 7337 7315 8068 8432 8523 9151 9145 8619 9247 9245 10018 11414 10714 11839 10547 10930 10061 9143 9434 9108 8191 6540
+15 19 14 2 4 5 3 3 9 6 5 9 12 4 2 3 6 4 1 5 5 6 3 5 4 7 3 4 4 10 9 9 5 7 11 12 10 7 8 7
+10 9 6 7 8 9 9 10 10 6 8 9 8 8 4 8 9 7 6 6 7 8 10 12 12 9 11 11 15 15 10 12 7 12 13 10 12 14 8 8
+8496 10133 9247 8844 8086 7945 7450 7640 7071 6235 7339 6795 7764 7243 7145 7022 7677 7582 7307 7244 8045 8417 8565 9339 9223 8654 9297 9366 10151 11650 10702 11865 10462 11011 10142 9208 9505 9421 8191 6639
+7 5 2 3 5 6 7 8 9 3 5 7 5 5 1 5 6 4 3 3 4 5 7 10 10 6 8 8 15 13 6 8 3 8 11 7 10 14 5 6
+7 10 11 8 12 11 14 9 9 7 10 5 5 5 11 9 8 5 7 9 7 8 9 8 8 8 7 7 12 10 11 15 7 10 10 9 9 7 8 10
+8462 10139 9297 8804 8190 8144 7621 7734 7124 6290 7411 6694 7697 7115 7247 7153 7689 7434 7303 7362 8023 8403 8581 9270 9197 8626 9243 9234 10204 11565 10716 12074 10379 10964 10144 9208 9497 9285 8191 6855
+3 6 8 4 11 9 16 6 7 4 8 2 2 2 10 7 5 2 4 7 4 5 6 4 4 4 3 3 9 5 7 12 3 6 6 5 5 3 5 9
+13 11 9 8 9 12 6 5 9 7 4 7 5 4 4 7 9 4 5 9 10 10 6 5 9 9 8 8 12 8 12 11 14 14 9 7 7 6 10 8
+8583 10206 9294 8767 8215 8392 7584 7577 7176 6342 7328 6722 7632 6933 7168 7153 7727 7233 7248 7473 8078 8513 8520 9021 9197 8661 9216 9171 10256 11362 10755 12025 10477 11166 10120 9085 9438 9096 8242 6935
+13 8 5 4 6 11 3 2 7 4 1 4 2 1 1 4 6 1 2 7 8 7 2 1 5 6 4 4 9 3 9 6 12 12 5 3 3 2 8 5
+9 9 4 6 5 6 6 5 1 5 7 9 6 5 7 8 7 12 12 8 5 6 11 8 5 8 6 9 9 9 10 12 13 11 11 11 8 7 10 7
+8598 10146 9164 8609 8137 8257 7548 7429 7022 6268 7324 6871 7594 6824 7168 7215 7713 7536 7373 7516 8004 8370 8588 8971 9095 8632 9139 9173 10230 11233 10742 12040 10547 11171 10148 9215 9406 8980 8291 6948
+6 5 1 2 2 2 3 2 0 2 4 7 3 2 4 5 4 12 12 5 2 2 9 4 1 4 2 5 5 4 6 8 10 7 8 8 4 3 8 4
+7 7 7 6 4 13 9 4 4 6 4 5 5 7 8 5 6 8 8 14 8 8 7 9 8 7 7 7 13 10 9 13 9 10 10 7 11 11 7 6
+8562 9967 9114 8461 8036 8560 7589 7229 6948 6260 7243 6765 7532 6844 7193 7089 7673 7575 7393 7925 8008 8359 8552 8985 9072 8544 9089 9052 10306 11173 10703 12116 10513 11115 10150 9092 9452 9117 8262 6899
+3 3 3 2 1 13 6 1 1 3 1 2 2 4 5 2 3 5 5 16 5 5 3 6 4 3 3 3 11 6 5 9 5 6 6 3 8 8 3 3
+11 11 9 3 3 11 10 3 6 5 5 6 6 6 5 6 7 6 5 6 5 8 8 6 9 11 7 7 8 10 9 13 10 13 9 10 9 9 7 7
+8629 10044 9116 8137 7912 8722 7655 6979 6927 6191 7190 6727 7497 6802 7141 7032 7660 7489 7336 7818 7935 8348 8543 8814 9075 8707 9041 8938 10253 11117 10665 12187 10506 11246 10126 9160 9446 9122 8234 6915
+9 8 6 0 0 9 8 0 3 2 2 3 3 3 2 3 4 3 2 3 2 5 5 2 6 9 3 3 4 6 5 9 6 10 5 7 5 6 3 4
+9 15 13 4 6 7 4 3 4 3 7 9 10 8 6 9 7 6 4 11 7 8 8 12 7 9 7 10 11 11 10 7 10 10 11 11 9 10 8 8
+8643 10362 9220 7894 7867 8628 7566 6744 6856 6003 7189 6876 7565 6885 7116 7163 7647 7408 7255 8024 7915 8338 8534 9022 9027 8737 8994 9016 10278 11125 10654 11885 10499 11185 10154 9286 9440 9189 8232 6991
+6 14 12 1 3 3 1 0 1 0 4 7 8 5 3 7 4 3 1 9 4 5 5 10 3 6 3 7 8 7 6 2 6 6 8 8 5 7 5 5
+5 8 9 8 7 11 6 3 6 7 9 9 11 10 8 8 9 10 5 11 9 6 5 8 10 9 9 8 10 8 11 9 10 13 11 10 9 8 6 6
+8555 10231 9219 7911 7849 8786 7530 6523 6838 6072 7239 7016 7657 7086 7142 7224 7686 7577 7201 8218 7947 8206 8448 8972 9057 8765 8999 8966 10277 10949 10669 11724 10492 11312 10181 9343 9434 9129 8179 6940
+1 4 5 5 4 9 3 0 3 5 7 7 10 9 5 5 6 8 2 9 6 2 1 4 7 6 6 4 6 4 7 4 6 10 8 7 5 4 2 3
+11 6 10 8 6 9 7 6 6 4 7 9 8 7 6 6 7 7 5 5 6 9 6 5 10 11 7 10 10 9 14 16 8 11 10 13 8 11 9 6
+8622 9985 9244 7927 7806 8811 7520 6500 6820 5953 7237 7147 7670 7090 7117 7159 7673 7552 7149 8032 7901 8266 8390 8740 9086 8914 8953 9042 10276 10845 10760 12003 10434 11309 10182 9581 9402 9257 8204 6892
+9 2 7 5 3 6 4 3 3 1 4 7 5 4 3 3 4 4 2 2 3 6 2 1 7 9 3 7 6 5 12 14 4 7 6 12 4 8 6 3
+10 7 6 9 6 8 8 4 6 6 7 10 15 9 5 7 7 8 5 6 7 11 6 5 11 9 9 7 10 11 14 17 11 10 9 12 10 16 13 8
+8662 9815 9166 8004 7764 8773 7536 6355 6803 5964 7235 7332 7861 7217 7067 7159 7660 7590 7098 7918 7882 8445 8333 8522 9140 8932 8959 8929 10275 10870 10849 12327 10454 11244 10157 9743 9422 9684 8331 6969
+7 3 2 6 3 4 5 1 3 3 4 8 18 7 2 4 4 5 2 3 4 9 2 1 8 6 6 3 6 7 12 15 7 6 5 10 7 18 13 5
+4 8 9 6 7 6 6 5 7 8 9 9 10 6 4 7 13 9 3 5 10 7 7 9 9 6 9 9 11 9 11 18 13 14 11 11 9 8 10 10
+8548 9717 9167 7892 7749 8615 7501 6280 6812 6097 7284 7445 7920 7152 6992 7159 7801 7687 6997 7750 7940 8368 8303 8563 9141 8764 8965 8946 10299 10770 10859 12693 10525 11429 10184 9834 9416 9594 8378 7165
+1 4 5 3 4 2 3 2 4 6 7 7 8 3 1 4 14 6 0 2 8 3 3 6 5 2 6 6 8 5 7 17 10 11 8 8 5 4 7 9
+3 6 10 4 4 4 3 3 4 8 5 6 7 5 6 7 11 7 4 5 6 6 7 7 10 9 11 11 9 10 13 12 10 12 14 11 10 8 5 6
+8411 9502 9193 7664 7657 8343 7390 6087 6744 6222 7229 7366 7901 7030 6970 7159 7887 7655 6924 7592 7895 8234 8274 8479 9168 8791 9022 9085 10271 10738 10920 12668 10517 11480 10287 9919 9436 9509 8296 7103
+0 2 7 1 1 1 0 0 1 6 2 3 4 2 3 4 10 4 1 2 3 2 3 3 7 6 9 9 5 6 10 7 6 8 13 8 7 4 2 3
+7 10 7 10 6 4 5 7 5 9 7 7 5 6 8 9 4 3 7 10 10 12 7 8 10 11 10 9 8 10 10 11 11 11 14 11 9 8 10 6
+8379 9546 9142 7818 7619 8088 7333 6151 6703 6401 7227 7354 7831 6976 7000 7282 7792 7380 6930 7750 7953 8477 8246 8461 9194 8939 9052 9092 10219 10708 10903 12583 10535 11467 10388 9999 9430 9429 8344 7045
+3 7 3 8 3 1 2 4 2 7 4 4 2 3 5 7 1 0 4 8 8 11 3 5 7 9 7 6 4 6 6 6 7 7 12 8 5 4 7 3
+11 13 10 13 7 4 4 5 5 4 4 4 6 8 10 9 6 5 5 6 8 10 8 5 5 7 8 8 10 12 11 10 11 10 12 8 10 11 7 6
+8451 9771 9169 8147 7607 7848 7252 6089 6663 6262 7148 7158 7788 7048 7080 7398 7750 7244 6884 7653 7958 8582 8244 8260 9092 8832 9030 9038 10219 10802 10912 12442 10553 11393 10435 9890 9450 9539 8314 6990
+9 11 7 13 4 1 1 2 2 1 1 1 3 5 9 7 3 2 2 3 5 7 5 2 1 3 4 4 6 9 7 5 7 5 9 4 7 8 3 3
+6 8 11 20 15 6 6 6 4 3 2 5 4 7 6 7 8 9 7 10 10 9 13 9 4 7 6 8 11 8 9 11 12 7 11 10 8 8 8 7
+8393 9676 9221 8886 7800 7745 7224 6092 6598 6070 7020 7035 7695 7055 7056 7384 7761 7362 6891 7808 8014 8620 8370 8317 8967 8732 8957 8987 10245 10645 10869 12371 10596 11139 10455 9910 9418 9458 8310 7000
+2 4 8 30 19 3 3 3 1 0 0 2 1 4 3 4 5 7 4 8 8 6 13 6 1 3 2 4 8 4 5 6 9 3 7 6 4 4 5 4
+12 8 8 8 6 6 3 5 5 3 7 5 6 8 7 9 7 9 5 8 7 6 8 7 6 11 9 9 7 9 9 13 10 12 11 10 9 11 9 8
+8490 9586 9195 8844 7758 7648 7120 6033 6561 5890 7023 6920 7656 7123 7058 7493 7746 7473 6846 7831 7992 8471 8365 8248 8896 8883 8963 9000 10168 10559 10827 12427 10587 11207 10475 9929 9412 9566 8332 7071
+11 4 4 4 3 3 0 2 2 0 4 2 3 5 4 7 4 7 2 5 4 2 5 3 2 9 6 6 3 5 5 9 6 8 7 6 5 8 6 5
+14 10 8 7 7 6 3 3 6 6 7 5 7 13 10 13 8 6 6 8 7 8 10 6 8 8 8 9 8 9 9 10 9 13 13 10 8 10 9 5
+8635 9625 9169 8743 7743 7557 7018 5855 6550 5905 7026 6812 7643 7494 7137 7842 7757 7393 6828 7852 7971 8454 8411 8121 8878 8841 8943 9012 10118 10478 10786 12295 10552 11333 10545 9947 9381 9606 8354 6953
+15 7 4 3 4 3 0 0 3 3 4 2 4 14 9 14 5 3 3 5 4 5 7 2 4 4 4 6 4 5 5 5 5 10 10 6 4 7 6 2
+9 8 14 9 5 4 10 7 9 7 6 8 11 12 12 11 7 6 4 10 10 9 9 10 10 6 6 9 10 8 10 11 10 11 12 10 7 11 14 9
+8649 9539 9297 8771 7677 7349 7098 5933 6616 5980 7003 6894 7733 7781 7265 8047 7742 7318 6759 7995 8027 8499 8431 8248 8912 8679 8873 9024 10121 10340 10772 12233 10544 11328 10588 9964 9325 9705 8503 7088
+6 4 14 6 2 1 9 5 7 5 3 5 10 12 12 9 4 3 1 8 8 6 6 8 7 2 2 6 6 4 6 6 6 7 9 6 3 8 15 7
+7 11 5 4 10 12 13 5 4 5 9 8 9 12 8 6 8 10 11 12 8 8 7 8 8 7 9 8 9 10 10 10 8 13 11 8 7 6 8 5
+8612 9642 9192 8490 7740 7645 7253 5884 6553 5928 7058 6971 7770 8051 7288 7932 7753 7493 6871 8252 8031 8480 8399 8244 8894 8588 8881 8974 10098 10334 10758 12113 10485 11447 10604 9857 9271 9491 8495 6969
+3 8 1 1 8 12 15 2 1 2 7 5 6 11 5 2 5 8 11 11 5 5 3 5 4 3 6 4 5 6 6 5 4 10 7 4 3 2 5 2
+39 129 294 436 540 548 441 254 120 109 150 195 149 82 46 98 75 131 208 175 90 42 19 24 19 20 29 23 73 140 65 48 52 36 24 17 14 15 13 10
+9393 16988 16477 34767 21350 40854 18345 21136 9456 12269 10716 18533 11384 12605 8281 13476 9476 15091 12016 18508 10131 10551 8675 9223 9157 9301 9400 9848 11711 18315 12151 14335 11552 12971 10952 10310 9397 9843 8615 7165
+103 342 878 790 1417 892 1266 637 450 347 542 520 520 240 144 287 257 376 729 461 309 107 27 42 26 29 60 36 218 358 182 102 138 67 35 19 14 15 13 9
+66 417 1181 1450 1694 1731 1128 764 424 380 414 338 207 164 72 221 143 291 416 246 172 128 44 146 87 79 184 428 359 579 262 515 428 195 134 100 126 67 60 49
+10845 41588 46254 121765 64119 144751 46721 66806 20058 34879 21031 38186 16391 21924 9914 26245 12894 32063 22350 32511 14274 17781 9583 17639 11152 13596 13868 35552 20595 52788 18545 45115 22204 24173 14103 15835 12383 13368 9933 9745
+201 653 1800 945 1982 990 1701 833 1147 679 1083 556 601 378 238 461 461 537 1043 440 532 329 123 386 280 217 584 762 944 753 721 766 1080 427 404 263 408 177 187 143
+198 195 409 446 1050 1023 408 264 224 263 370 348 209 111 68 192 231 736 702 229 229 239 191 265 161 128 181 629 591 549 354 331 266 216 231 101 199 111 81 88
+15635 51073 55554 141860 89358 198916 55984 79017 25283 48944 29964 57275 21324 27428 11404 36466 18477 75357 39736 44629 19771 31397 14226 32861 14989 20644 18148 72063 35188 83350 27131 62744 28449 35993 19655 21090 17160 19385 11755 14566
+589 219 488 212 906 399 484 207 482 332 736 394 510 191 202 300 630 724 1187 308 596 436 599 475 479 295 485 633 1085 476 757 342 532 349 604 215 559 260 248 237
+202 213 228 370 573 418 413 327 376 521 230 104 82 59 38 73 144 292 258 176 137 149 207 184 76 82 98 259 261 241 221 177 116 92 87 58 123 60 74 90
+20408 61094 59995 156080 101774 212662 65143 94366 34263 78016 35095 60228 22887 29407 12090 38763 21696 88775 45339 52764 22779 38667 19162 42193 16557 24443 20200 83651 40981 93155 32103 69853 30704 39485 21388 23388 19875 21908 13353 19221
+506 202 225 147 405 113 429 223 680 478 384 67 150 65 80 68 326 207 350 184 295 206 544 249 179 141 214 189 390 150 392 137 182 100 174 85 289 97 202 200
+207 104 108 237 322 444 265 193 187 322 331 200 116 86 56 191 172 192 211 185 128 71 116 179 48 52 54 146 134 89 217 91 63 57 65 49 69 35 51 48
+25189 63818 61258 161276 107464 227181 70290 100561 38187 93118 42680 68901 25280 32926 13219 48171 25551 95244 49600 60964 25482 40709 21648 50658 17370 26171 21076 87602 43383 93033 36848 71252 31547 40617 22515 24995 21142 22743 14323 21016
+442 62 70 67 186 112 235 95 279 222 494 165 219 110 138 227 352 103 250 167 246 60 251 197 85 59 85 73 158 24 344 40 67 38 108 56 126 33 112 69
+218 206 104 256 802 726 320 213 223 240 348 190 69 58 64 176 203 157 151 59 58 97 74 91 24 48 50 69 72 81 123 76 75 31 37 28 121 48 28 29
+30132 72645 62387 167327 125282 258154 76715 107613 42934 102276 50510 76440 26412 34513 14525 56093 30102 99175 52221 60931 26328 44225 22999 53209 17549 27549 21827 86585 44140 92427 39072 71646 32676 40084 22898 25215 23707 24327 14681 21536
+405 163 64 73 481 195 273 101 310 131 446 137 99 51 155 172 373 67 151 21 73 94 129 63 21 47 71 16 54 20 157 28 89 11 36 18 245 56 35 24
+2297 1309 1882 2919 2259 2465 1965 1158 515 684 395 314 190 176 93 180 180 91 72 82 69 82 146 198 61 116 81 18 24 65 178 108 112 20 18 24 93 28 14 16
+88096 148708 108938 336623 179900 394108 125030 172301 55026 138162 59346 91145 30609 43255 16539 63786 33951 98815 52757 62313 27434 46609 26156 62181 18670 33022 23352 82495 43651 90875 42646 73982 34723 38907 22786 25176 25492 24587 14672 21226
+2087 715 1381 765 1067 533 1274 540 637 368 441 221 340 229 233 154 294 22 40 39 94 64 283 180 118 171 145 1 6 13 236 53 155 5 8 13 161 19 8 7
+3493 5719 4555 9538 9098 8519 6470 2313 1555 1787 1013 803 598 479 719 1601 822 414 211 146 144 185 233 281 114 169 105 14 14 88 262 144 110 18 15 22 39 18 23 18
+175186 491146 222655 902417 407976 893848 287298 304068 93402 239661 83759 135010 45131 70088 34505 158320 54115 118321 56833 67544 30430 55178 31459 75714 21118 41423 25453 78405 42919 90829 48278 78390 36668 37678 22600 25017 25852 24217 14893 21058
+1730 1052 1782 990 2063 886 2057 658 1316 612 928 453 899 478 1352 839 1072 231 215 106 244 187 423 235 251 227 191 0 2 25 335 85 143 4 6 11 34 8 23 9
+4073 7828 6422 13612 9976 12341 7205 4078 2368 1915 1763 1585 730 1041 1021 3572 1898 786 487 396 461 508 366 422 261 175 32 19 20 71 198 136 124 30 24 22 25 26 33 28
+274928 942611 381259 1684561 652803 1598419 464303 536366 151602 342934 126734 224288 62665 129839 59742 368275 101281 159511 67863 87820 41454 83077 40029 97097 27262 49689 25635 74868 42358 89741 52134 82042 38922 37260 22649 24867 25845 24361 15364 21514
+1321 765 1546 776 1470 743 1417 681 1322 470 1124 574 832 626 1236 863 1497 376 501 307 731 437 584 297 539 196 23 1 4 16 218 71 160 12 15 11 14 16 47 22
+4053 8412 7125 15643 12496 19178 11695 4445 2446 2458 2390 2192 997 1502 2138 4071 3084 1126 878 815 1078 1007 501 380 415 340 60 19 21 39 111 123 105 28 24 28 29 29 35 34
+371669 1402868 553874 2544558 955935 2680766 751665 777275 210343 473372 184664 345502 86586 214328 112903 596291 177587 219119 88612 132622 67975 139960 51836 114617 37189 67596 26528 71543 41837 86752 53669 84676 40634 36744 22697 25095 25941 24681 15875 22312
+979 564 1205 604 1244 713 1497 508 984 432 1102 542 884 567 1524 616 1499 399 753 467 1185 566 654 214 712 331 77 1 5 5 90 55 119 10 15 18 18 20 51 32
+4635 9178 7798 15895 13673 23909 16333 6078 3817 3085 2435 3130 1534 2443 3441 4314 3382 1511 1165 1009 1453 1598 992 714 575 440 132 32 17 74 128 122 88 56 49 52 55 59 49 50
+480873 1882572 739383 3368439 1281587 3988835 1150413 1104057 302664 634505 242298 517072 123637 351560 198045 825556 259606 298804 116180 186655 103420 229739 75899 151606 50959 90572 29240 69216 41227 86093 55601 87091 41869 37979 23382 26784 26699 26825 16731 24045
+858 442 996 444 1054 583 1407 502 1132 423 849 523 990 601 1502 458 1138 414 779 423 1108 564 992 354 772 337 226 5 3 19 108 52 86 41 62 57 65 74 91 62
+5070 9775 7647 14141 12876 25889 17379 7771 4867 3346 2665 3811 1843 3017 4752 4927 2911 1566 1212 999 1443 1524 939 723 600 416 142 24 17 62 59 53 45 45 51 53 58 53 42 55
+598470 2370173 916401 4035128 1578737 5340070 1565945 1515247 419521 802006 304373 720187 167662 515824 314574 1078727 327537 377087 144261 236832 137724 309585 98007 186929 65024 110695 32139 66537 40632 84736 55721 85121 41974 38465 24101 28433 27515 28471 17386 25981
+781 382 768 315 787 479 1094 472 1042 354 767 468 922 503 1374 403 784 333 676 318 851 404 732 284 653 250 229 3 3 14 24 10 23 26 64 55 69 55 66 67
+5083 10030 7572 13293 12502 24381 14679 9288 4585 3297 2842 4191 1673 3172 4413 4907 3248 1533 1398 1263 1332 1978 1287 895 721 449 157 25 22 46 76 86 71 39 49 37 43 55 60 66
+713464 2844186 1087083 4609718 1858908 6517586 1902085 1994967 526252 956447 369423 934462 206242 679755 419528 1315479 402387 448646 176396 300218 168335 412534 128459 230700 81831 131639 35350 64080 40180 82478 56272 85297 42741 38553 24751 29000 27927 30141 18485 28477
+652 320 651 257 634 352 738 423 786 280 672 384 667 405 939 326 706 261 648 334 646 393 795 286 656 230 240 3 5 8 40 26 55 19 57 26 37 54 116 84
+5107 10504 7656 13916 12099 20628 11630 8685 4458 3121 3081 3981 1504 3269 3989 4953 3352 1506 1541 1548 1646 2706 1551 1301 985 541 192 18 20 106 124 137 64 25 23 31 29 24 27 26
+826201 3318881 1255652 5188110 2121784 7393879 2151894 2408858 627072 1090808 438959 1122979 239539 839810 511023 1540853 478027 514253 211384 377310 206208 554032 164899 296788 104967 156978 39375 61341 39688 84041 58037 88596 43310 37775 24721 29164 27971 29807 18713 28365
+554 277 573 238 541 248 512 326 647 230 604 302 505 324 691 272 606 219 593 328 655 417 778 350 719 243 280 1 4 41 97 63 44 8 12 18 16 10 25 13
+4788 10974 8349 14952 11467 16599 9605 7908 4005 3071 3284 3935 1815 3182 5020 5409 3245 1642 1660 1815 2317 2570 2004 1871 1349 618 205 23 28 72 75 117 98 37 45 54 58 61 64 58
+927969 3793971 1437727 5795449 2361942 7970065 2343703 2750180 713795 1214036 511948 1297359 279955 984917 626589 1780721 549044 584279 248540 466181 260288 678685 212009 393931 136830 185528 43632 59073 39413 83422 58505 90468 44733 37781 25254 30731 28755 31766 19881 30226
+451 246 545 228 459 171 379 248 500 199 557 253 544 260 738 251 518 215 545 307 757 316 788 390 795 236 275 3 9 19 36 44 95 18 47 51 65 62 119 60
+4768 11315 8993 14915 11848 13912 9248 7755 4364 3331 3556 4411 2640 3211 6849 9164 2971 2236 1899 1767 2290 2596 1906 2579 1317 504 230 29 32 90 103 176 87 38 50 58 53 54 57 40
+1026685 4261507 1631720 6364076 2605844 8346599 2521598 3061623 807531 1345845 590068 1490521 340451 1123100 786024 2236895 611284 686597 290878 546771 312328 797457 255438 528743 167080 205361 48422 57310 39247 83946 59677 95853 45840 37848 25901 32450 29391 33177 20841 30870
+406 228 511 198 430 126 333 210 477 195 535 246 677 231 808 374 421 263 552 253 633 262 621 412 643 157 285 5 12 30 67 88 74 19 56 55 52 46 94 28
+4784 11258 9458 14055 11505 12083 8842 7446 4615 3621 3325 4073 2794 2808 7498 11179 3019 2571 1902 2113 3536 3671 2787 3408 1110 402 209 33 23 130 128 135 88 52 45 51 51 49 55 60
+1123346 4697490 1832756 6845751 2834889 8588172 2684674 3335396 905343 1487562 660333 1651328 403373 1228233 958069 2789496 673197 803358 332236 643783 394920 975148 320304 706398 191283 217737 52555 55898 38855 86896 61459 98396 46945 38771 26404 33636 29960 34196 21726 32704
+375 202 471 165 376 98 294 177 444 190 441 192 597 174 719 372 387 256 483 265 791 313 765 421 459 102 232 7 6 59 95 50 73 34 44 40 47 36 85 58
+4806 10471 8935 11923 10391 12478 9741 7219 4156 3051 3018 2913 2397 2485 4389 10354 4171 2992 2293 3059 3839 4111 3427 3731 908 393 213 47 29 127 176 186 107 45 44 48 51 55 60 46
+1218156 5058964 2015405 7167541 3029740 8839519 2866659 3578797 988980 1585757 720996 1731219 454576 1307214 1046346 3258256 763012 938979 382557 793094 483195 1169211 399910 893239 209718 228818 56687 55431 38626 89485 64423 103919 48508 39209 26869 34566 30515 35523 22717 33567
+347 168 400 122 308 100 306 152 358 137 356 110 438 134 363 279 484 254 509 322 697 301 754 353 326 91 219 15 10 53 147 85 98 25 41 34 46 44 93 33
+4789 9415 7469 9703 8275 12865 8568 5913 2944 1953 2347 2110 1701 1500 3367 6624 4198 3292 2421 4031 4146 2726 2216 2121 584 278 196 43 19 80 113 145 69 23 29 27 22 27 33 30
+1310165 5333872 2156019 7333634 3165637 9099562 3014117 3727357 1039547 1610602 762992 1756983 486710 1320940 1106294 3469730 851276 1084894 434893 993164 577114 1266539 446573 969955 219411 232169 60282 54747 38147 89031 65703 106592 49060 38269 26939 34150 30315 35050 22993 33396
+319 133 306 82 218 99 245 106 223 62 244 60 271 55 249 141 428 247 466 344 648 160 408 155 176 45 183 13 4 21 70 50 41 6 17 11 8 10 28 14
+4848 9077 5713 8528 5346 8823 6040 2698 1492 1134 1249 1390 882 864 2042 3299 2665 1886 2276 1967 1926 1781 1611 997 332 192 242 93 11 57 63 44 24 15 15 17 14 13 16 17
+1401385 5571520 2248236 7417572 3223269 9095673 3093271 3669483 1051735 1583639 775872 1736966 497106 1294768 1130875 3464236 898149 1135674 482216 1054424 611940 1299969 476606 973013 222420 230035 64963 57176 37475 87191 65673 102899 48448 36894 26649 33145 29916 33745 22828 32436
+299 119 209 65 114 49 148 24 80 21 97 27 106 19 122 40 232 107 387 126 250 79 259 41 70 22 225 58 1 11 21 4 5 3 4 4 3 2 6 4
+4532 10204 7294 6298 4803 6332 4239 2393 1337 1120 560 872 547 898 1135 1019 1113 808 822 576 1297 1248 1133 671 243 154 202 76 8 39 57 21 15 16 15 17 17 14 15 14
+1482250 5864150 2378565 7359469 3265582 8938977 3124411 3596342 1059657 1557434 770818 1686325 498679 1272255 1131657 3318995 904179 1117177 491190 1026549 629818 1298648 493670 955859 223079 225694 68504 58414 36743 84355 65490 98015 47622 35663 26367 32200 29603 32580 22641 31350
+256 132 267 35 95 26 82 19 64 22 20 11 43 21 41 4 58 21 96 12 142 39 156 19 37 14 168 37 0 5 17 1 2 3 4 4 5 3 6 3
+4577 10787 7694 6154 4787 5455 3748 2768 1319 948 834 422 320 628 933 1423 983 355 269 381 896 914 953 757 187 135 153 80 10 18 29 15 15 14 15 17 13 16 21 15
+1562247 6175041 2515865 7296005 3306429 8737801 3142223 3550629 1066921 1522234 772894 1611076 494410 1234505 1127256 3207288 906735 1071959 485804 988366 636999 1276886 505707 945017 222290 220446 70704 59824 36081 80399 64596 93055 46816 34383 26092 31312 29196 31608 22612 30390
+242 130 268 34 92 20 65 27 62 16 45 2 15 10 28 8 45 4 10 5 77 21 117 25 22 11 108 40 1 1 4 0 2 2 5 4 3 4 12 4
+4644 10487 7196 5773 4415 3773 2622 1938 917 731 1173 287 167 363 907 1183 1393 441 402 803 884 936 787 518 159 69 99 71 9 12 22 13 15 14 15 16 17 18 16 17
+1641960 6448848 2637008 7212941 3336747 8445357 3130807 3456665 1063727 1475814 783584 1532047 486336 1182739 1122301 3087539 919708 1034738 483952 978400 643694 1257781 513200 920142 220805 211458 71469 60596 35410 76312 63545 88270 46030 33180 25824 30416 28901 30817 22456 29611
+230 117 232 30 78 10 32 14 30 10 86 1 4 3 27 6 87 7 24 26 73 23 84 12 16 3 47 31 1 0 2 0 2 3 5 4 5 5 7 5
+5223 10823 6912 6080 4127 1741 1269 1344 1089 910 932 214 190 170 1568 1885 651 470 372 480 543 750 808 566 127 66 66 34 9 12 15 16 14 14 18 18 12 14 13 17
+1734484 6726870 2747867 7153722 3358946 8045618 3085090 3331845 1065010 1443176 787847 1453275 479052 1122221 1134366 3018103 913390 1001531 481380 949188 641505 1228395 521043 899709 218539 202825 71372 59049 34756 72470 62342 83957 45238 32049 25639 29696 28486 29828 22227 28878
+249 115 209 35 68 2 7 7 42 17 54 0 5 0 78 17 19 8 21 10 28 15 86 15 10 3 21 7 1 0 1 0 1 3 7 5 2 3 4 5
+5769 11453 6707 6447 3888 697 1030 746 1178 768 499 314 371 434 1340 1981 607 507 618 594 449 473 481 254 80 59 42 22 15 10 11 16 16 15 16 18 16 15 17 16
+1838655 7026917 2850718 7120603 3374482 7605722 3034405 3177774 1068536 1403772 780935 1385373 476576 1081554 1140302 2958731 906105 972590 485160 928732 636968 1183754 520331 861333 215128 194280 70663 56857 34271 68736 61066 79902 44517 31047 25407 29020 28183 28959 22106 28128
+261 117 191 39 60 0 5 2 49 12 16 2 21 6 57 20 17 10 58 15 19 6 31 3 4 2 8 3 3 0 0 1 2 3 5 6 5 4 8 5
+6518 12603 6832 6314 3537 2848 1978 1107 650 433 390 339 317 247 843 901 1116 590 312 277 252 454 484 286 52 24 12 7 13 14 15 17 15 10 16 15 20 18 16 15
+1959372 7379615 2954197 7081300 3380658 7324371 3009218 3055126 1058477 1346151 771409 1323081 472782 1031838 1133385 2836569 912013 950485 481024 890028 627508 1140624 519714 827226 211086 184098 69205 53875 33747 65472 59925 76152 43789 29798 25181 28200 27990 28327 21963 27361
+282 126 187 39 49 7 19 6 15 4 10 2 16 2 23 4 58 15 15 3 6 6 31 4 1 0 0 0 2 1 1 1 2 1 5 4 8 6 7 4
+7384 13866 7060 4989 3267 4234 2206 1335 729 584 216 204 299 261 956 1044 710 441 154 157 392 462 355 295 69 28 10 10 8 9 8 14 13 9 16 14 15 19 17 14
+2099212 7788748 3060921 6962950 3379778 7145052 2990488 2953844 1050688 1301264 757673 1256232 468622 985965 1129529 2730522 907395 920552 472952 846274 621863 1100573 515814 795718 207580 174772 67733 51257 33109 62096 58633 72443 43028 28563 24961 27368 27674 27794 21849 26579
+309 135 185 25 42 17 25 9 19 8 3 1 14 2 29 6 23 8 3 1 15 7 17 5 3 0 0 0 1 0 0 0 1 1 6 4 4 7 8 4
+8092 13535 5835 2137 2090 2148 1109 927 793 427 191 139 199 121 396 491 275 186 176 157 350 296 287 232 65 26 8 8 6 15 12 11 7 8 12 14 15 15 11 10
+2253660 8152998 3133667 6676481 3348832 6848334 2944184 2833573 1044730 1249425 743641 1189400 462010 934243 1111454 2596863 891773 876748 465644 805145 615286 1052726 510273 762230 204059 165883 66246 48673 32435 59291 57476 68772 42132 27340 24644 26586 27366 27047 21584 25598
+321 124 138 5 17 4 6 4 23 4 2 0 6 0 5 1 3 1 5 1 12 3 11 3 3 0 0 0 0 1 0 0 0 1 3 4 4 4 3 2
+7706 10212 3409 2627 2321 1347 1390 639 424 510 176 313 269 213 385 405 373 159 206 244 286 167 300 242 76 17 8 8 12 7 7 10 11 11 10 12 11 12 11 13
+2394385 8291237 3142582 6437304 3324564 6520206 2906219 2702824 1029488 1205795 729576 1137268 457352 891276 1093549 2465939 879046 833913 459285 771829 607237 999825 505203 731365 200907 156974 64796 46244 31932 56163 56220 65260 41361 26375 24284 25728 26964 26161 21326 24860
+284 75 53 8 22 2 10 2 6 7 2 3 12 2 5 1 7 1 7 3 8 1 12 4 4 0 0 0 2 0 0 0 1 2 2 3 2 3 3 4
+7509 7978 2327 1350 1334 1363 1129 620 417 277 122 302 224 225 370 588 553 226 256 262 223 294 209 125 33 7 7 7 8 12 5 11 13 13 11 12 12 12 12 11
+2526561 8283931 3123616 6134022 3275672 6212748 2862530 2578752 1014448 1150468 714481 1087588 451660 851625 1075708 2354113 871238 797765 454363 741617 597778 957900 497933 695164 196735 147986 63357 43899 31339 53530 54944 62020 40660 25591 23958 24921 26597 25328 21100 24044
+258 46 25 2 7 2 7 2 6 2 1 3 8 2 4 2 15 3 11 4 5 3 6 1 0 0 0 0 1 1 0 0 2 3 3 3 3 3 4 3
+8853 9177 2140 1277 1279 727 579 716 388 229 43 212 315 229 159 394 433 254 216 245 126 106 123 106 21 11 10 10 11 14 13 13 10 13 17 11 12 13 11 9
+2689794 8350727 3100343 5844451 3226594 5884663 2805872 2468022 999042 1095511 697744 1035360 448437 814598 1052919 2237078 860557 765506 448542 712173 586076 906940 488647 659968 192360 139783 62031 41879 30837 51178 53904 59097 39900 24854 23794 24101 26239 24607 20854 23154
+294 61 21 2 7 0 1 3 5 1 0 1 17 3 0 1 9 4 8 4 1 0 2 1 0 0 0 1 2 1 1 1 1 4 7 3 3 4 3 2
+6736 5718 2059 1642 1338 362 627 471 371 502 285 233 221 245 199 309 261 300 217 136 170 97 103 72 41 53 37 16 15 11 12 19 15 11 13 10 13 18 16 11
+2794836 8201003 3075581 5594678 3180249 5553837 2751855 2348883 983586 1060624 687611 987555 442891 780776 1031721 2121842 845746 738008 442891 677799 575791 858485 479081 624795 188606 134652 61428 40349 30450 48783 52865 56718 39287 24038 23532 23269 25916 24236 20742 22440
+199 24 20 4 8 0 2 1 5 9 6 2 8 3 1 0 3 6 8 1 3 0 1 0 1 4 8 3 4 1 1 2 2 3 4 2 3 8 7 3
+4373 5025 4645 5220 5388 3093 1361 1711 1260 830 1434 862 342 402 315 478 809 814 581 324 274 352 491 366 197 303 297 206 59 26 53 130 52 29 27 27 47 20 24 19
+2836852 8017686 3117541 5579714 3238589 5410646 2717949 2313075 991241 1047982 707102 981263 440577 758629 1014017 2023903 845313 743739 446686 657038 568421 828603 479672 609794 188933 145188 67486 50584 31198 47453 52900 61301 39635 24377 23634 23531 26470 24010 20837 22260
+103 19 97 43 116 16 11 24 63 25 139 30 21 11 3 2 35 47 60 9 8 7 37 14 34 120 282 237 60 6 21 98 33 20 18 18 48 10 17 10
+4475 7281 6927 12201 11217 12207 5614 2692 2121 1179 1528 1176 773 695 601 1203 1797 1348 782 658 609 744 1078 1031 425 445 374 181 78 27 86 161 59 37 29 31 46 32 35 28
+2880426 7983970 3216788 5994543 3444477 5835988 2793607 2339685 1020714 1057540 728509 994640 449338 755812 1004066 1976383 870146 781934 455525 658043 569798 824598 495254 636549 195080 163816 75361 58669 32413 46264 53777 67514 40153 25187 23785 24023 26985 24535 21211 22644
+105 41 169 165 286 171 155 60 146 50 146 55 99 33 14 15 142 108 99 39 43 31 145 98 132 179 336 169 96 7 55 123 42 32 21 24 44 24 36 21
+6940 9173 7183 8574 17835 18785 9979 7494 4203 2016 3027 2377 958 956 870 2519 2921 2815 1392 880 649 1576 2171 1971 834 927 686 161 76 47 141 188 91 40 25 35 52 32 31 26
+2985924 8068517 3320101 6161650 3814398 6639946 2978957 2659722 1102672 1117948 787700 1081000 462609 769199 1001240 2012565 923092 907966 479736 672627 572163 871949 538386 719450 211529 210940 91015 65040 33546 46375 56038 75013 41476 26133 23830 24731 27640 25028 21473 22882
+188 65 169 92 441 252 299 243 327 122 321 161 133 60 29 66 251 245 213 67 49 116 331 211 291 332 559 128 88 21 125 137 92 35 15 29 55 24 28 18
+7480 8348 5852 6128 12824 13040 20631 10852 4687 3206 3696 3007 1390 1484 1299 3335 4414 3105 1582 1140 1068 1732 1838 1739 778 1015 813 223 54 45 143 264 170 54 32 23 37 35 29 31
+3102592 8097305 3386811 6168455 4046991 7042710 3431972 3166864 1194957 1247842 862515 1200885 486592 814222 1009451 2096710 1012881 1044253 508200 702309 585180 926043 571929 783124 226136 260643 109525 74838 34088 46357 58294 86731 44786 27882 24053 24660 27895 25676 21678 23413
+197 52 121 49 280 142 585 306 344 204 363 196 209 118 65 104 375 238 236 99 117 122 254 158 246 295 557 176 44 19 121 186 211 59 25 12 27 27 24 24
+7618 8679 6371 7082 10719 15442 26813 15281 7507 4663 4427 3752 1712 1794 2005 4453 5092 2878 1421 1209 1385 2307 2104 1278 590 959 696 186 30 97 237 98 143 69 41 63 56 52 48 54
+3219875 8144702 3465123 6233463 4219968 7568882 4031705 3915686 1357024 1459457 954148 1359348 518208 875589 1035504 2244493 1117760 1158417 531837 734450 605975 1012218 611435 814655 235572 303923 124582 81775 34003 49535 62897 87548 47323 30448 24500 27051 28630 27330 22363 25325
+192 56 133 63 216 165 656 357 516 270 399 225 257 140 132 149 405 193 197 101 164 165 279 92 162 235 411 122 13 80 226 33 157 83 40 82 61 56 63 67
+7958 10254 6762 6251 9376 14376 28341 19576 12879 5848 5182 6090 2672 3149 3733 6995 4569 2755 1611 1361 1424 2992 2174 1130 711 700 526 357 51 149 315 166 130 71 62 62 59 97 72 44
+3342922 8286019 3551475 6243516 4354297 7997993 4655526 4883454 1652367 1731179 1062794 1651944 573574 1016522 1105079 2539584 1206651 1258175 559741 774001 627248 1135308 651744 835202 247866 328694 134917 98801 34457 55717 69379 92493 49464 32983 25473 29237 29423 31649 23645 26508
+192 76 140 49 174 139 614 385 747 287 434 319 397 248 284 234 330 164 220 112 163 208 270 71 197 139 274 236 39 136 295 84 130 80 86 72 65 138 120 42
+7925 10381 7201 7098 9624 15350 26329 24353 19915 7339 5216 7353 3874 4862 4999 8460 3333 2670 1821 1364 1580 3283 2311 1408 746 534 435 409 87 247 395 244 161 68 56 53 60 84 66 56
+3462054 8426660 3646893 6305003 4491612 8461198 5212343 6086646 2120195 2078202 1169597 2004581 658284 1254242 1205279 2906976 1261728 1346725 592317 811363 651978 1268891 694549 871595 260748 341780 142668 118001 35820 67549 77744 101934 52344 35181 26268 30739 30222 34910 24741 28358
+181 77 148 62 173 145 501 387 932 308 399 320 527 341 368 252 211 143 242 104 179 206 270 97 200 85 204 228 103 223 348 135 165 68 69 49 65 100 99 61
+7964 9528 6764 6175 7069 10910 17113 28160 20848 8987 7327 7279 4786 7337 6317 7430 2883 2244 1722 1442 1530 3424 2919 1924 1448 805 423 402 93 349 666 397 306 103 50 51 55 72 61 57
+3579209 8506457 3728758 6306094 4560187 8623829 5519676 7451542 2600194 2505653 1327696 2331514 764193 1629757 1336669 3189045 1303927 1403790 621549 851276 674813 1403122 751827 937507 291253 370731 149919 135619 37303 84937 92827 120208 58859 39398 26890 32028 30873 37238 25682 30158
+175 63 130 47 108 82 286 355 806 326 513 273 564 405 431 188 167 103 213 105 163 191 325 140 405 143 186 194 109 273 530 215 330 120 53 43 53 70 83 58
+8180 9594 6741 5869 6841 8680 12217 28934 20810 11343 8031 6960 6323 10588 8656 5047 2775 1775 954 1206 1335 3148 3063 1759 1346 914 465 315 144 482 680 483 362 116 52 47 47 78 65 54
+3698961 8585521 3807992 6288320 4621222 8639697 5694183 8782100 3067239 3052205 1499844 2619233 906747 2182475 1524570 3307785 1342312 1428617 630419 874295 692093 1512343 811356 989327 318389 404641 158063 146835 40052 109453 107892 142670 66643 44160 27547 32993 31303 39795 26702 31666
+173 64 126 42 101 53 177 317 672 340 496 224 632 455 529 101 152 66 87 73 129 154 313 114 338 151 198 125 191 304 463 233 361 126 55 35 38 74 88 49
+7598 8708 6389 5283 5457 6939 11145 25232 18052 12675 8454 7268 8487 13788 10701 3403 2263 1456 1009 722 936 2720 3133 1486 1336 944 524 318 262 543 590 510 448 99 47 51 53 108 102 49
+3800846 8605408 3876250 6235610 4645355 8547651 5836931 9805386 3452124 3647800 1678508 2908613 1101060 2898632 1760055 3318397 1366651 1432356 640474 866197 698742 1588716 871189 1021265 344592 438360 167511 157562 45749 136246 120280 165443 76431 47592 28060 34146 31876 44042 28642 32776
+151 53 113 35 66 33 150 237 500 310 460 207 729 454 568 47 109 44 94 27 70 114 294 83 306 141 216 116 353 283 350 212 410 88 44 39 47 113 163 38
+6523 6932 5937 5248 3421 4571 8225 17252 14166 11454 7653 7462 10134 14811 11120 2116 1142 1185 659 736 747 1413 2192 1279 1083 843 533 248 282 464 531 443 401 86 48 48 59 134 104 56
+3872708 8514989 3931250 6183912 4616840 8315643 5901473 10277006 3728065 4132646 1832236 3192549 1332624 3634671 2000373 3249303 1361727 1419221 641331 859445 700394 1580208 905474 1038570 363674 463851 176954 163345 51815 156578 130851 182733 84773 50020 28586 35046 32588 49632 30585 34250
+117 33 99 35 26 15 92 133 344 238 369 189 732 373 516 19 30 30 41 28 44 34 177 61 221 109 207 71 340 200 286 154 324 63 45 34 56 135 157 48
+6470 7329 6013 4649 3915 5676 9573 13373 13393 10106 8268 8022 12244 14301 9668 2280 1348 1027 732 666 389 812 1348 884 739 693 421 185 255 396 559 378 318 57 48 52 60 96 124 53
+3941421 8454385 3986820 6098515 4601665 8165443 5998862 10482014 3977358 4505584 1997847 3493855 1612344 4295217 2197575 3194430 1362191 1397167 644032 848797 692853 1535286 917328 1030569 373486 478597 183298 164910 57039 171512 141873 194992 90785 50520 29099 36138 33308 52552 32991 35451
+112 39 98 28 34 24 115 86 298 185 369 182 728 302 405 23 41 23 50 23 12 11 82 29 125 74 142 39 273 143 282 110 225 27 43 38 57 72 187 41
+6476 7597 5695 4594 3779 5763 9820 15422 12855 9201 7821 9988 14367 16092 6348 2467 1348 750 726 748 504 933 1193 695 504 537 353 220 330 321 375 221 155 66 47 49 51 97 89 45
+4008572 8413883 4032873 6014862 4583392 8029600 6100133 10800607 4206675 4800546 2147898 3897869 1939350 5026166 2304986 3154338 1362644 1359418 646513 843826 688440 1500493 924924 1011436 377046 482874 187745 168532 64050 180943 147917 196870 92480 51543 29574 36980 33780 55358 34442 36088
+111 42 88 29 32 26 115 105 271 149 323 211 707 293 232 28 41 13 49 30 21 16 64 18 63 44 105 53 334 95 160 40 74 35 41 33 40 67 111 28
+6227 6888 5205 4346 4172 5169 8022 14094 11044 8051 7666 9041 12907 14460 4772 1898 892 529 617 535 471 706 782 673 342 407 311 158 246 237 283 223 150 65 49 49 44 80 82 58
+4067682 8332252 4065251 5920992 4575621 7865414 6152915 11018497 4383974 5007158 2290241 4219462 2220872 5612994 2369430 3081693 1351429 1310356 646145 826067 683294 1453841 921824 992099 376376 478907 191008 168127 68739 184647 151458 198758 94005 52443 30088 37771 34061 56951 35678 37486
+101 34 75 26 40 21 82 87 213 116 295 172 559 225 153 17 18 7 35 16 18 10 28 18 29 25 82 27 218 52 101 40 68 33 43 32 29 43 94 45
+6448 7234 5528 4783 5105 4981 7767 12406 9402 7467 7613 9176 10630 10922 3664 1185 807 615 397 641 468 772 898 608 422 468 293 136 229 290 380 312 110 47 54 59 55 100 105 46
+4130965 8276776 4105078 5859602 4591894 7699528 6197861 11119607 4514873 5165494 2427676 4530055 2437160 5947248 2403942 2969602 1338321 1269521 640163 815886 678199 1414043 921767 969929 377767 478926 193729 166395 72876 191385 157390 206001 94470 52184 30717 39129 34616 59677 37471 38063
+106 38 83 33 59 20 76 66 167 98 276 160 408 141 100 7 15 10 15 24 18 12 37 15 44 34 72 21 187 72 151 72 36 17 51 44 45 63 131 27
+6467 7514 5923 5039 5456 5995 8708 13465 8366 6654 8107 9428 8821 8432 3085 1378 414 438 211 510 528 530 526 534 372 362 259 120 206 298 422 253 95 43 45 47 46 110 97 45
+4193154 8241831 4154008 5817623 4616733 7605892 6265739 11279713 4616022 5264382 2574308 4837495 2601807 6108468 2422791 2876094 1315494 1220262 629576 798267 674765 1361765 912202 944543 377845 472431 195513 163784 76322 198210 164248 209185 94540 51694 31100 39668 34927 62854 39015 38544
+104 42 92 36 67 30 91 77 138 78 278 154 304 90 73 10 4 5 4 15 24 6 12 12 34 20 55 16 154 71 166 46 27 14 35 27 31 70 111 26
+6032 6828 5728 5219 5742 6459 9509 15725 8611 5999 8202 10164 7464 6555 2791 1848 1001 397 334 703 696 430 746 866 432 324 234 143 160 230 441 286 123 54 44 40 40 125 82 61
+4242671 8166836 4196731 5789222 4648263 7546381 6352398 11569062 4720909 5317095 2719708 5171707 2727655 6144697 2433654 2817071 1308242 1171439 622397 793563 675712 1306480 908499 941077 379455 463992 196613 162742 78506 200448 171420 214205 95324 51910 31448 39745 35077 66762 40137 39979
+92 35 85 40 73 36 103 97 139 63 264 156 234 56 60 19 25 4 11 30 41 4 26 33 46 17 44 24 101 41 167 56 44 23 33 19 23 82 80 45
+6146 7168 6245 5576 5628 6395 8970 14539 7512 4826 7020 8283 5843 5433 2659 1953 1240 559 485 715 674 445 553 736 416 402 292 239 111 270 489 337 166 36 23 27 31 122 59 34
+4293866 8117229 4251604 5784458 4676092 7486509 6423116 11768186 4795084 5294579 2831263 5370304 2808925 6109820 2440872 2768041 1307281 1135499 619257 789878 676073 1255434 899955 929832 380616 460851 199169 167661 79383 205009 179640 222057 97187 51007 31250 39019 34993 70251 40643 39669
+93 38 97 46 70 35 91 81 112 41 205 109 162 38 54 23 38 10 23 32 39 5 14 24 42 27 68 63 50 55 181 72 78 10 9 9 14 74 41 14
+6228 7446 6410 5463 5532 6405 7304 9854 4618 3998 4924 5911 4941 4289 2110 1191 800 548 469 589 612 507 498 581 246 341 343 278 81 158 421 322 165 39 26 28 32 83 40 29
+4345879 8087678 4309325 5773037 4700772 7430843 6449481 11667528 4793430 5222544 2886454 5411255 2865109 6006751 2433876 2675137 1295096 1101039 615787 778673 674840 1211259 890219 909739 377402 454151 202965 174681 79471 202416 185917 228516 98978 50342 31134 38398 34937 71135 40650 39070
+94 41 100 44 67 36 62 37 45 28 121 58 124 25 34 9 16 10 22 22 32 7 12 15 15 20 88 79 26 19 140 63 74 12 11 10 15 33 19 10
+5946 6787 5727 4898 4894 4744 4565 5484 2401 2283 3478 4486 3900 2986 1011 792 721 596 337 467 498 379 278 570 246 244 238 147 37 149 350 240 85 41 28 18 33 84 56 28
+4389385 8019413 4348146 5727589 4708527 7276470 6405172 11304428 4735145 5049465 2903304 5362201 2893279 5829812 2398961 2563293 1281196 1071596 609029 760645 670723 1161871 875102 890176 374269 441893 203982 173231 78432 199425 190222 229550 98679 49840 31072 37200 34908 72027 41066 38446
+85 36 81 35 52 20 25 12 12 10 65 34 82 12 8 4 13 12 11 14 21 4 3 15 15 10 43 22 5 17 101 34 20 14 13 4 16 33 36 10
+5648 5810 4052 2733 2290 1380 1977 3460 1216 747 1092 1597 2103 1414 494 731 460 245 306 352 390 810 615 505 218 129 128 42 40 69 235 172 57 18 17 18 23 40 30 17
+4424188 7895219 4343180 5551856 4649524 6924683 6295814 10838763 4648023 4792403 2858741 5138597 2874810 5566910 2351702 2454412 1260971 1022355 601647 736634 663948 1141925 868977 867793 370498 423305 202161 165417 77496 191699 191480 226344 97672 47955 30730 36073 34624 70163 40807 37183
+76 26 41 11 11 1 4 5 3 1 6 4 24 3 2 4 5 2 10 9 13 21 19 13 12 3 12 2 6 4 47 18 9 2 5 4 7 8 10 3
+6008 6798 3870 2424 1966 1147 1516 3231 1495 615 399 1133 1732 1071 303 402 361 248 298 346 315 417 318 470 160 73 82 39 21 30 131 108 27 11 14 14 18 22 16 12
+4467324 7839177 4333686 5367682 4583712 6579687 6177401 10386968 4570208 4542654 2797576 4899902 2847319 5298708 2300741 2331851 1238720 976252 594245 713695 655425 1099031 855413 844603 365339 402392 199210 157888 76098 182040 190048 219399 95923 45753 30320 34768 34219 67305 40197 35689
+85 37 37 10 8 1 2 5 5 0 0 2 17 2 0 1 3 2 9 9 9 5 5 12 6 1 5 1 1 0 15 7 2 1 3 2 4 2 3 2
+5602 6699 3745 3053 2351 1584 1371 2803 1646 887 552 783 1371 922 338 250 369 262 166 182 290 307 272 451 138 66 83 31 15 26 122 88 31 9 14 11 13 14 10 10
+4499005 7780415 4321234 5233202 4529384 6282238 6058238 9935984 4498196 4324600 2741849 4654025 2811286 5037443 2251946 2207305 1217229 933775 583654 682056 646476 1051953 841012 821637 359746 382304 196358 150319 74581 172715 188422 211642 94320 43560 29920 33357 33697 64126 39449 34162
+74 36 36 16 12 3 2 4 6 1 1 1 11 1 1 0 3 3 3 2 7 3 4 11 5 1 5 1 1 0 13 5 2 0 3 1 2 1 1 1
+5338 6532 3931 3600 2910 2144 1374 1542 1862 1263 549 546 920 1041 439 323 222 126 110 152 305 308 300 330 118 33 28 15 14 10 31 31 20 15 16 15 18 15 13 14
+4523147 7714918 4313847 5140397 4490702 6037041 5942126 9434585 4433503 4142730 2687436 4408339 2764624 4799165 2206951 2094716 1192517 885491 571895 650472 638134 1007761 827686 792615 353781 361394 192171 142221 73077 162966 184510 200848 92476 41868 29582 32277 33315 61200 38796 32972
+67 35 39 24 20 6 2 1 8 4 1 0 5 2 1 1 1 0 1 2 8 3 5 6 3 0 0 0 0 0 0 0 1 2 4 3 5 1 2 3
+5525 6500 3972 3319 2821 2224 1584 747 1688 1219 495 572 622 728 711 331 246 91 98 205 163 195 203 315 80 20 19 9 9 9 59 53 24 13 13 14 15 9 11 10
+4551466 7651385 4307693 5035896 4450710 5811470 5834281 8914426 4365977 3969068 2633001 4178991 2711509 4555953 2170032 1989373 1169036 837954 560123 624039 626370 959278 812213 764412 346994 340939 187859 134241 71482 153741 181412 192053 90780 40154 29175 31200 32866 58081 38108 31608
+70 35 40 21 19 7 3 0 7 4 1 0 2 1 4 1 1 0 1 4 2 1 2 6 1 0 0 0 0 0 3 2 1 2 3 3 3 0 1 1
+5516 6334 3992 3700 2991 1917 1563 906 1447 1052 649 839 543 712 961 299 162 116 151 157 101 128 149 232 26 34 38 12 8 10 30 36 23 10 13 15 12 13 14 9
+4578848 7581465 4302203 4961073 4416062 5580571 5728591 8435244 4293976 3795565 2583862 3979807 2657701 4326350 2140426 1888385 1143994 794805 550000 596243 613315 909587 795746 732802 338996 322572 184140 126924 69902 145131 177650 182742 89101 38359 28779 30249 32352 55394 37514 30264
+70 34 40 27 22 5 3 0 5 3 2 2 1 1 8 1 0 0 2 2 1 0 1 3 0 0 1 0 0 0 0 1 1 1 3 4 2 1 2 1
+5248 6159 4823 5484 6686 6135 3423 1487 1614 859 685 731 556 1086 1319 869 422 136 84 140 91 168 239 296 63 143 135 21 9 11 34 43 33 22 15 16 15 16 20 20
+4598696 7504989 4318093 5000343 4476733 5622669 5673086 8020507 4228041 3620615 2536870 3785939 2605568 4133500 2120710 1828475 1126223 755474 538417 569071 600330 865335 781990 707021 332143 312004 182994 120599 68387 137099 174084 174419 87720 37409 28444 29417 31927 53053 37088 29676
+62 32 59 59 102 58 17 1 6 2 3 1 2 3 17 9 5 1 0 2 0 1 3 6 1 7 17 0 0 0 1 1 3 6 4 4 3 1 5 7
+5777 6800 5582 6868 10494 9390 6906 3421 2207 1449 1576 1654 815 907 1390 1710 810 480 296 354 215 438 825 821 214 483 383 23 18 18 97 113 81 28 24 24 26 28 31 28
+4631571 7472482 4352988 5122287 4633231 5862220 5708001 7749473 4178911 3492409 2513827 3660409 2561357 3941223 2103301 1823829 1118814 739637 532542 556677 590839 840326 783557 715041 329321 322958 188216 114776 67139 129979 172217 170896 87600 36884 28347 29126 31794 51590 36954 29615
+75 40 77 86 187 117 72 9 12 7 18 9 4 2 19 36 21 16 11 15 5 10 43 52 15 78 119 1 1 0 10 13 22 10 11 10 11 6 13 14
+6243 7321 5985 7330 11235 8839 8278 4486 2319 1758 1748 1853 1421 1699 1874 1596 760 501 336 310 264 623 1054 798 473 702 409 30 26 12 108 134 117 36 29 29 27 28 26 29
+4675538 7473935 4397314 5265299 4804764 6053547 5777116 7560132 4133870 3390880 2495756 3554637 2533741 3809141 2098699 1812457 1110312 726040 527836 542323 582838 828184 790939 721167 333191 346710 193972 109732 66127 122917 170678 168875 88404 36882 28380 29160 31690 50214 36696 29619
+85 46 86 93 196 100 97 17 14 12 22 12 14 9 35 32 19 18 15 12 7 22 69 48 71 129 126 2 3 0 12 19 46 17 16 15 12 6 9 15
+5738 6301 5376 7114 9043 7249 6554 3347 1616 1359 1542 1437 1380 2155 1555 863 560 275 231 198 202 441 671 699 457 480 186 22 20 17 70 86 85 20 20 27 29 27 27 28
+4705498 7412634 4424966 5386460 4915982 6135709 5800436 7312173 4071983 3270929 2472870 3429653 2505766 3712999 2086058 1756734 1096909 699374 520564 521949 573452 805588 788346 720843 336555 355398 193884 104499 64987 116586 168206 164026 88369 35897 28182 29069 31640 48860 36470 29562
+71 35 69 85 141 68 62 10 7 7 17 7 14 15 24 10 10 6 7 5 4 11 28 37 65 65 29 1 2 0 5 8 24 5 7 13 14 6 10 14
+4594 3928 3433 6376 5939 4783 2581 636 953 882 1136 1392 1207 1401 824 434 117 99 134 79 75 198 308 232 205 164 65 9 7 13 39 41 44 13 17 17 18 22 17 13
+4705466 7209220 4402259 5455011 4945078 6061437 5721614 6912534 3994693 3128869 2440177 3309403 2474067 3576302 2055046 1677998 1072517 663495 510994 495486 561053 769419 776539 691847 333393 344150 190705 98782 63543 110389 165003 156703 87287 34541 27913 28369 31310 47280 35994 28587
+46 14 29 68 70 30 10 0 2 3 9 8 10 6 6 2 0 0 2 0 0 2 6 4 13 8 3 0 0 0 1 2 6 2 5 5 5 4 4 3
+4421 3059 2029 5054 5106 3126 2519 1712 627 526 513 536 697 789 826 198 84 65 55 30 26 91 256 171 71 58 24 17 11 11 20 38 30 13 13 19 14 17 12 14
+4701013 6964621 4344230 5438228 4952154 5889819 5643175 6602979 3910999 2973460 2392375 3143777 2430122 3410206 2024859 1589486 1047890 627680 499643 467601 547711 728846 763697 660843 326885 327065 186557 93899 62237 104441 161395 149635 85874 33267 27548 27834 30886 45487 35402 27731
+42 9 10 42 52 13 9 3 1 1 2 1 3 2 7 0 0 0 0 0 0 0 4 2 1 1 0 0 0 0 0 1 3 2 3 7 3 2 2 3
+5006 3361 1138 1992 1676 1575 1138 854 312 213 442 457 375 428 442 198 62 36 32 21 37 59 127 84 45 42 19 14 11 11 11 21 20 9 14 17 14 8 9 11
+4711625 6753252 4264873 5234331 4871374 5633208 5531392 6259284 3821342 2808145 2343951 2983234 2379043 3231897 1985610 1506285 1023315 592232 487988 440836 534984 688741 747878 626354 319875 310022 182385 89125 60964 98850 157647 141947 84241 31823 27218 27208 30472 43249 34748 26743
+54 12 3 7 5 3 2 0 0 0 1 1 1 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 4 6 3 0 1 2
+4867 3524 851 752 647 1335 1773 860 326 235 313 294 222 319 230 122 61 42 20 25 25 47 108 82 24 39 17 17 17 8 8 20 29 13 9 12 16 10 12 11
+4718419 6564579 4180161 4966484 4766306 5377248 5438632 5936578 3734281 2654100 2293439 2822309 2325328 3057589 1941921 1423406 999328 559279 476317 415922 522268 650305 731969 593812 312503 293817 178266 84822 59876 93410 153916 134659 82879 30712 26768 26312 30120 41268 34187 25814
+51 14 1 1 0 3 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 3 2 1 3 4 1 2 2
+3630 2704 1118 662 1248 1995 1049 670 424 323 327 279 327 349 261 171 73 69 22 23 32 53 91 65 29 43 21 24 13 15 20 15 19 21 17 12 14 12 12 16
+4693423 6336847 4104388 4709178 4679224 5177194 5329680 5621560 3651899 2514704 2244545 2670118 2275638 2895582 1900115 1348510 976247 529962 464988 392380 510048 614544 716022 562178 305443 278830 174352 81207 58713 88727 150584 127501 81295 30159 26534 25470 29725 39529 33640 25248
+28 8 3 0 3 7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 1 7 6 3 3 1 2 5
+2550 1840 955 840 1169 764 794 469 322 337 272 351 348 351 208 173 48 50 29 13 33 48 88 50 46 56 36 29 22 25 29 31 17 17 28 15 18 16 17 15
+4641443 6069696 4026340 4478246 4592297 4913513 5216929 5313094 3568966 2384532 2195466 2531482 2227726 2743418 1857998 1278231 953103 501237 454121 369636 498159 580621 700397 531520 298993 265541 170919 78116 57809 84939 147566 121755 79700 29393 26587 24863 29443 38140 33234 24654
+14 4 2 1 3 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 3 3 2 1 1 1 5 16 5 6 3 4 5
+2078 1656 969 399 469 616 733 464 255 236 208 270 202 377 382 182 74 92 43 15 21 41 67 54 54 49 44 84 29 17 41 32 22 29 33 16 13 32 23 18
+4578695 5807269 3950599 4234075 4489646 4656559 5105434 5022828 3486390 2255965 2145976 2396187 2177278 2601981 1821380 1212721 931201 476816 443883 348380 486260 548304 684625 502947 292909 252619 167777 78589 57107 80887 144930 116415 78272 29411 26766 24354 29040 37817 32992 24280
+10 3 2 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 2 29 5 1 2 2 2 15 23 6 3 13 8 7
+1756 1424 1025 563 475 284 347 300 153 138 168 354 228 208 195 107 67 119 57 21 54 40 46 46 46 55 41 75 40 44 59 47 32 32 36 26 21 64 31 24
+4509283 5546334 3878180 4014630 4389711 4394625 4986855 4739901 3403268 2129090 2096699 2274170 2128754 2458647 1780896 1146534 909667 455519 434259 328768 475501 517864 668710 475597 286772 240841 164636 78481 56703 78737 142820 112317 77136 29612 27018 24490 28851 39480 32960 24297
+7 3 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 1 1 23 11 8 5 4 4 19 27 16 8 51 15 14
+2085 1820 1064 697 413 128 377 373 249 178 319 337 208 131 121 126 85 197 98 38 59 55 64 58 33 111 60 55 100 109 94 74 62 120 97 88 47 79 46 38
+4450013 5325383 3808566 3816583 4290686 4138822 4872003 4478434 3324675 2012285 2052512 2158429 2080930 2319182 1739531 1085485 889131 440292 425923 311377 465139 490172 653652 450625 280456 233210 162059 77151 57843 80709 141657 110124 76795 35207 28823 28427 29332 41964 33313 25173
+10 5 3 1 0 0 0 0 0 0 1 1 0 0 0 0 0 7 1 0 0 0 0 0 0 7 4 13 66 47 13 12 16 169 151 133 41 70 33 33
+2586 2206 1372 1165 1291 1146 798 605 341 352 582 405 226 298 204 108 97 219 184 57 74 82 90 63 33 144 70 49 120 95 82 86 80 125 110 120 62 88 56 37
+4405030 5141404 3748563 3659172 4216577 3960910 4770780 4246908 3250396 1913178 2016151 2053810 2034760 2198345 1701321 1026993 869414 427330 419994 296197 455419 465800 639635 427459 274298 228064 159802 75532 59466 81703 140216 108800 76922 40774 30915 34093 30184 44852 33912 25935
+16 9 6 4 4 3 1 0 0 1 3 1 0 0 0 0 0 9 6 1 0 1 0 0 0 12 5 10 89 35 10 17 27 154 168 174 69 78 48 30
+3289 2963 2049 1929 2381 2511 2112 1460 963 635 1446 1266 598 206 111 76 75 122 84 44 41 58 82 136 59 127 76 44 65 57 45 54 38 62 60 68 35 64 41 36
+4379140 5014971 3707363 3558143 4172181 3877534 4705673 4081802 3193871 1837404 2002784 2008366 1999251 2079105 1661687 970045 849627 409186 411656 281129 445098 441416 625763 410168 268958 222183 157755 73703 59643 80302 137866 105589 75973 42136 31677 36225 30325 46092 34113 26590
+26 17 13 13 15 19 9 5 4 5 22 17 3 0 0 0 0 3 1 0 0 0 0 3 1 10 7 8 26 13 3 7 6 43 61 65 22 40 25 28
+4339 4218 3271 4891 6569 7425 6054 2875 2349 2050 3867 3464 1375 186 95 96 42 99 44 20 22 69 145 221 149 95 139 176 31 32 32 22 28 25 30 32 29 34 42 41
+4380737 4973228 3698429 3645153 4235949 4101064 4742958 4013536 3174187 1853111 2051637 2100688 1984491 1965791 1622634 917742 829491 390718 402504 265490 434549 419171 613848 399136 266052 214689 157370 80093 58946 77450 135242 100605 74792 41143 31653 36017 30309 45415 34335 27513
+46 35 35 80 105 133 79 23 25 51 134 111 20 0 0 0 0 2 0 0 0 0 2 10 10 6 24 115 6 4 1 1 3 7 15 14 15 11 26 34
+5479 5405 4336 5668 7907 13310 12780 5616 4744 4311 8239 6002 2175 612 307 138 65 72 26 31 25 94 374 518 256 156 190 225 39 119 61 37 40 33 35 28 23 30 30 24
+4411435 5006916 3716942 3774680 4332328 4672743 4951246 4117766 3216217 2006785 2211030 2343399 1990549 1885448 1589975 871158 810445 371699 393120 251465 424340 399796 608084 407013 265954 211392 158298 89111 58471 80114 133425 96842 73947 40701 31757 35576 30140 44533 34244 27336
+73 57 61 97 136 254 226 84 95 161 334 212 50 4 1 0 0 1 0 0 0 1 14 57 31 17 44 144 9 57 6 3 7 13 20 11 9 9 13 11
+6287 5583 4526 6549 9558 16637 13127 11729 8389 7648 10271 7241 2111 748 365 253 133 166 64 54 51 219 517 684 358 279 331 289 114 391 174 64 96 48 62 50 34 50 55 53
+4462022 5049518 3739850 3950562 4468504 5414525 5163205 4591310 3350373 2356256 2418387 2647669 1994820 1818280 1559614 834434 793613 359596 384942 239695 415050 389264 606119 424616 268466 215850 162807 101519 59925 99329 134542 94963 74555 41208 32549 36513 30256 44933 34795 28952
+92 60 66 115 174 281 221 219 206 287 397 232 47 7 2 3 1 7 0 1 0 11 28 89 60 53 118 173 80 263 49 12 42 27 62 35 20 25 45 53
+6232 4948 3607 6654 9677 12666 18121 16489 8726 9013 11141 7976 1618 731 427 279 179 205 100 100 109 233 591 646 347 342 331 317 245 439 236 172 231 55 58 51 53 51 68 63
+4509940 5050551 3738694 4122343 4604323 5867834 5497532 5328885 3489794 2768622 2642807 2978840 1986382 1754098 1531595 801511 778377 350615 377888 231457 407475 380224 606095 438828 270634 223911 167203 114903 64691 120340 137216 99832 78598 42114 33219 37455 30855 45370 35664 31085
+89 47 42 111 169 180 307 286 204 290 395 226 28 7 3 4 2 12 2 5 2 13 37 76 55 73 113 167 230 244 86 79 174 34 53 35 49 26 67 68
+6516 5099 3594 5173 7598 10980 19062 16637 10643 9246 12637 7657 1713 844 449 246 190 189 154 165 148 288 531 632 277 315 276 360 349 472 205 244 302 77 67 40 55 42 35 53
+4563921 5060800 3737235 4192828 4683607 6190362 5847567 6031300 3674738 3170562 2899866 3270543 1980583 1700709 1504838 768535 763802 341190 372391 227707 401086 375105 604538 451327 270958 229829 170084 130126 71997 142118 139030 108833 84355 44317 34102 37665 31490 45228 35668 32476
+95 50 41 71 117 134 303 244 247 252 411 188 31 10 3 4 2 10 6 16 4 21 30 69 35 59 81 174 323 227 64 123 229 61 69 21 51 17 17 46
+6639 4653 3272 4752 6862 9542 21250 14812 9538 9640 12594 8156 1508 662 370 288 124 152 109 134 135 242 577 626 299 327 337 570 500 536 304 278 321 84 63 30 28 30 37 32
+4619699 5043033 3727581 4233219 4742098 6405192 6244795 6579448 3826819 3572593 3149409 3575402 1969689 1639342 1476730 740118 747904 330057 365881 222277 394524 367467 604196 462708 271837 236129 174452 157338 82980 166521 143330 119382 90454 46818 34861 37248 31419 44357 35723 32493
+96 41 34 59 98 103 319 189 203 225 369 180 24 6 2 5 1 7 3 11 4 15 35 65 41 61 109 259 429 224 122 132 229 67 59 12 13 9 19 16
+6544 4368 3273 4959 7149 11608 20717 14869 9446 10397 15266 8323 1664 774 325 281 187 195 122 125 140 239 560 590 279 381 496 767 631 588 285 294 306 84 61 23 34 33 36 29
+4671656 5008822 3718194 4283904 4806465 6734062 6618482 7098211 3972752 3997011 3461026 3872230 1963054 1588538 1448173 712976 734013 322234 359865 216620 388254 360103 603428 471194 272182 245369 182776 195020 97038 192655 147037 130281 96018 49169 35550 36426 31503 43723 35751 32325
+92 37 35 63 101 128 284 168 194 217 409 167 30 10 2 6 2 13 4 10 4 15 33 55 35 77 180 290 476 211 107 130 200 62 54 7 19 11 18 13
+6522 4442 3272 5596 6932 12181 21777 15616 9313 10660 17831 9943 2023 876 353 306 204 182 131 140 133 270 552 599 299 401 733 1063 690 613 261 332 358 87 65 46 47 60 57 61
+4721754 4981210 3709015 4370684 4863678 7078404 7009936 7631743 4111642 4412123 3830432 4250778 1965762 1547048 1421045 688999 720904 314082 354230 212224 381961 355085 602474 479724 273030 255283 196950 248627 112253 218757 150038 142861 102772 51564 36324 37066 31918 44785 36315 34133
+90 38 35 76 95 129 281 164 183 204 436 193 45 13 2 7 3 11 4 13 4 20 32 55 40 80 271 326 451 188 90 140 226 61 59 29 37 36 45 57
+6629 4722 3688 5858 6888 12644 21345 15812 9260 9696 18373 10960 2595 1004 445 298 219 198 166 153 155 283 543 565 309 482 789 1159 765 691 292 419 504 101 57 49 59 110 79 67
+4773336 4972457 3710699 4468354 4918338 7430532 7380575 8145306 4245710 4743104 4204471 4669096 1983024 1515912 1396946 665969 708505 307402 349630 208891 376388 351167 601314 485653 274113 269579 212202 304916 129006 248085 153756 160032 113089 54675 36874 37852 32629 48856 37427 36201
+91 43 44 81 92 127 259 156 175 165 415 198 72 18 4 7 3 14 8 17 6 23 31 48 43 102 271 296 445 190 104 170 309 74 44 32 56 101 83 63
+6687 5016 4012 5810 7143 12831 21611 16618 9414 9610 20448 11780 3035 1225 641 376 253 264 196 156 164 343 726 590 332 491 874 1177 790 719 340 389 409 114 53 44 41 121 98 70
+4825113 4982292 3720624 4557215 4978152 7773022 7748762 8677575 4380368 5048943 4622215 5112695 2011103 1500221 1378459 649112 697285 305178 345912 205942 371184 351170 604861 492763 275756 283570 229246 358933 145979 277374 158608 174329 120720 58398 37308 38284 32862 53358 38997 38329
+91 49 52 77 96 120 247 155 172 149 430 194 94 28 9 13 5 26 11 18 6 34 56 51 49 98 280 249 413 178 127 136 222 83 38 25 27 105 113 64
+6721 5473 4370 6060 7636 12718 21883 17412 9894 10119 20158 10689 3618 1051 529 344 300 342 269 170 186 470 717 666 331 448 858 1015 744 710 386 392 358 83 34 43 49 119 133 84
+4876467 5019614 3739452 4656104 5049075 8088021 8114710 9226691 4523934 5367704 5022117 5462651 2053384 1474782 1357570 631301 687547 307879 344153 204030 366672 358976 608089 504115 277333 294080 245455 399756 161353 304352 164515 187953 126857 59993 37245 38628 33294 57467 41423 41190
+90 59 61 80 105 112 240 157 179 148 388 155 121 21 6 11 7 43 21 22 9 61 54 63 48 80 254 178 348 157 146 123 177 43 15 23 38 92 165 81
+6737 5832 4522 5934 7879 13192 21259 17455 9094 9039 18551 12817 4334 962 468 423 313 346 259 211 214 461 848 851 375 475 661 604 625 568 300 260 184 67 52 51 52 150 113 61
+4926948 5076752 3761696 4741319 5124439 8413242 8455572 9745503 4643466 5600988 5370957 5922349 2112912 1445401 1335643 619412 678384 310664 342182 204752 362989 365761 614586 526152 279995 305618 256224 412879 173301 320988 168076 192650 128393 60509 37644 39443 33792 63234 43277 42466
+88 65 65 76 109 116 226 144 153 116 325 180 153 19 5 18 8 43 20 33 12 56 73 93 61 83 173 75 260 104 96 57 59 27 36 32 42 118 124 41
+6885 6293 4646 5304 8038 12929 16018 14636 9190 6255 13176 13455 6766 1136 376 378 234 317 217 206 250 437 1095 1062 512 537 469 275 392 588 242 208 146 65 42 65 38 94 114 57
+4979952 5158785 3786554 4782715 5201987 8702793 8653952 10059995 4762468 5649233 5573691 6393664 2233122 1428473 1311912 605472 667430 311500 339187 205123 360318 370664 627234 559830 286093 320273 261816 405002 178995 337854 170066 193870 128920 60872 37777 41069 33919 65215 45110 43420
+90 72 67 60 110 106 151 107 151 61 202 172 261 27 3 15 4 36 14 32 17 49 110 123 104 95 101 16 133 102 63 36 36 25 23 49 22 49 119 35
+6882 6409 4724 5605 8040 12569 14919 12852 7311 6085 10437 13101 8173 2644 756 523 385 439 305 336 279 709 1386 1139 717 573 385 186 278 473 321 398 406 43 29 32 27 67 101 38
+5031556 5243023 3812786 4840120 5277650 8952854 8819287 10246014 4830468 5684139 5701348 6814952 2386298 1505208 1298487 601276 660610 319781 338516 213459 358455 391984 647005 596218 297279 336261 265121 392130 181633 346643 174026 206690 136080 59861 37575 40570 33762 65418 46565 43149
+88 73 69 65 106 98 132 83 105 56 142 150 307 119 14 29 13 66 28 77 21 108 151 126 164 98 70 8 73 66 101 109 195 11 11 12 11 24 94 15
+7049 6570 4748 5917 8889 12043 12375 11467 6244 3931 5081 7881 5491 5277 1618 746 502 529 398 347 398 1161 1535 1035 1016 907 334 145 161 294 275 383 416 56 29 29 30 38 78 32
+5086141 5332098 3838976 4913250 5373127 9155596 8915463 10335781 4869495 5584615 5688906 6890260 2467091 1739104 1307432 611033 656951 333095 340239 221970 359680 439794 670092 624034 315829 371809 267040 377511 181214 343907 176711 217819 143316 59709 37378 39917 33686 63827 47396 42526
+92 73 69 70 122 88 96 67 79 24 39 62 177 251 65 58 22 87 48 77 43 187 166 102 242 169 52 5 25 26 76 94 191 19 11 10 14 8 56 11
+7197 6334 4339 6476 9552 11221 10361 8886 4440 2552 1973 3029 3048 6733 2999 1847 929 845 631 557 620 1809 1788 1181 1235 732 252 91 110 439 544 388 304 60 28 36 29 42 43 36
+5143147 5401330 3854057 5016336 5483168 9295672 8957755 10261592 4861433 5406340 5597326 6662955 2483418 2048420 1351456 687847 664298 365024 347875 242873 366549 524547 699069 659151 339514 394473 266815 360452 179502 350244 186205 228588 147509 59812 37160 39733 33586 62577 47312 42186
+94 67 57 81 131 75 70 40 40 10 6 10 69 282 168 206 76 157 109 144 97 272 193 115 283 113 30 2 11 56 199 89 118 22 10 16 13 10 17 14
+7372 5798 4065 7834 10072 11887 6405 4558 2431 1850 1468 1213 1330 1814 2750 3700 1925 1142 796 772 1140 2302 1658 977 762 528 165 79 104 317 414 283 196 51 38 26 25 34 36 31
+5203203 5433478 3861758 5196669 5603755 9468261 8897866 9925953 4802217 5195632 5495123 6337717 2455421 2036967 1388015 873896 696922 413285 359538 275730 386539 634504 724000 679627 350517 403244 264372 343679 177679 348705 192139 232260 148836 59356 37203 38946 33386 60911 47051 41559
+96 56 49 106 137 84 26 11 12 6 3 1 13 34 144 358 213 199 147 197 217 299 166 80 143 61 13 1 10 29 130 47 53 16 19 8 9 7 12 11
+7491 5404 3586 9294 9442 11632 4014 1786 1289 1286 2012 1168 1007 1307 1479 2763 1775 1691 1367 945 1163 2590 1401 897 580 503 269 75 68 228 323 238 144 56 29 19 17 21 23 17
+5264802 5439490 3857022 5455881 5705227 9614829 8778353 9440147 4715287 4962915 5409377 6029228 2419866 1995052 1391172 991216 724897 492379 385506 317245 406618 755558 741739 693960 356593 409953 264648 327666 174981 341791 195599 232947 148801 59235 37015 37776 32987 58546 46464 40109
+96 49 38 128 122 77 10 1 3 3 6 1 7 18 48 215 182 265 275 219 208 279 125 66 91 53 34 1 4 15 84 33 28 20 11 4 4 2 5 3
+7487 5097 3592 10867 9826 8235 2831 1706 1162 1126 1393 1116 756 954 678 1061 1024 1826 1610 1144 1131 2302 1386 995 764 706 367 120 56 200 347 231 89 54 30 16 15 17 15 17
+5324761 5426280 3852558 5796182 5813982 9543900 8631583 8978573 4627281 4734330 5309949 5736053 2378783 1933965 1373775 996930 732977 575022 417038 368495 425378 851655 758652 713454 367220 428731 267422 315379 172044 333571 199586 233162 147361 58998 36857 36492 32546 56077 45687 38746
+95 43 39 145 125 39 5 1 3 2 3 1 4 10 10 44 76 251 303 233 189 205 119 76 135 93 63 5 3 12 92 31 11 18 12 3 3 2 2 3
+7359 4884 4047 11601 9722 3967 3273 2282 1298 1313 1199 1064 629 561 671 781 579 1308 1586 1408 1090 1798 1689 1137 751 722 467 131 44 210 349 177 85 39 19 15 14 17 17 14
+5379951 5400777 3859836 6161161 5917363 9215011 8499775 8580080 4544948 4530949 5208044 5457273 2335479 1852398 1356633 985099 729480 620882 447169 432890 442622 911022 782888 740502 377250 447366 272683 304505 168873 326459 203524 230047 145855 57854 36422 35224 32091 53756 44981 37281
+90 40 49 148 121 9 7 3 3 4 2 1 3 3 10 24 24 146 274 246 170 133 152 90 126 89 95 6 2 14 90 18 10 10 5 3 3 2 2 2
+7078 5071 4766 11771 8912 2313 4065 2460 1319 1462 1336 1104 661 300 385 458 447 847 1622 1831 1239 1993 1870 1149 761 909 539 98 41 181 329 179 66 29 23 16 15 15 19 17
+5426580 5388293 3885312 6514687 5997458 8804237 8391503 8216432 4465207 4348924 5112185 5197676 2294074 1759689 1332608 954133 722696 635668 477468 519409 463244 978807 811146 766665 387285 476371 279654 292256 165705 317992 206853 227242 143901 56164 36100 34093 31673 51452 44343 36088
+82 44 68 137 103 3 12 4 4 5 3 2 3 1 3 8 15 69 260 278 191 140 166 86 123 118 116 3 1 11 79 19 6 5 7 3 3 1 3 4
+6974 5359 5352 11851 8003 1654 3087 2005 708 1061 1107 521 562 330 208 431 501 854 1296 1988 1374 1802 2004 1564 861 1228 689 101 24 211 466 184 40 26 25 19 16 21 17 13
+5469387 5394252 3925131 6851917 6052317 8377621 8260934 7846648 4371838 4153184 5012865 4917837 2251172 1674386 1304658 923366 717461 649997 498677 610383 486802 1030791 842124 816755 399626 523235 290285 280926 162181 311876 213601 224912 141331 54391 35837 33214 31291 49655 43670 34721
+79 49 83 129 84 1 7 3 1 3 2 0 2 1 1 8 19 67 186 261 206 113 173 127 141 164 160 4 0 16 132 21 2 5 9 5 4 3 3 2
+6777 5495 5617 12675 9047 1650 908 950 926 583 911 536 441 319 284 376 296 474 1148 2204 1210 1657 2441 1849 1132 1258 654 110 21 161 387 135 49 34 25 19 17 15 18 12
+5506089 5408209 3970731 7219539 6132494 7976356 8077923 7434233 4286373 3939821 4911014 4655709 2206248 1593525 1279349 891066 707117 640120 515574 709169 505580 1070747 883499 881349 418586 569130 299756 270829 158669 303055 218161 219711 139055 53216 35581 32388 30944 47597 43039 33375
+74 50 89 130 101 2 0 0 2 0 1 0 1 1 2 6 6 21 152 248 167 94 211 145 193 154 142 5 0 9 96 11 3 8 9 5 5 2 3 2
+6409 5070 5012 12638 9766 2666 3000 2029 1364 440 507 570 473 392 201 422 489 826 1473 2476 1302 1760 2414 1783 1290 1183 519 149 23 173 355 127 57 19 17 15 17 17 17 16
+5532468 5395217 3999727 7562831 6229049 7661586 7952958 7112853 4214237 3730473 4801378 4411397 2163263 1522000 1252550 863530 701965 652461 540357 818739 526241 1114634 923151 938013 441112 607664 305540 263734 155296 295501 221789 214331 137040 51190 35127 31366 30606 45785 42399 32355
+65 43 71 124 112 5 7 3 4 0 0 0 2 2 1 9 19 63 203 238 177 98 197 125 214 130 97 10 0 11 80 11 5 2 4 3 5 2 3 4
+6090 4448 4295 12871 10292 3806 4252 2626 784 453 441 778 392 148 97 344 416 729 2183 3088 1465 1851 2340 1704 1288 1165 456 90 24 155 291 113 51 42 38 30 33 30 25 30
+5550034 5344791 4009671 7899841 6336640 7435740 7863117 6847434 4129076 3534484 4692792 4194522 2119281 1439776 1223761 832854 695075 658102 582670 959335 550553 1161479 959922 986424 463024 642780 309569 253439 152032 287294 223691 208414 134922 50699 35221 31327 30685 44881 41979 32256
+59 34 52 118 116 12 14 7 1 0 0 1 1 0 0 6 14 48 308 257 198 101 179 109 201 117 76 4 0 10 53 9 4 14 21 15 19 9 7 14
+5585 3613 3559 11617 8285 2489 2397 1298 1199 820 1012 630 356 161 111 407 540 1138 2409 2698 1236 1550 2167 1650 1106 934 419 51 26 156 233 97 68 35 25 17 19 18 15 17
+5554252 5246090 4000553 8139589 6390241 7142531 7728100 6516350 4056649 3372802 4601513 3981566 2075476 1363284 1196049 807889 691527 688533 629704 1067535 568404 1187021 991353 1028612 479737 661597 312551 241366 148901 279641 224062 201869 133292 49807 34980 30491 30404 43294 41314 31365
+50 23 36 97 81 5 4 1 4 2 2 1 1 0 0 9 24 102 319 194 151 71 155 98 156 77 63 1 0 10 34 7 7 10 9 5 6 3 2 4
+4775 2500 3831 9116 5157 3359 2828 1669 717 581 1176 643 516 505 281 507 423 955 1908 1848 811 1276 1256 1140 844 814 331 45 14 119 162 92 48 23 16 12 11 14 14 11
+5537660 5084931 3998615 8211297 6362544 6920365 7607471 6227924 3973709 3206137 4516705 3782186 2036855 1312516 1173374 790566 685077 705895 662757 1117022 574945 1194196 998711 1036936 489335 671912 313209 229649 145541 270174 222609 195409 131191 48231 34515 29398 29926 41556 40640 30158
+36 12 42 62 32 11 6 3 1 1 3 1 2 6 2 16 15 72 225 106 75 48 62 48 101 57 39 1 0 6 16 7 3 4 3 2 2 2 2 2
+3870 2030 3943 7869 5921 3970 1746 1496 339 680 1108 383 296 305 166 480 524 1108 1897 1023 630 1095 969 627 711 565 185 27 13 51 88 70 48 25 17 15 16 18 16 16
+5498348 4904565 3999588 8202090 6355068 6749066 7462194 5946174 3883177 3055554 4432276 3578794 1993574 1252506 1148325 772623 681369 731615 694704 1112853 576696 1189821 998549 1013243 495294 666311 310119 217529 142240 257097 219301 187985 129143 46873 34087 28555 29587 40168 40034 29331
+24 8 44 46 42 16 2 3 0 2 2 0 0 2 0 15 23 88 210 34 45 35 37 15 73 28 12 0 0 1 5 4 3 5 4 4 4 3 3 4
+3253 1658 3326 6431 6279 4815 3015 1086 499 645 860 537 350 403 159 457 614 1623 1004 748 626 1235 1018 627 605 357 113 16 18 54 60 56 47 20 18 18 16 15 17 16
+5444245 4712166 3984765 8105089 6356930 6639960 7352983 5656139 3798995 2911855 4343615 3397067 1952754 1202118 1123723 754344 680055 787432 703026 1092039 578301 1194309 999644 990972 498395 648267 305265 205460 139149 244989 215360 180146 127120 45289 33696 27947 29257 38679 39469 28554
+17 6 31 31 47 25 8 1 0 2 1 1 1 4 0 14 32 142 79 19 45 45 40 15 53 11 4 0 0 1 2 3 3 4 5 6 4 2 3 5
+2884 1224 1304 1151 2178 4466 3583 1487 958 637 476 740 400 366 175 436 755 947 591 541 407 857 1006 409 489 258 53 10 17 62 48 79 63 14 12 14 11 15 14 11
+5382060 4504647 3918625 7689518 6253914 6515958 7261018 5408142 3728648 2776286 4247351 3238715 1914231 1152479 1100144 735871 682378 798369 700583 1059757 574268 1175305 1000405 956644 498453 625223 298999 193747 136109 234099 211210 174191 125557 43431 33161 27130 28807 37279 38841 27516
+14 3 5 1 5 22 11 3 2 2 0 2 1 4 1 13 48 55 28 10 19 22 39 7 34 6 1 0 0 2 1 6 7 2 2 4 2 3 2 2
+2409 1151 2225 4145 3129 2902 1986 1378 1023 494 417 484 303 158 287 781 579 409 531 377 292 456 389 198 243 204 53 13 16 66 36 74 67 17 15 14 9 10 11 12
+5309285 4305093 3877679 7482824 6177780 6303308 7130525 5168327 3661718 2640065 4151982 3074135 1874190 1093040 1080017 739703 680144 775596 696667 1019336 567396 1132805 985375 911412 492221 600244 292889 182921 133120 224108 206857 168286 124135 41869 32716 26362 28317 35656 38152 26602
+10 3 14 14 12 10 3 3 3 1 0 1 1 0 2 44 28 10 22 5 10 6 6 1 8 4 1 0 0 2 0 6 8 3 3 4 1 1 1 3
+1788 859 1354 1526 1418 2241 1272 729 435 381 771 512 249 374 473 778 388 166 295 245 157 229 243 144 101 133 47 12 12 31 35 47 41 7 11 11 10 10 11 11
+5222453 4099572 3815490 7127626 6059809 6062806 6985038 4903027 3581428 2505075 4068043 2921150 1833768 1050437 1065147 743121 673083 739260 686816 973230 557245 1078908 966988 865576 482515 572402 286778 172683 130103 212566 202587 161076 122084 39787 32180 25456 27865 34131 37480 25681
+5 2 5 2 2 6 1 1 0 1 1 1 0 5 8 43 13 1 7 2 3 1 2 1 1 2 0 0 0 0 0 2 3 0 2 2 2 1 1 2
+1715 795 939 1457 772 1628 1221 696 340 299 621 404 236 348 332 275 151 110 323 260 138 207 173 118 106 80 18 7 11 33 26 36 35 10 9 9 8 11 9 8
+5135922 3902450 3744245 6789500 5928269 5799072 6841879 4651617 3500714 2373146 3982365 2770708 1794023 1008793 1047044 715430 660140 701664 677927 930812 546861 1026893 947271 820893 473179 542974 280079 162752 127136 201839 198194 153623 119931 38014 31606 24481 27373 32759 36774 24631
+5 1 2 2 0 3 1 1 0 0 1 0 0 4 4 5 2 0 8 3 2 1 1 0 1 0 0 0 0 0 0 1 2 1 1 1 1 1 1 1
+2101 889 741 1109 796 741 945 604 274 79 243 230 162 185 163 132 110 140 197 296 111 135 170 51 75 57 25 14 11 15 11 16 14 9 10 11 9 10 9 9
+5061418 3722930 3669717 6450280 5800627 5496667 6695239 4409639 3420328 2235616 3889163 2618602 1753379 959633 1025072 680615 646472 668167 666039 893151 536046 973575 927969 774774 463284 513898 273726 153847 124243 190650 193527 145388 117294 36286 31072 23688 26919 31407 36086 23706
+8 2 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 3 4 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 3 1 1 1 2
+1843 928 1145 1460 922 542 437 140 64 75 127 225 134 111 114 55 54 177 143 113 127 70 79 19 38 27 15 16 11 11 17 18 15 10 7 8 12 13 9 8
+4982179 3556577 3607377 6152977 5679392 5200179 6539274 4153672 3336581 2106092 3795322 2475315 1713034 908876 1002396 643158 631714 638953 653067 846506 525910 919463 906823 729456 452690 484724 267276 145599 121422 179887 189130 137770 114749 34723 30475 22758 26553 30321 35415 22775
+6 3 4 2 1 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 3 3 1 1
+1581 1131 761 653 758 530 309 244 141 41 95 111 75 107 92 41 62 96 65 82 53 54 99 20 12 19 12 9 10 14 18 15 8 10 6 8 10 8 8 9
+4898221 3412676 3536777 5823932 5556991 4920742 6383930 3919452 3256892 1982250 3703006 2333621 1672188 860919 979724 607089 617529 606515 638425 800755 514136 867615 886716 686919 441696 456809 260910 137416 118646 169954 184868 130425 112088 33254 29867 21884 26145 28993 34735 21961
+5 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 2 1 0 2
+1385 1082 393 364 255 344 168 131 137 43 40 65 23 25 51 30 22 45 35 54 38 31 65 23 12 18 11 8 10 12 13 14 9 13 9 6 7 7 9 10
+4811348 3274399 3458533 5496873 5424788 4646643 6228860 3692342 3179091 1865961 3611588 2197602 1631032 810801 956570 572508 602675 572890 623382 756029 502272 817464 866242 647118 430976 430507 254677 129662 115939 160494 180585 123459 109519 32057 29351 20939 25671 27683 34097 21257
+4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 1 1 1 2
+650 793 558 200 202 258 104 94 98 35 40 55 34 19 31 28 19 17 26 64 22 25 37 26 8 12 13 10 13 17 12 14 10 11 11 10 10 7 8 7
+4707856 3126662 3386460 5179361 5294530 4383706 6076025 3476585 3102235 1756158 3522453 2069130 1591185 763322 933483 539879 588115 539562 608484 714601 490295 769954 845563 609889 420421 405414 248651 122496 113377 151909 176383 116911 107040 30809 28899 20297 25285 26452 33450 20411
+0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 3 2 1 1 1
+376 722 438 91 44 40 48 53 42 20 32 28 13 13 8 12 15 24 15 36 14 19 11 18 11 13 7 10 13 15 13 13 14 10 8 9 12 8 8 8
+4599943 2983427 3313118 4874202 5163485 4123151 5925573 3271254 3025866 1652021 3435338 1946707 1551795 718323 910384 508224 573817 508664 593677 673938 478413 724925 824736 574403 410207 381888 242622 115760 110879 143716 172312 110695 104725 29574 28382 19632 24960 25356 32819 19677
+0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 1 1 2
+301 365 247 67 29 37 34 25 7 14 21 10 8 8 13 8 15 19 19 21 15 11 11 9 14 9 7 9 11 14 14 12 16 13 7 6 8 7 5 6
+4492807 2826853 3236725 4585878 5035328 3878045 5778519 3076522 2950509 1553763 3350117 1830523 1513261 675716 887990 478223 559876 479312 579342 634793 466853 682107 804428 540493 400324 359528 236744 109367 108392 135953 168368 104790 102519 28598 27852 18822 24541 24264 32127 18865
+0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 1 1 1 0 1
+163 87 75 74 37 50 44 14 13 16 26 18 17 14 20 16 17 16 25 23 13 12 14 13 3 7 12 12 17 17 12 14 10 10 8 10 9 8 8 5
+4384818 2662593 3157842 4315282 4910575 3648443 5635392 2892798 2877186 1461524 3267151 1721801 1475919 636034 866334 450513 546334 451537 565518 598120 455531 641919 784704 508863 390407 338387 231140 103542 106120 128840 164471 99362 100215 27496 27361 18307 24158 23299 31529 18040
+0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 3 2 1 1 0
+33 35 20 19 40 61 36 16 5 8 8 12 13 8 9 11 11 14 14 11 7 14 9 9 9 8 8 13 12 16 11 12 9 9 8 9 9 7 7 9
+843 2150 511 1167 1022 3747 920 983 127 491 204 737 332 491 230 675 281 860 357 675 178 860 230 552 230 491 204 798 306 983 281 737 230 552 204 552 230 430 178 552
+179 168 88 72 227 297 200 53 6 14 15 31 39 14 19 26 28 41 45 26 11 41 19 18 19 14 15 36 33 53 28 31 19 18 15 18 19 11 11 18
+22 21 15 13 33 30 31 15 12 7 7 6 7 6 5 4 7 8 13 8 7 4 5 13 12 7 6 6 11 13 11 11 8 11 10 7 6 7 8 5
+1384 3311 881 1895 1840 5365 1689 1845 430 891 377 1061 502 830 352 880 452 1299 680 1126 352 1054 352 1317 531 891 352 1118 579 1722 555 1368 428 1194 454 948 377 834 378 826
+91 64 47 30 160 96 149 40 33 10 11 7 11 7 5 3 11 12 37 13 11 3 5 33 32 10 8 7 27 31 27 23 14 24 22 10 8 10 14 5
+18 15 9 9 22 21 24 15 7 4 6 4 7 5 7 5 7 5 9 13 10 7 11 10 11 9 6 9 12 10 9 8 9 10 7 8 10 8 5 5
+1809 4033 1089 2334 2356 6333 2260 2655 598 1083 520 1243 668 1087 522 1134 619 1528 893 1857 598 1420 624 1852 798 1390 496 1603 871 2233 771 1777 647 1736 621 1382 623 1275 496 1083
+58 29 16 13 80 43 94 36 10 3 8 3 10 5 11 5 10 4 17 30 22 9 26 18 26 15 8 15 30 17 17 11 17 18 10 12 22 12 5 5
+27 27 16 14 20 27 24 13 7 9 9 5 10 8 5 6 6 7 10 12 7 7 6 9 5 4 6 10 9 14 15 10 11 10 8 10 8 8 8 6
+2454 5449 1470 3054 2808 7611 2817 3294 762 1570 737 1475 906 1513 636 1434 756 1866 1126 2482 762 1764 761 2293 905 1552 636 2121 1079 2959 1135 2284 912 2246 809 1913 811 1690 688 1386
+111 79 49 29 62 62 87 24 10 15 17 4 21 12 5 6 7 8 20 23 10 8 7 13 5 3 7 17 16 30 45 16 25 17 13 17 13 11 14 7
+22 39 27 7 7 26 27 15 9 8 7 5 8 9 9 13 10 12 15 8 4 9 4 3 4 5 6 9 9 11 12 13 11 11 14 11 10 9 6 5
+2955 7518 2123 3300 2916 8751 3436 4017 973 1967 897 1693 1087 1975 850 2146 992 2491 1481 2824 845 2211 844 2339 984 1766 773 2546 1282 3457 1413 2945 1170 2787 1146 2474 1046 2141 824 1610
+73 120 115 7 7 51 99 29 16 11 10 4 13 14 17 29 20 23 43 9 3 13 3 1 3 4 7 13 16 17 27 25 24 18 39 19 20 14 7 4
+16 31 22 14 14 19 13 11 12 10 13 12 10 5 4 8 7 4 12 9 6 13 10 6 5 8 6 7 7 9 9 11 10 11 9 7 7 8 6 6
+3290 8971 2632 3962 3201 9393 3682 4451 1255 2463 1206 2328 1315 2163 931 2508 1146 2587 1750 3207 977 2877 1078 2567 1087 2151 907 2823 1428 3802 1607 3444 1396 3295 1347 2755 1198 2504 956 1882
+37 72 77 26 28 26 23 15 28 16 33 24 19 4 3 10 9 2 26 11 7 26 20 5 5 11 7 7 9 11 15 17 19 17 15 7 9 10 7 6
+15 17 6 16 16 6 11 8 7 11 8 6 6 6 3 7 4 4 5 5 5 5 5 7 8 11 6 4 7 8 8 9 11 9 10 7 7 7 6 6
+3591 9477 2719 4707 3530 9198 3871 4675 1402 2991 1380 2556 1435 2401 984 2787 1219 2677 1834 3321 1080 3011 1178 2843 1264 2697 1037 2899 1571 4065 1771 3790 1642 3650 1568 3019 1347 2783 1085 2137
+31 20 5 30 36 2 16 7 9 18 12 5 6 5 1 7 3 2 4 3 5 3 5 7 12 19 7 2 9 8 11 11 22 11 18 7 9 7 7 6
+7 9 8 18 14 19 19 10 3 6 8 9 9 8 7 7 7 11 7 8 7 5 7 8 5 6 7 6 9 8 11 13 9 9 7 7 6 8 8 6
+3680 9461 2855 5530 3799 9813 4260 5008 1443 3180 1550 2955 1629 2748 1138 3049 1367 3192 1967 3613 1231 3137 1327 3163 1360 2903 1190 3093 1761 4312 2007 4361 1831 3983 1707 3267 1466 3107 1262 2377
+6 5 9 35 26 25 46 11 1 5 12 12 15 10 9 7 9 17 8 8 9 3 9 9 4 5 9 5 14 8 21 21 14 10 9 7 6 9 12 6
+10 9 6 17 10 7 8 7 4 10 6 3 6 8 7 4 5 7 7 6 5 8 8 5 5 5 5 3 4 7 10 10 9 11 6 7 5 6 6 5
+3843 9446 2937 6242 3959 9654 4358 5137 1509 3603 1664 2962 1741 3074 1288 3111 1460 3430 2096 3764 1328 3440 1498 3280 1453 3036 1288 3091 1819 4483 2212 4713 2015 4419 1817 3501 1557 3289 1383 2541
+13 5 5 29 13 3 8 5 3 13 6 1 6 9 9 2 4 7 8 4 4 9 12 3 4 3 4 1 2 6 17 12 14 15 6 6 4 5 7 4
+6 5 3 8 7 4 6 5 3 5 6 5 4 5 4 3 4 8 6 4 5 7 7 7 5 7 7 6 6 6 7 9 9 10 5 5 6 5 7 5
+3900 9186 2940 6358 4039 9320 4402 5135 1548 3694 1775 3091 1799 3196 1358 3108 1525 3715 2197 3783 1422 3663 1639 3513 1544 3283 1434 3274 1926 4582 2335 4983 2194 4768 1899 3598 1671 3398 1527 2695
+4 1 1 6 6 1 4 2 1 3 6 3 2 3 3 1 3 8 6 2 4 6 9 6 4 7 9 5 6 4 8 9 13 12 4 3 6 3 9 3
+3 3 7 13 16 9 11 6 4 6 8 5 3 4 5 5 5 6 6 7 7 7 5 6 8 7 8 9 12 11 8 8 8 9 8 9 9 9 8 6
+3879 8819 3045 6775 4347 9313 4573 5195 1611 3840 1935 3212 1830 3249 1451 3228 1614 3860 2295 3986 1565 3873 1725 3670 1709 3516 1602 3630 2184 4982 2481 5175 2343 5034 2056 3935 1859 3747 1693 2901
+1 0 7 15 32 5 14 4 3 4 11 3 1 2 4 3 4 4 6 6 9 6 4 4 11 6 12 11 24 14 10 7 10 9 11 10 14 11 11 5
+10 9 3 6 7 10 8 5 4 4 2 6 10 7 9 6 7 7 7 10 10 7 6 5 5 8 7 6 5 8 8 9 8 10 10 13 9 8 8 6
+4037 8842 3045 6737 4417 9368 4663 5190 1673 3855 1937 3387 2039 3484 1644 3402 1752 4058 2416 4361 1781 4070 1835 3756 1794 3796 1740 3780 2257 5174 2623 5417 2489 5346 2260 4497 2042 4013 1855 3095
+13 6 1 3 6 7 7 2 2 2 0 5 17 6 15 5 9 6 8 12 18 6 6 3 4 8 9 4 4 7 10 8 10 11 16 21 14 8 11 5
+8 9 3 9 6 7 7 4 4 5 5 3 8 7 4 7 5 4 6 7 6 7 6 5 6 4 8 9 7 8 8 9 7 7 9 8 6 9 6 5
+4140 8864 3045 6885 4460 9236 4725 5124 1733 3930 2016 3368 2192 3705 1705 3627 1836 4060 2509 4529 1889 4255 1942 3837 1902 3813 1901 4106 2379 5355 2762 5644 2605 5455 2433 4718 2144 4325 1962 3216
+8 6 1 7 4 3 5 1 2 3 4 1 10 6 2 6 4 2 5 6 6 6 6 3 6 2 11 10 8 7 10 8 7 5 13 7 6 10 6 3
+1 2 4 12 8 7 5 8 6 4 4 6 5 6 5 2 3 5 4 6 7 8 5 6 5 5 5 8 7 9 10 7 7 6 7 9 8 9 6 4
+4062 8455 3071 7209 4553 9111 4734 5308 1843 3939 2067 3534 2265 3851 1790 3532 1866 4123 2548 4625 2020 4491 2021 3975 1982 3891 1981 4351 2498 5586 2948 5735 2718 5496 2551 4987 2294 4618 2066 3268
+0 0 2 12 7 3 3 7 6 2 2 5 4 4 4 0 1 3 2 4 8 7 4 4 4 3 4 8 8 8 15 5 7 3 7 9 10 9 6 2
+2 5 7 11 7 3 5 4 3 2 4 4 7 6 7 2 5 6 4 4 7 6 5 9 4 5 5 7 6 8 10 8 6 5 9 8 8 7 6 5
+4011 8254 3173 7452 4618 8748 4743 5235 1873 3825 2117 3567 2387 3988 1924 3442 1947 4244 2586 4593 2148 4590 2098 4289 2034 3964 2059 4520 2589 5742 3130 5882 2803 5473 2717 5179 2441 4770 2167 3379
+0 2 7 10 5 0 3 1 1 0 2 2 8 4 8 0 4 4 2 1 8 4 4 10 2 3 4 6 5 6 14 6 5 2 12 7 10 5 6 3
+5 2 7 10 8 8 5 6 3 2 3 2 6 4 4 6 3 2 2 5 5 8 5 8 6 6 6 8 7 7 6 8 7 6 5 5 6 7 6 5
+4038 7881 3272 7619 4707 8714 4752 5289 1902 3718 2140 3475 2480 3994 1978 3604 1975 4112 2572 4624 2222 4806 2173 4523 2136 4094 2160 4740 2703 5827 3205 6020 2911 5513 2776 5175 2533 4913 2266 3483
+3 0 7 8 7 4 3 4 1 0 1 0 5 2 2 5 1 0 0 3 4 7 4 7 6 4 6 7 7 5 5 6 7 3 3 2 5 5 6 3
+8 6 6 9 8 10 6 6 4 3 3 2 6 5 4 5 4 3 4 6 5 7 4 6 7 8 8 9 5 4 6 7 7 8 6 7 6 7 6 7
+4141 7776 3343 7714 4793 8805 4786 5340 1956 3679 2163 3389 2571 4061 2030 3694 2027 4049 2610 4715 2294 4947 2221 4620 2261 4339 2310 5008 2763 5723 3278 6088 3017 5673 2860 5294 2623 5048 2362 3704
+8 3 5 6 7 7 4 4 2 1 1 0 5 3 2 3 2 1 2 4 4 5 2 4 8 8 10 9 3 1 5 5 7 6 5 5 5 5 6 6
+5 6 8 5 5 5 5 3 5 6 3 6 5 4 3 7 6 4 5 6 6 5 5 6 6 4 5 8 4 4 6 6 6 7 7 6 7 6 6 6
+4165 7678 3464 7558 4801 8583 4794 5203 2034 3826 2185 3554 2634 4063 2056 3902 2129 4051 2672 4800 2390 4957 2293 4711 2357 4324 2380 5199 2796 5625 3349 6091 3095 5762 2967 5344 2736 5113 2456 3850
+3 3 9 2 2 1 2 1 4 4 1 5 4 2 1 6 6 2 3 4 5 2 4 4 6 2 4 7 2 1 5 3 5 5 7 4 7 4 5 4
+5 3 9 7 7 6 7 4 5 3 4 8 7 6 4 5 4 6 5 4 5 4 3 8 9 4 5 8 6 6 7 6 7 7 7 4 7 6 6 5
+4188 7401 3607 7534 4860 8436 4853 5136 2111 3780 2232 3832 2747 4187 2106 3975 2178 4176 2733 4757 2458 4905 2312 4919 2528 4310 2448 5378 2879 5656 3444 6094 3196 5846 3071 5269 2846 5174 2548 3926
+3 0 11 4 5 2 5 1 4 1 2 8 7 4 2 3 2 4 3 1 4 1 1 7 13 2 4 7 5 3 6 3 7 5 7 1 7 4 5 3
+5 3 9 7 6 4 6 5 4 6 4 5 5 5 4 3 4 8 4 3 4 6 5 7 9 6 5 7 8 8 7 6 6 8 8 5 7 6 7 5
+4211 7141 3747 7512 4892 8175 4885 5135 2160 3921 2278 3909 2806 4242 2155 3920 2225 4416 2767 4655 2498 4979 2382 5053 2694 4420 2514 5485 3011 5808 3536 6096 3269 5986 3198 5260 2953 5232 2663 3997
+3 0 11 4 4 1 4 2 2 4 2 3 3 3 2 1 2 8 2 1 2 4 4 5 12 4 4 5 9 6 6 3 5 6 9 2 7 4 7 3
+8 4 4 9 8 12 8 6 5 9 5 5 4 5 3 6 5 5 7 5 4 7 6 7 8 9 8 8 8 6 6 10 8 7 7 6 5 5 6 5
+4310 6958 3755 7614 4974 8421 4967 5195 2233 4238 2348 3981 2838 4294 2177 4053 2297 4458 2876 4682 2537 5110 2475 5179 2831 4707 2655 5647 3140 5828 3601 6344 3391 6056 3297 5313 3007 5225 2749 4064
+8 1 2 6 7 11 7 4 4 10 4 3 2 3 1 4 4 3 7 3 2 5 5 5 9 9 10 6 9 3 5 9 9 5 7 4 3 2 5 3
+4 5 7 5 4 6 5 4 3 5 3 4 3 5 3 5 4 5 6 4 3 5 5 6 5 10 6 8 8 7 5 4 5 6 6 6 6 5 4 5
+4304 6847 3840 7464 4952 8284 4970 5129 2253 4290 2366 3987 2843 4343 2199 4117 2341 4497 2957 4646 2550 5110 2541 5236 2888 5038 2742 5799 3266 5908 3638 6209 3434 6061 3368 5362 3085 5218 2782 4127
+2 2 6 2 1 2 2 1 1 3 1 2 1 3 1 3 2 3 5 1 1 2 4 4 3 11 5 6 9 5 3 1 3 3 5 4 5 2 2 3
+2 1 4 5 6 6 4 3 3 6 3 3 7 6 3 4 4 5 5 6 5 6 5 5 3 5 7 9 7 7 7 3 6 8 8 8 7 5 5 4
+4247 6497 3846 7323 4981 8155 4948 5005 2273 4401 2383 3932 2950 4451 2220 4115 2384 4534 3010 4735 2614 5172 2605 5229 2892 5042 2852 6004 3363 5983 3726 6020 3501 6188 3488 5531 3186 5212 2840 4125
+0 0 2 2 4 2 1 1 1 4 1 1 7 4 1 2 2 3 3 4 4 4 4 2 1 2 7 8 7 5 6 0 5 6 9 6 7 2 3 2
+3 1 2 6 5 4 3 5 2 3 3 4 11 6 6 6 3 5 4 4 4 4 4 5 4 5 7 8 7 8 7 5 7 6 6 6 8 6 6 4
+4217 6168 3801 7252 4984 7911 4901 5011 2267 4321 2400 3941 3157 4552 2317 4236 2401 4569 3037 4696 2650 5107 2642 5222 2922 5046 2959 6135 3457 6115 3811 5966 3592 6185 3554 5567 3310 5267 2922 4123
+1 0 0 3 2 1 1 2 0 1 1 2 18 4 6 4 1 3 2 1 2 1 2 2 2 2 7 6 6 6 6 2 6 3 5 3 9 4 5 2
+5 4 3 2 3 4 3 5 3 2 4 3 5 5 4 5 3 5 6 5 6 4 5 7 7 7 6 5 3 6 9 7 9 7 7 7 9 5 5 4
+4239 6043 3782 6939 4936 7682 4855 5017 2287 4184 2442 3888 3206 4586 2361 4289 2417 4602 3114 4721 2737 5046 2703 5338 3027 5173 3038 6074 3447 6116 3945 6038 3732 6243 3644 5663 3457 5258 2976 4121
+3 1 1 0 1 1 1 2 1 0 2 1 3 3 2 3 1 3 5 3 5 1 3 5 7 5 5 2 1 3 10 5 11 4 6 5 11 2 3 2
+6 4 3 4 3 4 3 3 4 2 3 7 6 3 1 2 5 4 5 3 6 4 5 6 5 8 5 5 6 7 8 7 9 8 6 6 5 6 6 7
+4286 5926 3764 6768 4889 7466 4810 4900 2332 4055 2457 4084 3279 4495 2327 4154 2484 4571 3164 4622 2822 4989 2763 5386 3079 5354 3089 6016 3514 6179 4051 6105 3868 6359 3706 5691 3498 5311 3055 4303
+4 1 1 1 1 1 1 1 2 0 1 6 5 1 0 0 4 1 3 1 5 1 3 4 3 7 3 2 5 4 8 4 10 6 4 3 3 4 5 6
+5 6 3 5 4 3 4 3 4 3 4 2 3 5 3 2 7 7 6 5 4 6 5 7 4 6 6 5 7 7 5 7 6 7 6 6 5 6 4 4
+4306 5939 3746 6669 4869 7202 4792 4790 2376 3996 2497 3961 3273 4532 2345 4027 2600 4726 3238 4651 2853 5058 2821 5492 3104 5401 3165 5962 3605 6238 4077 6168 3924 6407 3766 5718 3538 5360 3080 4290
+3 3 1 2 1 0 1 1 2 1 2 0 1 3 1 0 7 5 5 3 2 4 3 5 2 3 5 2 6 4 3 4 4 4 4 3 3 4 2 2
+4 3 2 3 6 8 6 1 3 3 7 4 5 5 4 2 3 5 6 4 4 5 5 6 6 10 9 6 5 7 7 5 5 7 7 10 6 6 5 5
+4300 5766 3703 6453 4900 7261 4825 4564 2393 3940 2613 3969 3319 4567 2388 3908 2611 4749 3310 4617 2884 5061 2878 5531 3179 5691 3316 5972 3642 6293 4154 6105 3953 6452 3850 5989 3603 5407 3130 4339
+2 0 0 0 4 5 4 0 1 1 7 2 3 3 2 0 1 3 5 1 2 2 3 3 5 10 11 3 3 4 6 2 3 4 6 10 5 3 3 3
+3 2 3 4 3 4 6 4 2 3 4 6 4 4 7 6 2 4 8 8 5 6 6 7 9 5 6 6 7 3 5 5 6 7 7 6 6 6 5 7
+4269 5542 3687 6311 4854 7071 4857 4535 2384 3887 2650 4099 3338 4538 2507 4042 2596 4709 3431 4831 2939 5125 2959 5629 3329 5656 3386 5982 3730 6099 4178 6045 4007 6494 3932 5998 3666 5451 3179 4508
+1 0 1 1 1 1 4 1 0 1 2 4 2 1 8 4 0 1 9 7 3 4 5 5 11 2 5 3 6 0 3 2 4 4 6 3 4 3 3 6
+5 5 6 6 2 3 6 4 2 2 4 5 9 6 6 5 5 4 5 7 5 7 7 5 7 5 6 7 7 3 5 7 7 8 9 4 5 6 5 4
+4290 5516 3748 6300 4783 6831 4889 4508 2375 3776 2686 4160 3484 4634 2597 4106 2659 4672 3473 4971 2993 5247 3064 5598 3424 5623 3454 6053 3815 5917 4201 6112 4085 6595 4063 5883 3702 5492 3227 4483
+3 2 4 3 0 0 4 1 0 0 2 3 11 4 5 3 4 1 3 5 3 5 7 2 7 2 5 5 6 0 3 4 6 6 10 1 3 3 3 1
+3 2 4 3 4 3 4 4 3 4 5 4 4 4 3 4 4 5 5 5 5 4 5 7 5 5 5 7 6 5 8 9 6 6 6 5 5 6 5 4
+4259 5307 3756 6106 4765 6605 4869 4483 2392 3795 2746 4156 3499 4601 2608 4105 2694 4698 3514 4979 3046 5177 3115 5692 3466 5592 3495 6119 3873 5869 4300 6298 4136 6567 4114 5837 3737 5531 3274 4459
+1 0 2 0 1 0 1 1 1 2 3 2 2 1 1 2 2 3 3 2 3 1 3 5 3 2 3 4 4 2 8 8 4 3 4 2 3 3 3 1
+4 6 6 3 5 5 3 1 2 2 3 3 2 6 4 2 4 5 3 5 5 3 4 4 4 4 3 5 8 6 8 8 7 6 7 6 6 5 4 3
+4254 5357 3815 5923 4773 6515 4824 4275 2383 3690 2754 4090 3462 4693 2645 3981 2728 4723 3502 4987 3097 5050 3139 5596 3481 5502 3484 6059 3980 5885 4397 6411 4211 6541 4190 5855 3797 5506 3294 4375
+2 4 4 0 2 2 1 0 0 0 1 1 0 4 2 0 2 3 1 2 3 1 2 1 2 1 1 2 8 3 8 6 6 3 6 3 4 2 2 1
+2 3 4 4 4 5 3 1 3 2 2 3 2 3 2 2 2 3 3 4 3 3 4 5 4 4 4 5 5 4 5 6 5 5 4 5 5 4 3 3
+4198 5219 3822 5813 4756 6431 4780 4079 2400 3591 2736 4028 3426 4595 2630 3865 2711 4623 3491 4933 3096 4931 3162 5567 3496 5417 3499 6002 4008 5777 4415 6394 4233 6455 4187 5810 3830 5421 3288 4296
+0 1 2 1 1 2 1 0 1 0 0 1 0 1 0 0 0 1 1 1 1 1 2 2 2 1 2 2 3 1 3 3 3 2 2 2 3 1 1 1
+6 4 5 4 3 4 3 2 6 6 5 5 4 3 3 3 4 3 4 7 3 4 5 6 6 4 6 7 7 5 6 5 8 5 4 7 7 7 5 3
+4246 5151 3854 5709 4713 6290 4737 3957 2493 3744 2795 4093 3442 4503 2641 3817 2745 4529 3506 5067 3095 4880 3210 5601 3562 5337 3565 6071 4086 5737 4458 6317 4331 6374 4184 5891 3913 5525 3333 4222
+4 1 3 1 1 1 1 0 5 4 3 3 2 1 1 1 2 1 2 5 1 1 3 3 5 1 5 5 6 2 4 2 8 2 2 5 6 5 3 1
+6 6 2 3 3 5 2 2 6 7 4 6 8 4 4 4 5 3 2 6 5 3 4 4 3 4 6 7 7 6 6 6 8 6 5 6 8 7 4 3
+4293 5210 3808 5550 4672 6219 4669 3842 2584 3949 2827 4216 3560 4478 2677 3833 2804 4441 3469 5131 3145 4771 3232 5510 3549 5262 3629 6136 4162 5761 4500 6306 4427 6360 4207 5906 4019 5623 3352 4153
+4 4 0 0 1 2 0 0 5 6 2 4 9 1 2 2 3 1 0 4 3 1 2 1 1 1 5 4 6 3 4 3 8 3 3 3 8 5 2 1
+5 3 3 4 3 3 7 6 9 5 3 3 5 5 4 5 3 3 4 4 7 4 6 5 3 4 5 4 4 5 4 8 9 6 7 6 5 6 5 3
+4313 5081 3789 5462 4632 6030 4731 3980 2749 4019 2833 4147 3598 4516 2712 3910 2810 4358 3484 5068 3245 4730 3304 5486 3537 5192 3666 6013 4160 5722 4489 6419 4546 6347 4280 5920 4046 5654 3396 4088
+3 1 1 1 1 0 5 4 12 3 1 1 3 3 2 3 1 1 2 1 7 1 5 2 1 1 3 1 2 2 1 6 10 3 6 3 3 3 3 1
+6 4 4 2 2 3 6 7 6 5 5 6 3 3 3 3 4 3 5 4 5 6 5 7 4 6 6 6 5 6 6 7 7 7 7 6 6 5 5 3
+4358 5021 3796 5257 4567 5852 4766 4171 2833 4085 2890 4266 3584 4429 2720 3859 2842 4280 3524 5009 3291 4814 3349 5586 3550 5249 3727 6020 4183 5747 4530 6463 4611 6396 4352 5933 4098 5621 3439 4027
+4 1 2 0 0 0 4 6 5 3 3 4 1 1 1 1 2 1 3 1 3 4 3 5 2 4 4 3 3 3 4 4 6 4 6 3 4 2 3 1
+2 5 7 2 4 3 3 4 3 4 3 5 3 3 4 5 5 3 4 4 4 5 6 6 3 4 4 7 7 7 8 7 6 5 5 5 5 6 5 3
+4300 5026 3880 5064 4555 5685 4723 4166 2838 4085 2894 4317 3571 4347 2754 3934 2898 4207 3538 4954 3311 4832 3418 5619 3538 5179 3736 6088 4257 5832 4621 6505 4649 6319 4371 5884 4123 5652 3480 3969
+0 2 6 0 1 0 1 2 1 2 1 3 1 1 2 3 3 1 2 1 2 2 5 3 1 1 2 5 6 5 7 4 4 2 3 2 3 3 3 1
+5 7 9 4 4 4 3 3 1 2 3 4 4 3 4 5 5 5 2 3 4 5 6 5 6 5 5 6 5 8 6 6 5 6 7 7 4 5 4 4
+4320 5154 4013 5005 4543 5589 4681 4100 2792 3962 2898 4303 3584 4270 2787 4005 2953 4261 3500 4841 3330 4849 3486 5589 3603 5175 3770 6091 4278 5973 4659 6483 4660 6308 4440 5961 4122 5620 3495 3976
+3 5 10 1 1 1 1 1 0 0 1 2 2 1 2 3 3 3 0 1 2 2 5 2 5 2 3 3 3 6 4 3 3 3 6 5 2 2 2 2
+2 2 7 6 5 5 3 2 3 4 4 5 4 5 5 3 4 5 3 5 5 6 4 4 4 4 5 5 6 7 6 5 6 5 4 5 6 5 6 4
+4263 4967 4091 5073 4557 5560 4640 3976 2798 3970 2927 4352 3596 4320 2845 3949 2981 4312 3489 4857 3374 4926 3501 5499 3615 5110 3803 6032 4324 6044 4696 6401 4697 6236 4431 5910 4172 5590 3561 3983
+0 0 6 4 3 2 1 0 1 2 2 3 2 3 3 1 2 3 1 2 3 4 2 1 2 1 3 2 4 5 4 2 4 2 2 2 4 2 5 2
+4 2 4 2 3 7 4 2 3 3 4 4 4 4 7 3 4 8 6 5 5 5 4 3 3 5 5 6 7 6 4 7 9 6 5 6 6 4 4 3
+4258 4791 4091 4891 4519 5656 4626 3860 2804 3916 2956 4336 3608 4306 2952 3896 3008 4544 3555 4872 3417 4937 3515 5353 3601 5110 3835 6038 4394 6049 4681 6447 4809 6230 4448 5924 4221 5500 3574 3928
+2 0 2 0 1 5 1 0 1 1 2 2 2 2 7 1 2 7 5 2 3 2 2 1 1 2 3 3 6 3 1 4 9 3 3 3 4 1 2 1
+3 3 3 2 4 5 5 7 6 4 7 6 4 5 5 4 3 4 7 7 5 7 5 6 4 3 4 5 8 9 6 5 7 7 9 8 6 4 4 4
+4228 4687 4065 4720 4508 5623 4638 4058 2887 3926 3061 4444 3620 4354 3006 3907 3009 4517 3645 5009 3459 5070 3555 5400 3613 4987 3841 5982 4488 6239 4717 6367 4867 6286 4567 6060 4269 5415 3587 3938
+1 1 1 0 1 2 3 6 5 2 7 4 2 3 3 2 1 1 6 5 3 5 3 3 2 1 2 2 7 8 4 2 5 4 9 6 4 1 2 2
+6 7 3 4 7 7 4 4 4 4 3 4 5 5 4 2 3 4 3 3 4 5 4 3 5 5 8 6 6 7 4 5 5 4 8 7 5 5 5 4
+4275 4835 4040 4682 4574 5715 4624 4060 2917 3936 3061 4423 3657 4399 3033 3795 3010 4491 3630 4892 3474 5072 3568 5260 3650 4994 3949 5991 4529 6294 4701 6292 4873 6154 4657 6126 4290 5397 3625 3947
+4 5 1 1 6 5 1 2 2 2 1 2 3 3 2 0 1 1 1 1 2 2 2 1 3 2 8 3 4 4 1 2 2 1 7 4 3 2 3 2
+7 5 4 7 6 5 8 5 5 4 4 3 4 5 4 3 3 3 2 2 3 4 5 4 4 5 6 6 7 6 5 6 6 4 4 4 3 4 4 4
+4347 4852 4041 4831 4613 5679 4713 4123 2971 3945 3086 4341 3667 4442 3059 3751 3011 4405 3590 4721 3463 5013 3606 5190 3661 5001 4003 6000 4594 6285 4711 6283 4904 6030 4642 6004 4259 5318 3636 3955
+6 2 2 5 4 2 7 3 3 2 2 1 2 3 2 1 1 1 0 0 1 1 3 1 2 2 4 3 6 3 3 3 4 1 1 1 1 1 2 2
+8 7 4 4 4 6 5 2 2 4 5 2 4 5 4 3 6 4 3 4 4 4 5 5 5 8 8 5 6 5 4 5 6 4 6 6 6 5 5 4
+4442 4990 4042 4786 4600 5706 4723 3998 2947 3954 3136 4203 3677 4482 3084 3710 3089 4386 3577 4683 3478 4957 3643 5185 3697 5192 4107 5947 4632 6215 4695 6213 4934 5913 4679 6012 4306 5306 3673 3963
+8 5 2 1 1 3 3 0 0 2 3 0 2 3 2 1 5 2 1 1 2 1 3 2 3 7 8 2 4 2 1 2 4 1 4 3 4 2 3 2
+4 4 2 4 5 4 6 6 2 2 1 1 2 4 3 3 4 3 3 3 3 3 3 6 5 4 6 4 5 5 4 6 5 4 7 4 5 5 4 4
+4433 4936 3992 4744 4612 5609 4758 4126 2924 3839 3083 4012 3636 4458 3083 3671 3114 4307 3564 4586 3467 4843 3628 5242 3732 5126 4157 5835 4644 6149 4680 6208 4938 5803 4741 5897 4326 5294 3683 3970
+2 1 0 1 3 1 4 4 0 0 0 0 0 1 1 1 2 1 1 1 1 1 1 4 3 1 4 1 3 2 1 3 2 1 5 1 3 2 2 2
+5 1 3 4 3 3 6 7 4 3 2 3 3 5 3 3 3 5 6 5 5 5 4 6 5 3 6 5 6 7 7 5 5 5 6 5 5 5 4 4
+4450 4701 3969 4705 4573 5456 4792 4308 2953 3792 3057 3955 3621 4497 3082 3635 3112 4355 3628 4618 3508 4859 3639 5296 3766 5002 4206 5792 4681 6210 4742 6142 4942 5762 4776 5850 4345 5283 3693 3977
+3 0 1 1 1 0 4 6 2 1 0 1 1 3 1 1 1 3 5 3 3 2 2 4 3 1 4 2 4 4 5 2 2 2 4 2 3 2 2 2
+6 5 3 4 7 8 7 6 3 3 2 3 4 5 4 7 5 5 5 6 6 5 4 5 3 7 9 5 5 6 6 5 6 6 7 6 6 4 5 3
+4492 4726 3946 4668 4637 5620 4851 4418 2955 3748 3031 3902 3632 4534 3107 3846 3162 4400 3665 4709 3573 4874 3650 5285 3748 5131 4331 5751 4691 6206 4776 6080 4972 5784 4835 5867 4389 5211 3728 3922
+4 3 1 1 5 6 5 4 1 1 0 1 2 3 2 6 3 3 3 4 5 2 2 2 1 5 10 2 3 3 4 2 4 3 5 3 4 1 3 1
+5 4 3 3 4 5 5 6 4 3 3 3 4 4 6 8 4 6 5 5 4 4 6 8 8 6 5 7 6 6 6 5 5 8 5 6 5 5 7 4
+4507 4688 3924 4572 4623 5590 4857 4521 2983 3707 3032 3852 3643 4507 3182 4106 3185 4504 3701 4733 3586 4827 3712 5459 3858 5191 4350 5836 4727 6202 4810 6022 4975 5928 4842 5883 4407 5205 3813 3932
+3 1 1 1 1 2 2 4 2 1 1 1 2 1 5 8 2 4 3 3 2 1 4 7 8 4 3 5 4 3 4 2 2 6 2 3 3 2 6 2
+6 6 4 4 7 8 6 8 8 5 7 3 3 4 5 6 5 8 6 5 6 6 5 7 8 7 5 5 7 10 7 5 7 7 5 6 5 6 8 6
+4547 4775 3928 4543 4686 5746 4889 4741 3113 3791 3135 3805 3628 4482 3230 4228 3233 4725 3761 4756 3649 4906 3747 5561 3966 5309 4369 5793 4787 6444 4868 5967 5029 6002 4848 5898 4424 5261 3922 4064
+4 4 2 1 5 6 4 7 9 3 7 1 1 1 3 4 3 7 4 3 5 4 3 5 8 5 3 2 5 9 5 2 5 5 2 3 3 4 8 4
+6 6 4 6 5 3 2 4 6 5 4 4 2 4 5 4 7 7 7 4 5 6 6 6 5 8 6 5 6 6 7 8 5 9 7 8 6 6 5 5
+4586 4857 3932 4639 4696 5585 4818 4702 3188 3870 3158 3822 3588 4458 3277 4220 3331 4871 3846 4716 3685 4980 3806 5595 3994 5481 4413 5752 4820 6426 4925 6100 5031 6194 4905 6035 4466 5313 3951 4127
+4 4 2 4 3 0 0 1 5 3 2 2 0 1 3 2 7 5 6 1 3 4 4 3 3 7 4 2 4 3 5 6 2 8 5 6 4 4 3 3
+6 5 5 3 3 4 5 7 4 3 2 4 5 4 5 4 2 3 5 6 7 8 4 9 5 5 7 9 6 6 6 6 7 6 7 8 7 6 7 6
+4624 4872 3961 4544 4655 5495 4825 4849 3210 3822 3130 3838 3626 4436 3323 4212 3298 4763 3877 4801 3771 5172 3813 5812 4022 5459 4481 5959 4853 6409 4955 6102 5084 6191 4961 6164 4533 5362 4031 4248
+4 2 3 1 1 1 2 5 2 1 0 2 3 2 3 2 0 1 3 4 6 7 2 8 3 2 6 8 4 3 4 3 5 3 5 6 6 4 6 4
+4 6 4 3 3 5 4 6 5 4 5 6 7 7 7 7 4 5 5 5 7 8 7 7 5 9 10 9 7 7 8 7 6 7 4 7 8 7 6 5
+4610 4948 3964 4455 4615 5472 4806 4926 3257 3838 3179 3976 3714 4599 3418 4389 3317 4784 3908 4820 3855 5353 3896 5893 4049 5684 4624 6154 4910 6454 5035 6165 5110 6249 4939 6224 4624 5470 4083 4300
+1 4 2 1 1 2 1 4 3 2 3 4 6 6 7 6 2 2 3 2 6 7 6 5 3 8 12 8 5 4 7 4 4 4 1 4 7 5 4 3
+7 8 3 4 5 5 5 4 4 3 4 3 4 3 7 4 5 7 5 3 6 5 5 7 10 9 11 9 8 8 10 7 5 6 7 8 9 9 7 3
+4673 5142 3941 4433 4627 5450 4813 4876 3277 3792 3201 3921 3723 4507 3511 4371 3362 4927 3938 4715 3912 5339 3926 5969 4203 5895 4789 6337 4991 6558 5164 6225 5110 6242 4994 6342 4738 5694 4160 4226
+5 7 1 2 3 2 2 1 2 1 2 1 2 1 6 2 3 5 3 1 4 2 3 5 12 8 14 8 7 6 11 4 2 3 5 6 9 8 6 1
+3 6 4 7 7 6 4 3 8 4 3 3 5 3 8 6 4 6 11 7 5 5 7 8 9 6 9 11 11 8 6 6 8 7 4 6 7 8 7 5
+4633 5202 3944 4597 4690 5491 4795 4767 3399 3810 3197 3870 3757 4420 3627 4477 3380 5000 4120 4862 3942 5325 4006 6102 4328 5909 4899 6632 5147 6656 5188 6220 5186 6297 4971 6330 4798 5843 4235 4279
+1 4 2 6 5 3 1 1 9 2 1 1 3 1 8 4 2 4 15 5 3 2 6 6 10 3 9 11 13 6 4 3 7 4 1 3 5 6 6 3
+5 3 5 6 8 4 4 6 8 6 6 4 5 5 5 6 3 4 4 4 3 5 5 6 10 9 5 8 9 9 7 6 6 7 7 6 6 6 5 6
+4645 5074 3973 4689 4777 5407 4777 4849 3518 3950 3270 3883 3791 4461 3664 4577 3372 4945 4119 4816 3920 5312 4033 6104 4475 6107 4904 6725 5248 6809 5237 6215 5209 6349 5025 6318 4831 5861 4257 4390
+3 1 3 4 7 1 1 4 9 4 5 2 3 3 3 4 1 1 2 1 1 2 3 3 12 8 2 6 9 7 5 3 4 4 5 3 4 3 3 4
+12 8 9 5 9 4 7 8 9 5 3 2 4 7 7 6 6 9 3 4 7 7 11 6 11 7 5 8 4 8 8 9 5 6 9 6 8 7 6 6
+4835 5261 4103 4714 4887 5328 4836 5049 3660 4020 3265 3772 3798 4623 3751 4671 3441 5201 4092 4772 4001 5423 4213 6106 4644 6170 4909 6813 5219 6891 5310 6395 5206 6336 5129 6307 4914 5939 4304 4495
+17 7 10 3 9 1 5 7 11 3 1 0 2 5 6 4 5 9 1 1 6 5 15 3 14 4 2 6 1 5 7 7 2 3 9 3 7 5 4 4
+8 6 4 7 6 4 10 7 4 2 3 3 5 5 3 8 7 7 6 8 9 8 5 4 7 8 7 8 9 9 7 9 6 11 8 6 7 10 9 7
+4918 5313 4102 4861 4918 5254 4970 5176 3670 3901 3260 3730 3831 4652 3734 4882 3534 5319 4143 4977 4131 5589 4235 5985 4707 6291 4965 6895 5318 7030 5356 6564 5229 6631 5205 6297 4970 6197 4426 4655
+7 4 2 5 4 1 11 5 2 0 1 1 3 3 1 7 6 5 4 7 10 6 3 1 5 6 5 5 9 7 5 7 4 11 7 3 5 10 10 5
+6 10 7 8 8 5 8 7 3 4 3 4 5 4 8 9 6 4 5 5 7 10 8 8 7 6 6 8 10 8 7 7 7 9 6 9 8 6 9 5
+4948 5608 4178 5060 4999 5245 5050 5295 3655 3912 3255 3751 3863 4618 3845 5142 3599 5245 4167 4985 4206 5868 4333 6117 4768 6282 4994 6972 5440 7099 5401 6600 5277 6786 5228 6472 5050 6193 4545 4682
+4 10 6 7 7 2 7 5 1 2 1 2 3 1 8 9 5 1 3 2 6 10 8 6 5 3 4 5 11 5 5 4 5 7 4 7 7 3 10 3
+4 5 4 5 6 7 6 5 7 6 3 6 13 5 8 10 5 5 4 6 6 5 9 9 9 8 7 6 8 9 6 8 7 8 9 9 12 6 7 5
+4926 5578 4175 5063 5027 5360 5077 5284 3742 4045 3250 3894 4098 4648 3953 5447 3636 5237 4165 5054 4254 5823 4454 6302 4879 6396 5048 6922 5508 7226 5419 6695 5324 6870 5327 6636 5230 6190 4610 4708
+1 2 2 2 4 5 4 2 6 4 1 4 22 3 8 11 3 2 2 4 4 2 10 8 9 6 5 3 7 7 3 6 5 5 9 7 16 3 6 3
+10 10 11 5 5 6 8 7 6 3 5 6 8 7 3 2 4 7 6 7 6 5 5 11 9 7 10 7 9 10 8 9 7 11 11 10 12 7 8 6
+5058 5857 4351 5066 5029 5407 5154 5397 3801 3986 3296 4028 4200 4799 3931 5243 3647 5352 4214 5180 4301 5780 4470 6599 4987 6442 5177 6936 5600 7406 5488 6846 5370 7133 5475 6852 5406 6248 4699 4794
+11 10 15 2 2 3 7 5 4 1 3 4 8 5 1 0 2 5 4 5 4 2 3 11 9 4 11 4 8 8 7 7 5 10 13 9 15 4 7 4
+11 8 7 3 4 4 8 8 5 3 4 6 6 3 4 6 9 9 5 11 7 8 5 8 13 10 7 9 7 7 7 6 8 11 10 8 8 10 8 6
+5212 5997 4421 4946 5005 5328 5229 5564 3833 3931 3315 4154 4248 4695 3935 5297 3786 5583 4236 5545 4372 5924 4486 6694 5194 6669 5226 7072 5639 7391 5529 6803 5440 7380 5593 6932 5475 6487 4786 4874
+13 6 6 1 1 1 7 6 3 1 2 4 4 1 2 4 11 8 3 13 6 6 3 6 19 9 5 7 5 4 5 3 7 10 10 5 7 9 7 4
+4 5 4 6 8 5 10 6 2 4 4 3 5 5 8 6 5 6 7 10 5 9 8 9 7 8 8 16 12 9 8 7 5 8 11 11 9 8 8 10
+5184 5944 4412 5017 5084 5315 5354 5598 3788 3940 3334 4089 4269 4720 4041 5347 3819 5616 4309 5826 4390 6121 4578 6845 5243 6760 5300 7630 5804 7500 5595 6824 5432 7428 5734 7191 5568 6589 4871 5195
+1 2 2 4 7 2 11 3 0 2 2 1 3 3 8 4 3 3 6 10 3 8 7 7 5 6 7 22 15 7 6 4 2 5 12 10 8 6 7 11
+5 7 8 6 4 2 3 4 4 6 7 6 3 5 6 4 7 5 6 11 9 9 5 9 6 9 7 9 9 9 10 13 9 12 9 7 6 7 7 8
+5182 6017 4506 5084 5059 5118 5297 5507 3795 4072 3429 4212 4239 4743 4093 5271 3902 5586 4354 6152 4510 6306 4591 6987 5265 6907 5346 7725 5889 7602 5710 7213 5526 7719 5820 7189 5582 6623 4928 5374
+2 5 7 4 1 0 1 1 2 4 7 4 1 3 4 1 6 2 4 12 10 8 3 7 4 7 5 6 8 6 10 15 8 12 8 4 3 4 5 7
+3 4 5 5 3 6 6 5 9 9 8 11 3 2 3 5 6 9 7 5 10 11 6 6 11 8 7 9 9 8 10 10 5 10 8 8 7 6 7 5
+5129 5901 4521 5086 5009 5179 5318 5483 3930 4380 3547 4635 4209 4581 4067 5261 3957 5803 4424 6090 4653 6603 4629 6936 5414 6984 5391 7814 5972 7637 5823 7394 5515 7870 5879 7249 5621 6594 4983 5358
+1 1 3 2 1 4 4 2 10 10 9 14 1 0 1 2 4 8 6 2 12 11 4 3 13 5 5 6 8 5 10 8 2 8 6 5 5 3 5 2
+2 2 3 7 9 8 5 3 4 4 5 3 3 5 6 6 3 8 7 6 6 7 7 9 9 8 7 10 8 10 11 10 8 7 8 11 11 6 6 5
+5052 5669 4484 5210 5114 5359 5313 5338 3934 4362 3586 4541 4180 4613 4118 5313 3934 5946 4492 6093 4690 6636 4692 7072 5508 7056 5435 7959 6027 7793 5958 7564 5581 7827 5936 7489 5761 6567 5011 5343
+0 0 1 5 9 7 2 1 2 2 3 1 1 3 4 4 1 6 6 3 4 4 5 7 8 5 5 8 6 8 12 8 6 4 6 10 12 3 4 2
+5 5 8 5 7 7 6 5 3 3 5 7 7 6 8 5 4 4 7 7 5 6 6 8 8 6 8 10 9 11 9 10 8 10 10 9 12 7 6 5
+5053 5636 4576 5204 5165 5467 5333 5324 3912 4284 3624 4698 4254 4704 4219 5301 3938 5835 4558 6157 4700 6606 4728 7139 5575 7001 5503 8095 6106 8001 6039 7724 5646 7971 6043 7592 5923 6603 5039 5329
+2 2 7 2 5 5 4 2 1 1 3 5 6 4 8 2 2 1 6 4 3 3 4 5 6 3 7 8 8 10 8 8 6 8 10 6 15 4 4 2
+6 9 6 3 10 12 13 7 4 4 3 4 7 5 4 3 4 7 9 8 9 6 6 8 10 10 12 10 9 7 8 9 9 8 7 6 7 7 7 7
+5080 5850 4615 5076 5291 5876 5532 5434 3916 4272 3610 4661 4326 4728 4215 5167 3941 5914 4674 6279 4812 6578 4763 7202 5691 7195 5672 8223 6183 7951 6092 7813 5735 7984 6071 7505 5954 6636 5092 5439
+4 8 4 1 11 15 18 5 2 2 1 1 6 3 2 1 2 5 9 6 9 3 4 5 10 9 15 8 8 4 6 6 8 5 5 3 5 4 5 5
+4 4 6 6 6 7 6 6 8 4 5 8 3 9 7 9 6 7 8 9 11 9 8 10 8 7 7 8 9 8 9 8 9 6 7 9 7 9 8 6
+5055 5744 4653 5140 5312 5953 5547 5476 4022 4261 3647 4872 4294 4997 4288 5409 3995 5989 4761 6455 4973 6736 4848 7384 5753 7193 5709 8221 6258 7965 6169 7835 5821 7873 6098 7607 5984 6790 5169 5481
+1 1 4 4 4 5 3 3 8 2 3 7 1 9 6 8 4 5 7 7 14 7 7 8 6 4 5 5 8 5 8 5 8 3 5 6 5 7 7 3
+6 4 4 5 3 3 7 6 8 9 9 6 4 7 4 4 6 6 8 10 6 6 9 10 9 6 8 6 6 9 6 9 10 7 7 8 6 9 8 6
+5082 5645 4639 5138 5256 5780 5587 5516 4126 4558 3786 4948 4289 5127 4283 5330 4048 5998 4846 6682 5002 6700 4957 7555 5839 7130 5770 8096 6255 8040 6168 7917 5931 7830 6124 7642 5987 6935 5244 5520
+4 1 1 2 1 0 5 3 8 9 11 4 2 5 2 1 4 3 7 9 4 3 9 8 8 3 6 2 3 6 3 6 10 4 4 5 3 7 7 3
+8 8 12 10 5 2 10 7 6 7 5 4 4 5 3 5 4 9 8 9 7 9 8 8 8 10 7 8 11 16 12 10 14 12 8 11 9 8 8 8
+5159 5797 4829 5444 5252 5556 5703 5615 4176 4714 3819 4896 4284 5126 4252 5317 4049 6191 4929 6834 5056 6850 5037 7593 5897 7316 5804 8101 6380 8540 6320 8056 6140 8097 6175 7859 6067 7010 5317 5680
+7 6 17 11 2 0 10 5 4 5 3 1 2 2 1 2 2 8 7 7 5 7 7 5 6 8 5 5 11 20 14 8 19 11 6 10 8 5 7 6
+2 8 9 6 6 6 6 5 8 7 8 6 5 4 4 6 5 7 6 9 10 6 8 9 8 7 7 9 15 20 14 8 11 13 13 14 8 9 6 7
+5081 5940 4938 5485 5274 5591 5714 5585 4276 4861 3928 4970 4304 5064 4248 5366 4075 6249 4959 6976 5185 6807 5115 7690 5954 7307 5838 8167 6604 9256 6520 8064 6267 8409 6353 8247 6120 7142 5337 5769
+0 6 9 3 4 3 3 2 8 5 8 4 3 1 2 4 3 4 4 7 11 3 7 6 6 4 5 6 21 29 19 5 12 13 16 15 6 7 4 5
+7 8 5 5 5 4 3 5 7 12 9 5 6 6 7 7 6 4 7 6 5 5 5 12 13 5 8 12 10 9 8 7 10 8 9 10 11 8 8 6
+5133 6075 4942 5463 5270 5501 5648 5557 4348 5306 4060 4978 4349 5128 4320 5474 4126 6119 5014 6926 5183 6705 5115 7965 6137 7175 5896 8414 6694 9253 6561 8010 6366 8395 6424 8366 6248 7204 5408 5791
+5 6 2 2 2 1 0 2 6 16 10 2 4 4 6 5 4 1 5 3 2 2 2 11 17 2 6 11 9 5 6 4 9 5 7 7 12 5 7 3
+10 17 15 10 9 5 10 8 8 9 5 4 5 10 8 6 10 5 9 16 8 9 10 11 7 9 11 13 12 10 10 7 9 7 7 8 10 8 7 6
+5260 6754 5202 5749 5368 5478 5762 5715 4443 5540 4086 4925 4368 5434 4416 5514 4278 6059 5118 7493 5258 6855 5242 8162 6162 7297 6030 8707 6833 9312 6652 7959 6437 8321 6442 8355 6347 7263 5451 5812
+11 27 25 10 9 2 10 6 8 8 3 1 3 11 8 3 12 2 9 22 7 7 11 9 4 7 12 13 13 7 9 4 7 3 4 5 9 5 5 3
+11 14 12 7 9 10 10 9 9 5 7 7 12 10 10 6 4 5 9 7 7 7 9 8 7 8 8 10 14 11 11 9 7 12 10 9 8 8 8 10
+5409 7208 5378 5834 5464 5763 5873 5925 4562 5514 4162 5059 4565 5722 4561 5551 4273 6002 5220 7473 5305 6873 5341 8163 6187 7350 6083 8798 7020 9429 6767 8034 6455 8559 6536 8406 6393 7318 5519 6077
+13 17 16 5 8 10 10 8 9 2 6 5 17 10 12 3 2 2 9 4 5 4 9 5 4 5 6 7 17 8 11 6 4 11 9 6 6 5 7 10
+8 12 16 17 9 9 5 8 10 9 6 4 9 7 9 10 5 7 8 7 6 8 9 12 13 9 10 11 11 8 8 11 10 10 10 8 7 8 9 8
+5478 7512 5652 6528 5557 5970 5854 6061 4703 5736 4211 5001 4681 5808 4677 5832 4294 6071 5294 7454 5325 6952 5437 8410 6364 7461 6186 8945 7125 9354 6802 8227 6549 8659 6628 8393 6412 7370 5611 6203
+7 12 27 28 8 8 2 6 12 8 4 1 9 5 9 10 3 5 7 4 4 5 8 11 16 7 10 9 10 4 6 9 9 7 9 5 4 5 8 6
+11 12 7 8 9 2 2 7 8 8 9 6 13 11 5 7 9 9 6 8 6 5 10 16 11 9 9 13 13 7 10 11 9 10 10 7 6 6 5 6
+5622 7798 5689 6627 5648 5734 5758 6127 4790 5883 4335 5069 4896 6135 4688 5912 4416 6259 5315 7498 5345 6842 5556 8888 6486 7566 6261 9207 7279 9222 6887 8409 6615 8753 6718 8319 6405 7296 5598 6199
+13 12 5 6 8 0 0 4 7 6 10 4 19 12 3 5 10 8 4 5 4 2 10 19 11 7 8 12 15 3 9 9 7 7 9 3 3 3 2 3
+6 10 10 11 6 6 5 6 7 8 11 3 5 7 3 6 7 8 8 9 8 8 10 9 7 11 9 9 10 10 11 7 10 11 10 7 7 10 9 7
+5635 7944 5802 6905 5660 5758 5742 6128 4849 6021 4507 4949 4901 6196 4647 5925 4484 6374 5386 7601 5416 6922 5672 8907 6503 7787 6334 9207 7352 9283 6996 8334 6705 8903 6805 8249 6424 7472 5688 6257
+3 8 10 11 3 3 2 3 5 6 15 1 2 4 1 3 6 6 7 6 7 5 10 6 4 10 8 5 8 7 11 3 9 9 9 3 4 8 8 4
+6 11 6 8 6 5 4 9 10 5 5 7 5 5 6 6 9 8 8 10 9 7 7 6 8 8 7 8 6 7 7 9 8 7 9 10 10 10 8 7
+5647 8143 5810 6982 5672 5719 5700 6313 4983 5966 4522 5082 4906 6131 4684 5938 4602 6483 5456 7759 5510 6936 5709 8741 6545 7811 6354 9146 7321 9156 7000 8386 6742 8798 6865 8368 6519 7638 5750 6311
+3 9 3 5 3 2 1 8 11 2 3 5 2 2 4 3 9 6 7 8 8 4 5 2 6 5 4 4 3 3 4 6 6 3 7 7 9 8 6 4
+7 16 18 12 7 11 13 9 6 3 4 5 2 8 6 4 10 11 11 9 11 8 5 11 9 8 8 10 10 9 7 10 11 9 9 11 11 9 7 5
+5684 8637 6125 7300 5709 6051 5890 6487 5011 5792 4511 5084 4834 6254 4720 5827 4742 6769 5600 7846 5653 7011 5694 8892 6611 7833 6399 9211 7393 9159 7004 8497 6854 8823 6923 8541 6637 7732 5785 6239
+5 19 32 12 5 12 17 7 4 0 1 2 0 6 4 1 12 11 13 6 13 5 2 9 7 5 6 7 8 5 4 7 11 6 7 9 11 6 5 2
+7 5 11 13 8 6 8 5 5 5 7 10 6 8 11 10 10 10 10 7 9 11 7 7 8 5 7 8 13 10 8 8 9 9 9 7 9 7 5 4
+5721 8425 6253 7660 5770 6056 5947 6404 5013 5751 4577 5393 4866 6370 4883 6091 4879 6977 5715 7805 5741 7266 5730 8788 6650 7670 6418 9149 7540 9223 7033 8478 6912 8846 6980 8458 6701 7698 5768 6110
+5 1 12 14 6 3 6 2 2 2 6 11 4 6 14 10 11 9 10 4 8 10 5 3 6 2 4 4 14 7 5 5 7 6 7 3 7 4 2 1
+6 10 6 4 4 3 5 7 9 6 6 12 8 3 6 8 5 6 6 5 9 11 10 9 6 4 11 9 14 11 10 9 13 10 9 8 9 8 8 5
+5731 8533 6250 7446 5728 5876 5926 6449 5117 5774 4616 5806 4949 6172 4914 6217 4885 6927 5725 7643 5827 7505 5842 8813 6637 7455 6538 9153 7709 9345 7113 8522 7071 8929 7035 8442 6763 7727 5828 6050
+3 7 3 1 1 0 2 4 9 3 4 15 7 0 4 6 2 3 3 2 8 10 10 6 3 1 11 5 16 8 9 6 15 7 7 5 7 5 6 2
+2 6 8 5 4 4 5 3 5 3 6 10 8 4 6 5 6 7 8 7 9 11 13 9 11 11 13 14 10 6 8 7 9 8 12 11 13 11 7 5
+5639 8389 6298 7306 5687 5769 5905 6246 5117 5611 4654 6072 5029 6047 4944 6151 4916 6941 5786 7614 5911 7730 6028 8837 6752 7683 6707 9463 7772 9152 7139 8440 7124 8884 7166 8611 6926 7939 5861 5994
+0 2 6 2 1 1 2 0 2 0 4 10 7 1 4 2 4 4 6 4 8 10 17 6 11 10 16 14 8 2 5 3 7 4 13 9 15 10 5 2
+6 5 5 7 6 7 5 2 6 7 9 5 6 6 5 6 7 6 7 5 6 10 13 10 11 9 10 16 11 12 12 11 8 8 9 10 10 10 9 6
+5651 8192 6268 7297 5698 5852 5885 5994 5142 5704 4767 6014 5056 6052 4948 6150 4972 6893 5820 7464 5916 7880 6209 8921 6864 7774 6795 9878 7859 9340 7267 8609 7150 8842 7217 8708 7008 8077 5944 6002
+3 2 2 4 3 5 2 0 4 5 9 2 4 3 2 3 5 3 5 2 3 8 17 7 11 6 9 17 10 10 12 9 5 4 7 7 9 8 8 3
+3 1 4 6 5 5 8 9 8 4 8 5 5 7 8 3 5 6 5 5 15 12 7 11 9 7 9 10 10 7 8 7 8 8 11 10 9 8 6 8
+5586 7761 6213 7227 5683 5808 5942 6187 5218 5607 4852 5960 5057 6118 5028 5965 4975 6848 5802 7323 6151 8144 6232 9061 6922 7737 6855 9899 7918 9209 7290 8522 7176 8803 7318 8799 7063 8083 5948 6133
+0 0 1 3 2 2 6 8 7 1 7 2 2 4 7 0 2 3 2 2 22 11 4 9 7 4 7 6 8 3 5 3 5 4 10 7 7 5 3 6
+4 5 5 9 8 13 10 9 8 4 8 11 5 4 7 8 9 8 7 9 9 12 12 7 6 7 8 11 10 7 12 15 11 8 7 9 9 9 11 7
+5548 7602 6185 7346 5745 6258 6049 6368 5292 5516 4935 6278 5058 5996 5081 6098 5080 6928 5836 7436 6227 8392 6383 8947 6902 7702 6888 9980 7975 9086 7414 8932 7278 8766 7314 8824 7116 8150 6080 6195
+1 2 2 7 6 16 10 8 7 1 7 12 2 1 5 6 9 5 5 7 8 11 14 3 3 4 5 8 8 3 12 16 10 4 4 6 7 6 12 4
+7 16 13 11 6 9 11 9 12 9 9 9 5 4 5 4 7 9 9 8 5 9 7 7 11 6 5 9 9 9 10 11 11 6 8 9 10 9 8 6
+5588 8128 6362 7581 5754 6435 6179 6538 5466 5737 5041 6454 5059 5882 5081 5977 5132 7065 5920 7481 6199 8441 6402 8840 7010 7608 6843 9934 8005 9093 7484 9071 7377 8608 7335 8847 7193 8213 6132 6191
+5 20 16 10 3 7 12 7 15 8 9 7 2 1 2 1 5 7 8 5 2 6 4 3 11 3 2 5 6 6 8 9 10 2 5 6 9 6 6 3
+14 15 11 7 2 6 10 9 4 5 8 9 8 9 4 9 11 9 4 7 7 8 7 9 9 14 14 11 15 8 10 9 11 8 9 8 10 8 9 6
+5806 8561 6484 7556 5661 6417 6280 6698 5431 5699 5119 6619 5137 6082 5056 6171 5285 7194 5874 7462 6223 8426 6421 8862 7065 8011 7030 10013 8188 9038 7552 9079 7474 8583 7381 8807 7269 8211 6208 6188
+20 17 11 4 0 3 9 7 1 2 7 7 7 8 1 8 13 7 1 4 4 5 4 6 7 16 17 8 18 4 8 6 10 5 7 4 8 5 8 3
+3 5 4 5 3 2 4 5 9 10 10 8 10 12 4 8 10 6 3 8 9 10 6 6 9 12 8 8 13 10 6 7 11 11 10 5 7 9 11 8
+5737 8354 6424 7409 5596 6154 6225 6603 5525 5971 5246 6713 5264 6454 5032 6292 5408 7131 5804 7505 6297 8534 6414 8698 7118 8267 7059 9903 8315 9110 7516 8964 7568 8743 7452 8585 7266 8271 6334 6308
+0 1 1 2 0 0 1 2 8 10 11 6 11 14 1 6 11 3 0 5 8 7 3 2 7 11 5 4 13 7 3 3 10 9 8 1 4 6 12 6
+10 13 8 6 9 5 7 5 4 6 6 8 8 7 6 6 8 6 11 7 10 9 16 12 12 11 9 8 11 9 11 8 11 12 8 5 9 11 11 8
+5849 8651 6468 7333 5686 6091 6248 6514 5489 5981 5268 6801 5337 6496 5059 6283 5477 7071 5940 7484 6395 8574 6662 8913 7247 8446 7112 9800 8388 9116 7609 8917 7660 8955 7470 8377 7314 8450 6457 6421
+10 13 6 3 8 2 4 2 1 3 4 6 7 4 4 3 7 3 12 4 9 6 24 10 12 9 7 4 9 6 10 4 10 10 5 1 7 9 11 6
+7 12 6 4 7 5 10 8 9 8 6 4 4 5 9 9 10 6 13 7 5 8 11 13 7 11 10 12 11 13 11 10 10 8 8 10 11 10 10 6
+5881 8869 6459 7138 5722 6032 6347 6614 5582 6113 5289 6638 5306 6413 5162 6458 5595 7015 6124 7465 6363 8551 6776 9176 7245 8615 7190 9949 8459 9367 7700 8996 7724 8909 7488 8488 7412 8557 6551 6404
+5 10 3 1 5 2 9 6 8 6 4 1 1 2 9 7 10 3 17 4 2 5 11 12 4 9 9 9 9 12 10 7 8 4 5 7 10 7 9 3
+8 12 11 6 4 7 7 3 7 7 8 7 6 4 7 5 8 5 7 7 8 8 6 9 9 8 13 11 9 11 12 14 13 9 9 9 10 11 10 6
+5938 9074 6578 7078 5681 6100 6367 6401 5621 6176 5361 6669 5326 6273 5212 6377 5659 6901 6150 7447 6408 8529 6760 9178 7294 8589 7342 10027 8477 9480 7814 9316 7863 8927 7531 8531 7482 8719 6643 6388
+6 10 11 3 1 4 4 0 5 4 7 4 4 1 5 2 6 2 4 4 6 5 3 5 7 5 14 8 6 8 12 14 14 6 7 6 8 9 9 3
+8 11 7 10 11 8 9 7 6 6 6 6 4 7 9 7 8 5 5 7 6 6 7 6 8 9 13 14 13 12 9 11 10 5 9 8 6 8 9 7
+5994 9205 6592 7267 5820 6225 6438 6447 5634 6174 5380 6637 5295 6326 5311 6424 5722 6794 6124 7430 6401 8385 6770 8995 7316 8626 7491 10285 8597 9648 7848 9432 7922 8698 7573 8510 7448 8687 6707 6434
+6 8 4 8 12 6 7 4 3 3 4 3 1 4 9 4 6 2 2 4 3 2 4 2 5 6 14 13 13 10 6 8 8 1 7 5 3 4 7 4
+4 8 5 9 7 3 4 6 7 4 7 7 7 8 4 6 6 5 6 9 11 5 5 7 7 7 9 12 10 7 11 12 11 12 14 12 10 8 9 7
+5946 9144 6555 7383 5853 6035 6379 6428 5672 6049 5424 6668 5341 6437 5280 6407 5732 6693 6124 7537 6522 8189 6728 8885 7312 8538 7534 10405 8638 9499 7933 9603 8005 8913 7741 8736 7517 8657 6769 6478
+1 4 2 7 5 0 1 3 5 1 5 4 5 6 1 3 3 2 3 7 11 2 2 3 4 3 7 9 7 3 10 10 10 10 16 11 8 4 7 4
+4 7 7 13 9 8 7 7 8 7 9 11 7 6 3 5 6 6 6 6 9 5 6 10 8 9 7 9 12 8 8 9 10 10 10 11 10 9 9 8
+5899 9025 6570 7738 5936 6164 6398 6472 5734 6116 5518 6943 5386 6419 5224 6329 5742 6660 6124 7453 6589 8004 6713 8966 7333 8578 7524 10333 8729 9420 7939 9579 8060 8992 7803 8887 7584 8690 6830 6580
+1 3 4 14 8 6 4 4 6 4 8 11 5 3 1 2 3 3 3 3 7 2 3 7 5 6 4 5 11 4 5 5 8 7 8 9 8 6 7 6
+9 8 7 18 11 8 6 7 4 5 12 11 11 6 8 6 9 10 8 8 8 9 9 10 11 9 13 7 9 8 8 13 14 9 8 8 10 8 9 7
+5981 8975 6584 8379 6069 6285 6391 6513 5693 6056 5687 7202 5532 6402 5298 6317 5828 6874 6175 7497 6629 8076 6775 9042 7431 8616 7668 10143 8741 9346 7945 9802 8216 9005 7812 8845 7650 8660 6889 6615
+8 4 4 25 12 6 3 4 1 2 15 10 13 3 7 3 8 9 6 5 6 6 7 7 10 6 14 3 6 4 5 11 15 6 5 4 8 4 7 4
+6 5 4 9 10 8 10 8 4 4 8 12 8 4 8 7 5 7 9 6 7 8 9 11 11 12 11 7 7 7 8 11 11 11 11 10 6 8 7 6
+5985 8743 6521 8429 6173 6399 6487 6613 5653 5938 5749 7507 5598 6263 5370 6368 5810 6891 6250 7415 6642 8082 6835 9175 7526 8836 7757 9964 8701 9215 7951 9889 8292 9140 7898 8928 7612 8631 6895 6586
+3 1 1 6 10 6 9 6 1 1 6 12 6 1 7 4 2 4 8 3 4 5 7 8 10 10 10 3 3 3 5 8 9 8 10 7 3 4 4 3
+8 5 7 12 12 11 7 5 5 5 7 13 12 8 8 6 12 8 5 4 8 10 12 18 11 10 9 9 7 8 10 8 9 7 7 10 8 8 9 6
+6040 8525 6537 8660 6325 6690 6504 6523 5639 5888 5784 7855 5765 6378 5440 6354 5971 6969 6221 7215 6680 8211 6971 9730 7619 8920 7793 9919 8662 9153 8008 9787 8315 9021 7879 9006 7626 8604 6952 6559
+6 1 4 11 14 11 4 2 2 2 5 14 15 6 7 3 14 5 2 1 6 8 13 22 10 7 6 5 3 4 8 4 6 3 4 7 5 4 7 3
+5 8 8 12 5 7 4 7 10 7 11 6 10 6 5 5 6 8 7 9 7 13 12 11 6 7 9 8 8 11 12 8 8 9 9 7 9 9 8 6
+6017 8505 6578 8877 6294 6718 6443 6561 5753 5964 5920 7752 5876 6363 5432 6279 5975 7042 6244 7335 6692 8517 7103 9822 7582 8814 7828 9815 8650 9279 8114 9691 8311 9032 7912 8895 7665 8640 6982 6534
+2 5 6 10 2 4 1 4 10 5 12 3 10 3 2 2 3 5 4 7 4 13 13 8 3 3 6 4 4 8 11 4 5 6 6 3 6 6 5 3
+4 8 9 9 6 9 5 3 5 9 7 6 8 6 4 3 6 7 6 7 6 9 9 14 20 10 8 7 7 10 11 6 7 7 9 9 11 9 10 11
+5969 8486 6643 8897 6290 6867 6409 6351 5737 6159 5951 7655 5933 6349 5398 6086 5979 7049 6241 7324 6678 8558 7155 10092 7903 8899 7837 9656 8613 9336 8192 9478 8282 8920 7944 8914 7754 8674 7063 6817
+1 5 7 6 3 7 2 0 2 8 5 3 6 3 1 0 3 4 3 4 3 6 7 13 33 7 5 3 3 7 9 2 3 3 6 6 10 6 9 11
+8 9 8 6 5 4 11 11 5 4 8 10 7 3 3 5 5 7 5 6 9 16 7 8 10 13 12 9 7 10 9 7 10 11 9 8 8 7 9 7
+6024 8529 6681 8731 6260 6700 6530 6645 5721 6035 6006 7810 5963 6152 5339 6028 5957 7056 6213 7253 6741 9027 7155 9978 7961 9163 7948 9629 8576 9390 8217 9339 8330 9060 7975 8870 7764 8583 7116 6838
+6 6 6 2 2 1 11 11 2 1 6 8 5 0 1 2 2 4 2 3 7 19 4 4 8 12 11 5 3 7 6 3 8 9 6 4 5 3 7 4
+10 9 11 9 7 4 6 8 3 4 7 4 7 9 6 5 6 8 7 6 6 6 13 12 9 11 16 16 17 13 9 9 12 13 14 14 11 9 8 6
+6129 8570 6795 8760 6282 6543 6520 6737 5654 5918 6035 7587 5993 6335 5359 5973 5961 7124 6236 7186 6726 8854 7308 10116 7992 9289 8158 10034 8796 9625 8241 9331 8428 9315 8133 9197 7851 8620 7142 6796
+10 6 11 6 4 1 3 6 0 1 5 1 5 8 4 2 3 5 4 3 3 2 15 9 6 8 20 17 22 11 6 5 11 12 16 14 10 6 5 3
+13 11 13 6 6 8 8 6 5 7 10 5 6 6 7 10 4 6 8 8 8 16 14 11 12 8 7 13 11 9 9 10 11 11 11 9 10 8 7 8
+6308 8731 6957 8603 6278 6641 6561 6701 5640 5992 6139 7438 5996 6323 5404 6229 5914 7065 6284 7246 6762 9305 7483 10184 8099 9223 8133 10230 8857 9600 8265 9385 8498 9431 8211 9198 7910 8594 7142 6879
+16 9 15 2 3 6 6 3 2 5 10 2 3 3 5 10 1 3 6 5 6 18 17 8 11 4 4 11 9 5 6 7 9 8 9 5 8 4 4 5
+13 19 19 11 11 5 7 5 9 11 9 7 7 6 5 7 6 9 6 6 7 15 10 11 12 12 10 12 13 9 10 10 8 10 8 8 11 9 8 9
+6482 9374 7269 8762 6402 6549 6576 6606 5729 6308 6215 7421 6025 6312 5396 6285 5919 7194 6280 7179 6772 9668 7551 10248 8203 9406 8185 10353 8968 9576 8314 9436 8490 9479 8210 9137 7993 8631 7168 7019
+16 26 32 9 11 2 4 2 8 12 8 4 5 3 2 4 3 7 3 3 4 15 8 8 11 10 8 9 12 5 8 7 5 7 5 4 10 6 5 7
+4 4 6 8 7 4 9 8 7 6 5 6 8 9 6 6 8 7 7 7 11 5 5 18 16 10 11 15 15 7 9 10 11 13 11 7 6 6 6 6
+6422 9057 7240 8727 6421 6401 6641 6701 5764 6298 6187 7344 6079 6486 5414 6276 5975 7192 6302 7178 6884 9395 7490 10739 8407 9456 8261 10653 9127 9431 8336 9484 8559 9708 8286 9018 7946 8481 7142 6966
+1 1 3 4 4 1 7 6 5 3 2 3 6 7 3 3 6 4 4 4 11 1 2 20 20 7 9 14 16 3 6 7 9 11 9 3 2 2 3 3
+2 5 6 11 9 5 9 9 7 7 4 9 9 7 5 6 7 8 13 13 11 12 13 14 9 10 10 7 8 8 11 10 13 8 9 10 12 11 6 4
+6312 8820 7212 8879 6490 6324 6705 6851 5799 6350 6134 7456 6157 6526 5406 6268 6004 7251 6476 7546 6993 9568 7635 10954 8427 9503 8310 10443 9103 9356 8409 9529 8677 9617 8309 9091 8054 8647 7117 6793
+0 1 3 9 7 2 7 7 5 4 1 7 8 4 2 3 5 5 16 14 11 10 14 12 6 7 8 3 4 4 9 7 13 4 6 7 11 9 3 1
+10 6 7 9 9 8 10 6 7 12 9 10 14 7 7 6 5 9 13 14 13 13 14 12 8 8 10 9 9 9 10 7 12 13 13 13 9 9 6 5
+6410 8659 7210 8899 6558 6436 6793 6808 5833 6706 6210 7623 6361 6564 5449 6260 5981 7368 6646 7953 7150 9792 7802 11034 8421 9424 8358 10369 9105 9347 8454 9387 8767 9838 8433 9344 8083 8681 7092 6692
+9 2 4 6 7 6 9 3 5 13 8 8 19 4 5 3 2 7 16 16 15 11 16 8 5 4 7 5 6 5 7 3 11 11 13 12 6 6 3 2
+8 6 6 15 15 7 8 5 4 11 9 12 14 6 6 6 5 6 8 9 14 10 11 11 13 9 8 8 8 11 8 6 9 9 10 12 9 9 9 7
+6454 8508 7183 9286 6777 6479 6827 6706 5789 6979 6285 7902 6560 6538 5466 6253 5959 7294 6684 8028 7329 9818 7888 11047 8543 9411 8353 10238 9082 9462 8447 9192 8778 9800 8478 9520 8111 8713 7145 6720
+6 2 3 16 21 4 6 2 1 11 8 12 18 3 3 3 2 3 6 6 17 6 10 7 13 5 5 4 4 8 5 2 6 5 7 10 6 6 7 4
+6 5 5 9 5 8 6 9 7 10 13 10 14 8 6 5 6 11 8 10 9 10 10 12 9 11 9 9 10 8 10 8 11 11 9 5 7 9 10 10
+6446 8304 7131 9281 6735 6581 6809 6856 5823 7174 6460 8042 6754 6637 5482 6185 5963 7532 6721 8160 7376 9843 7946 11121 8559 9522 8374 10176 9110 9385 8491 9132 8840 9887 8496 9256 8087 8743 7222 6931
+3 2 2 5 2 6 3 7 5 9 16 8 18 6 3 2 3 10 6 8 7 6 8 8 6 8 6 5 7 4 7 4 9 8 6 1 4 6 8 9
+3 5 5 7 7 6 5 7 9 8 11 8 7 9 9 4 5 6 7 12 5 9 9 11 18 9 9 9 8 13 13 14 12 10 7 8 10 9 7 9
+6361 8112 7080 9154 6745 6554 6766 6874 5907 7235 6579 8050 6764 6791 5575 6059 5941 7448 6732 8407 7319 9805 7977 11129 8805 9503 8395 10118 9087 9620 8611 9444 8926 9908 8462 9192 8140 8771 7220 7068
+0 2 2 3 4 3 2 4 8 5 11 5 4 7 8 1 2 3 4 11 2 5 6 7 24 5 6 5 4 11 13 14 10 6 3 4 8 6 4 7
+3 7 9 9 13 9 9 6 7 4 7 9 5 9 8 7 9 8 9 11 5 6 10 8 14 10 13 13 9 11 12 9 9 9 9 8 9 7 8 6
+6278 8055 7133 9157 6908 6713 6827 6830 5938 7046 6593 8119 6722 6936 5640 6125 6022 7492 6794 8578 7264 9585 8033 10952 8943 9547 8517 10309 9090 9718 8702 9430 8933 9866 8480 9132 8166 8674 7244 7012
+0 4 7 5 15 7 7 3 5 1 4 6 2 7 6 4 8 5 7 9 2 2 8 3 14 7 13 11 6 8 11 5 6 5 6 4 6 3 5 3
+3 7 4 9 11 10 5 3 5 5 4 6 5 4 5 9 9 6 5 4 6 6 7 7 12 11 13 14 12 10 11 10 7 7 11 12 9 8 10 7
+6197 8001 7057 9160 7016 6924 6784 6604 5917 6930 6530 8000 6682 6765 5627 6310 6101 7411 6752 8309 7236 9378 8011 10724 9026 9650 8636 10550 9169 9749 8765 9478 8888 9704 8549 9321 8192 8645 7318 7021
+0 4 1 5 11 9 2 0 2 2 1 2 2 1 2 8 8 3 2 1 3 2 4 3 10 8 13 12 10 6 9 7 3 3 9 10 6 4 8 4
+10 10 10 7 8 5 9 8 7 5 6 5 6 5 3 5 10 4 6 10 11 8 8 10 14 11 10 9 10 14 10 7 6 10 11 11 7 9 8 10
+6297 8135 7136 9040 7045 6815 6844 6699 5948 6821 6520 7827 6668 6666 5563 6238 6204 7212 6736 8424 7336 9306 8015 10694 9158 9746 8676 10469 9195 10024 8801 9339 8819 9736 8616 9437 8166 8679 7339 7214
+9 8 9 3 5 2 7 6 5 2 3 2 3 2 0 2 10 1 3 7 10 4 5 6 14 8 7 5 7 13 7 3 2 6 9 8 3 6 5 8
+5 9 10 8 5 5 10 10 6 6 4 5 5 6 5 5 7 7 9 9 10 8 7 10 6 9 11 11 11 11 10 9 7 9 11 12 8 10 11 11
+6267 8199 7213 8989 6996 6713 6928 6911 5952 6780 6459 7664 6629 6634 5551 6170 6228 7209 6797 8471 7408 9239 7993 10666 9082 9714 8740 10516 9246 10098 8836 9331 8777 9704 8682 9608 8166 8772 7436 7456
+2 6 8 4 2 2 9 9 3 3 1 2 2 3 2 2 4 4 7 6 8 4 4 6 2 5 9 7 8 8 7 5 3 5 9 10 5 7 10 10
+4 6 10 8 6 6 7 7 9 4 4 6 8 7 5 8 9 7 12 11 7 9 13 12 8 8 11 10 8 8 9 13 15 11 10 13 9 11 9 8
+6212 8075 7288 8941 6974 6678 6933 6926 6033 6618 6400 7572 6668 6666 5540 6291 6302 7206 6934 8638 7402 9237 8125 10763 9059 9622 8803 10499 9219 9983 8845 9569 8941 9797 8720 9830 8192 8921 7480 7500
+1 2 8 4 3 3 4 4 8 1 1 3 6 4 2 6 8 4 13 9 4 5 13 9 4 4 9 6 4 4 6 12 16 8 7 11 6 9 7 5
+6 2 5 4 8 9 6 5 7 6 10 13 14 11 6 6 8 9 12 12 10 9 12 14 6 11 19 9 7 8 11 11 11 14 10 11 10 9 12 9
+6210 7713 7233 8650 7004 6830 6913 6817 6061 6589 6495 7916 6859 6941 5555 6282 6349 7326 7067 8856 7472 9235 8228 10977 8986 9720 9068 10422 9167 9875 8905 9670 8998 10069 8757 9916 8243 8938 7600 7602
+3 0 2 1 5 7 3 2 5 3 9 14 18 11 3 3 6 7 13 10 8 5 11 12 2 8 26 5 3 4 9 8 9 13 7 8 8 6 12 6
+4 4 3 5 7 12 13 7 3 8 9 8 11 7 6 6 4 5 7 8 7 6 5 8 8 12 15 10 5 11 12 11 8 8 8 12 10 8 7 7
+6157 7495 7129 8438 7008 7157 7072 6838 5986 6685 6562 7932 6968 6954 5569 6273 6292 7193 7069 8816 7464 9049 8150 10809 8966 9874 9225 10411 9065 9958 8989 9765 8977 9956 8742 10058 8292 8893 7589 7575
+1 1 0 1 4 13 15 4 0 6 7 5 11 4 3 3 1 2 4 4 4 2 2 4 4 9 16 6 1 8 10 8 4 4 4 9 8 4 4 4
+5 5 9 6 4 12 12 5 5 5 5 6 8 6 5 4 8 6 5 5 6 8 7 9 7 7 10 10 9 11 12 11 11 9 10 10 9 7 8 6
+6131 7352 7181 8300 6935 7464 7202 6734 5964 6591 6526 7824 6998 6905 5557 6142 6339 7130 7020 8594 7431 8997 8125 10713 8921 9711 9250 10400 9068 10036 9071 9854 9034 9911 8779 10068 8315 8789 7604 7489
+2 2 7 2 1 12 12 2 2 2 2 3 5 3 2 1 6 3 2 1 3 4 4 5 3 3 7 6 6 8 10 8 9 5 7 6 6 3 5 3
+8 6 15 14 5 6 8 5 4 6 10 8 9 12 9 4 7 9 9 11 11 10 11 10 8 7 9 11 8 8 10 9 9 9 10 11 11 9 7 5
+6182 7279 7385 8662 6889 7384 7226 6637 5917 6564 6618 7846 7053 7227 5648 6019 6359 7255 7074 8754 7526 9071 8203 10684 8902 9558 9249 10451 9046 9925 9100 9815 9038 9869 8815 10139 8388 8814 7593 7346
+6 3 19 15 2 3 5 2 1 3 9 5 7 12 8 1 4 7 7 9 10 7 9 6 4 3 5 7 4 4 7 5 6 5 7 8 9 6 4 2
+12 10 5 4 7 10 6 3 3 8 8 6 6 11 7 6 9 6 9 9 7 7 9 7 9 8 10 8 9 8 8 8 10 7 12 9 9 8 9 8
+6334 7456 7328 8388 6895 7555 7198 6423 5845 6661 6657 7743 7030 7469 5685 6026 6430 7188 7127 8781 7517 8956 8228 10473 8909 9476 9273 10315 9050 9821 9077 9717 9068 9706 8901 10083 8408 8776 7633 7396
+14 8 2 1 4 8 3 0 0 6 6 3 3 10 5 3 7 3 7 6 4 3 6 3 6 4 7 4 6 4 4 4 7 3 10 5 6 4 6 5
+5 6 9 7 7 6 5 5 2 5 9 6 6 4 6 8 8 6 5 5 9 10 12 11 11 16 10 10 11 3 5 6 10 6 10 10 12 10 9 7
+6303 7377 7375 8314 6901 7470 7146 6344 5750 6568 6720 7647 7007 7266 5696 6155 6473 7125 7076 8561 7559 9033 8329 10520 8967 9890 9297 10310 9105 9416 8978 9502 9097 9492 8934 10092 8504 8863 7672 7382
+2 3 7 3 4 3 2 2 0 2 7 3 3 1 3 6 6 3 2 1 7 7 11 7 9 17 7 6 8 0 1 2 7 2 7 6 11 7 6 4
+13 7 8 12 14 6 5 7 3 4 6 8 10 9 6 5 6 6 9 12 14 8 10 9 6 10 8 11 11 7 8 10 10 9 9 7 12 9 6 6
+6477 7364 7395 8552 7086 7390 7095 6393 5683 6419 6705 7679 7087 7382 5707 6092 6464 7066 7129 8784 7728 8982 8376 10441 8896 9910 9269 10367 9158 9281 8958 9546 9125 9475 8941 9916 8598 8884 7633 7307
+16 4 5 11 17 3 2 4 0 1 3 5 9 7 3 2 3 3 7 11 16 4 7 5 2 6 4 7 8 3 4 7 7 5 6 3 11 6 3 3
+17 11 6 15 17 5 6 8 3 4 7 8 12 7 8 7 7 8 13 9 9 7 7 13 12 10 8 8 10 9 8 9 9 6 7 9 12 7 7 4
+6749 7597 7363 8960 7343 7253 7071 6500 5617 6279 6716 7709 7216 7369 5769 6156 6481 7133 7283 8809 7765 8873 8345 10613 8980 9929 9242 10236 9185 9277 8938 9526 9127 9275 8896 9874 8690 8781 7621 7114
+27 10 3 16 25 2 3 6 0 1 4 5 12 4 6 4 4 5 15 6 6 3 3 10 10 6 4 4 7 5 4 5 6 2 3 5 11 3 4 1
+5 3 5 10 9 12 7 5 7 7 12 8 10 11 7 6 6 6 7 8 7 10 12 6 14 13 7 7 17 10 8 11 14 11 12 11 9 9 9 8
+6708 7325 7307 9036 7389 7555 7073 6417 5655 6332 6855 7737 7291 7602 5803 6155 6472 7073 7280 8771 7750 8955 8443 10344 9113 10131 9190 10051 9390 9334 8919 9630 9257 9394 8980 9957 8703 8807 7660 7178
+2 0 2 7 7 12 4 2 5 4 13 5 8 10 5 3 3 3 4 4 4 7 11 2 14 11 3 3 20 7 4 8 14 8 10 8 6 6 6 5
+6 8 7 5 4 6 6 9 6 6 5 3 6 8 5 5 6 5 8 10 8 12 10 7 12 10 8 15 13 9 10 14 10 12 12 12 6 7 7 8
+6693 7377 7303 8801 7306 7470 7049 6584 5667 6320 6811 7457 7262 7637 5785 6092 6463 6955 7302 8859 7761 9154 8487 10153 9192 10137 9165 10369 9487 9326 8951 9912 9281 9567 9062 10096 8639 8708 7647 7238
+3 5 4 1 1 3 3 7 3 3 2 0 3 5 2 2 3 2 5 7 5 10 7 3 10 6 4 14 12 5 7 13 7 10 10 9 2 3 4 5
+7 10 12 9 6 4 7 6 3 5 7 5 6 4 7 9 7 10 6 10 9 7 9 9 9 11 12 9 12 8 9 11 8 7 9 15 12 12 9 8
+6704 7548 7427 8825 7276 7267 7051 6557 5602 6248 6819 7316 7234 7424 5819 6279 6480 7152 7273 8941 7797 9034 8505 10096 9192 10204 9242 10299 9556 9257 8957 9993 9253 9423 9065 10411 8730 8922 7686 7295
+4 8 12 6 3 1 4 3 0 2 4 2 3 1 5 8 4 9 3 7 6 3 6 5 5 8 10 5 10 4 6 8 4 3 6 14 11 10 6 5
+4 9 9 9 3 7 9 4 3 5 5 6 3 3 5 11 10 8 6 6 10 8 9 11 14 13 13 11 10 10 11 9 9 11 11 10 11 12 9 7
+6638 7648 7471 8848 7171 7261 7105 6409 5538 6180 6776 7245 7130 7162 5801 6578 6573 7214 7244 8773 7857 8983 8522 10166 9320 10390 9343 10356 9573 9315 9014 9946 9252 9533 9119 10400 8793 9123 7724 7287
+1 6 7 6 0 4 7 1 0 2 2 3 0 0 2 11 9 5 3 2 8 4 6 8 14 11 12 7 7 7 9 5 5 8 8 6 9 10 6 4
+9 6 12 8 5 7 3 2 6 5 4 5 5 4 4 4 7 5 11 7 6 7 6 11 11 12 8 12 12 8 10 10 8 9 12 9 11 7 7 7
+6702 7557 7591 8808 7119 7255 7004 6147 5553 6116 6709 7117 7079 6978 5758 6429 6587 7088 7344 8676 7814 8874 8462 10231 9368 10503 9314 10471 9640 9247 9044 9963 9225 9513 9198 10328 8854 9005 7710 7279
+7 3 12 4 2 4 0 0 3 2 1 2 2 1 1 1 4 2 10 3 3 3 2 8 8 9 4 9 10 4 7 6 4 5 10 5 9 3 4 4
+8 4 7 7 10 5 3 4 6 5 5 4 5 5 5 6 3 4 6 7 6 6 9 11 10 9 11 11 12 15 12 7 6 6 8 7 7 9 10 5
+6739 7349 7580 8709 7196 7126 6905 6023 5567 6056 6669 6935 7030 6866 5742 6411 6499 6908 7314 8585 7772 8710 8480 10292 9389 10425 9362 10518 9706 9613 9124 9795 9148 9310 9172 10138 8811 9017 7773 7149
+6 1 4 3 9 2 0 1 3 2 2 1 2 2 2 3 0 1 3 3 3 2 6 8 7 5 8 7 10 15 10 3 2 2 4 3 3 6 8 2
+6931 5720 3892 2415 2299 2927 3305 2951 2135 1496 1641 1954 2221 2615 2662 1914 785 1057 1266 1415 1742 1674 2443 3645 3992 4795 3782 4309 3996 2034 3779 2724 4320 4458 3031 2528 967 1158 1681 748
+183744 358330 106880 156558 65784 186526 91216 186963 60003 97603 48450 126567 63628 167113 73646 123617 26403 71432 39493 95003 52107 111033 70717 233614 111200 304392 105805 274621 111611 134000 105496 176563 119349 282639 86422 164843 33309 79620 50549 52675
+3335 1463 2978 1311 2666 1350 2934 1358 2645 1210 2427 1255 2633 1340 2839 1251 1794 1116 2201 1172 2422 1199 2686 1348 2944 1430 2921 1402 2937 1253 2927 1324 2993 1417 2824 1311 1887 1120 2398 993
+66898 53522 34543 22039 25397 32620 34444 27284 15530 9017 13471 11629 7029 17903 25703 22901 15725 18009 20080 18562 14129 7196 13375 23940 17926 33994 26964 33219 25119 16945 37213 24840 28288 40446 27915 17558 18093 25207 21145 6251
+1889237 3625088 987217 1501185 713352 2179426 969413 1852006 455490 645728 391592 833429 241718 1257002 728840 1523180 427714 1173574 551802 1229705 411978 546475 410850 1690411 566657 2374635 792430 2299036 750929 1167018 1054119 1692077 839481 2750582 797841 1233672 494979 1623498 589806 433560
+3627 1517 3452 1474 3513 1536 3493 1468 3185 1336 3224 1330 2577 1426 3481 1507 3441 1527 3524 1513 3206 1230 3041 1408 3069 1479 3345 1493 3296 1441 3533 1464 3306 1535 3439 1423 3447 1554 3508 1309
+20957 18357 20655 19266 18286 19740 18739 17800 17687 16882 15993 14626 13374 11850 10275 8440 6261 4609 3283 3451 4766 6294 7623 8407 8231 7807 6703 5167 3315 4957 7775 8022 7113 6927 4674 3626 5575 6016 3830 3564
+2377788 4535399 1490566 2594772 1162980 3261442 1424228 2834477 896243 1644173 790637 1682010 577556 1909619 973300 1950325 577083 1386327 621948 1367946 523524 900375 595456 2105495 762916 2711805 943993 2478547 816922 1401545 1226553 2083408 1000350 3011131 897403 1382427 625133 1895700 672986 626510
+887 384 1388 745 1569 591 1317 618 1905 1007 1962 842 2234 581 994 387 1012 284 464 200 823 633 1210 358 1019 248 646 161 342 307 598 343 651 186 456 211 828 266 508 505
+35404 41195 37619 23532 19140 20217 15779 25870 24513 12959 6096 6048 10300 11425 10757 12098 11816 18133 18179 26452 29965 26074 12727 8414 8277 11690 19728 23472 18297 19095 25227 23057 20041 12497 14049 9518 11296 20852 22749 10208
+3223445 6794203 2414992 3884839 1623214 4307845 1792025 4253803 1500483 2341695 926729 1952667 826432 2496969 1223978 2576581 864723 2417196 1071122 2911017 1276435 2448276 905925 2496105 955451 3267307 1424724 3771901 1264245 2490604 1840799 3374973 1487675 3598254 1234128 1884246 898281 3063057 1237707 1216074
+1120 609 1625 590 1164 454 848 605 1647 533 592 259 1183 432 852 446 1300 750 1671 924 2394 1088 1337 301 802 321 1385 606 1450 770 1358 673 1345 308 1122 461 1190 674 1857 810
+15341 15822 16828 10712 8957 9343 8793 11814 9906 3609 2809 2347 3702 8026 9710 7959 6181 6354 3667 8072 8289 8690 3761 2465 4935 5638 9678 9428 5394 5942 8691 7265 4005 3363 4950 3367 4370 6423 6019 3467
+3535131 7358631 2784871 4309876 1811656 4623395 1972061 4724407 1716247 2422926 975399 1979705 900433 2840254 1441635 2910973 1001138 2662544 1138120 3232286 1456458 2835277 979450 2497788 1057750 3417661 1636551 4124828 1370569 2706235 2017010 3618826 1552915 3588981 1329854 1978055 987564 3273894 1360670 1356116
+404 175 593 210 449 161 401 215 535 97 224 59 346 243 642 233 557 195 269 205 532 269 321 44 413 113 552 184 348 175 387 152 205 39 326 113 380 147 400 204
+501 452 124 121 67 0 0 0 0 0 0 0 0 0 0 0 0 0 47 43 55 31 0 0 0 0 0 0 30 43 36 0 0 0 0 0 0 0 0 29
+3459688 6944900 2718520 4058727 1768143 4346002 1922831 4440954 1673403 2277556 951049 1860927 877955 2669845 1405646 2736321 976146 2502797 1110910 3040998 1421505 2667071 954999 2347926 1031344 3212609 1595697 3877348 1337121 2546509 1967578 3401705 1514148 3373650 1296656 1859376 962911 3077468 1326703 1276534
+0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+12779 9069 4351 1376 1508 3094 4676 5851 6577 7097 8433 9916 9986 8428 7244 6313 4012 4736 6954 7062 5025 4228 2313 2883 7098 12271 13578 13192 15154 7543 3421 4059 6502 3276 2842 4622 5259 8073 5627 4359
+3699985 7085399 2761878 3899751 1762552 4275340 1994360 4533978 1799753 2576930 1142876 2358490 1111305 3027456 1555731 2960003 1054334 2643603 1260939 3292417 1514470 2766811 990285 2384180 1187040 3773759 1902950 4455200 1691116 2857147 2005909 3446985 1642557 3372508 1336935 2031782 1073306 3388812 1437424 1467751
+307 79 108 5 30 24 181 78 314 235 699 391 862 238 422 167 323 131 513 167 283 102 170 66 558 286 678 264 868 223 114 62 348 42 158 175 438 192 346 246
+53514 49702 32754 16454 15534 26299 34213 27312 26561 34468 39867 37225 44390 34148 23475 43895 30229 20166 22714 24660 12211 15254 10776 23646 33790 37742 39174 41384 54465 26440 21219 21585 39191 33155 27429 24641 25928 39080 24374 34242
+4975572 9713858 3530206 4676668 2115640 5634574 2819143 5939931 2433790 4539948 2133446 4503997 2218282 4943783 2116974 5479209 1800743 3723941 1810088 4609928 1788807 3537976 1241025 3693886 2021164 5866116 2856831 6730428 3041161 4310132 2498245 4566302 2603373 5207126 2004714 3423761 1709297 5586469 2024601 3483432
+1137 530 935 329 717 462 1255 456 1116 777 1921 853 2081 711 1116 836 1677 516 1239 532 645 401 843 622 1693 663 1427 623 1877 613 858 462 1572 648 1369 712 1512 727 1197 997
+9954 8258 14481 20659 29877 38659 38879 53106 48349 42253 45034 39350 37748 44899 58865 45202 33669 23671 22148 16277 13497 21257 24451 23590 19466 30145 38921 27696 24279 39977 18058 28544 39873 35268 33924 30202 41803 51945 42987 32611
+5105814 9638401 3812250 5665316 2826557 7671625 3742612 8846249 3608955 6863480 3231369 6651333 3127839 7405650 3568863 7927567 2616454 4954800 2331060 5333361 2089169 4631683 1835073 4921572 2468308 7366196 3780432 8028191 3585875 6507621 2897487 6046007 3557637 7061488 2821851 5073879 2735216 8442665 3072915 5277972
+154 39 346 344 1088 502 1056 636 1376 627 1442 598 1244 615 1703 576 1333 473 963 277 621 449 1320 471 791 392 1047 328 665 619 614 465 1143 495 1244 606 1599 646 1457 628
+15683 16073 18191 20099 19521 23953 28171 20223 15031 18477 59911 76120 25050 19055 32800 66053 37414 35900 18977 19638 26110 29405 24572 19437 18968 19527 25937 20777 26568 26199 17853 24204 26181 37098 32292 25199 32369 33100 39342 39250
+5379252 10047605 4182090 6560243 3255002 8682958 4369304 9557946 3903093 7586868 4682178 10928891 3690098 8132020 4318222 11510063 3507533 6863130 2757968 6219881 2704453 6160363 2417385 5820450 2891560 8123932 4349074 8823006 4175503 7726780 3281523 7170294 4138078 8917024 3576872 6317622 3494368 9969706 4001884 7372728
+265 124 411 279 584 251 651 182 350 206 1369 753 663 201 776 613 1086 523 686 290 987 474 1039 310 649 207 594 209 630 319 524 314 626 416 905 385 931 323 1002 530
+23018 14886 9611 24319 24643 21629 18611 33737 50387 38825 37019 37840 50142 34998 35919 41408 43271 13532 19859 13273 21215 22153 21796 18485 16441 20793 27088 29963 38325 20067 20542 22967 27747 30180 26991 29020 34869 26540 35295 30882
+5833365 10359331 4323372 7660742 3803682 9490833 4735975 11057209 5093676 9516985 5511593 12597979 4879735 9794308 5128604 13363491 4526088 7282731 3196765 6662163 3179249 7151781 2914199 6606909 3239649 8913985 4932943 10134498 5050951 8496058 3724709 8151128 4744060 10236208 4177538 7721496 4298475 11002099 4804211 8827695
+379 103 180 292 633 200 376 298 1043 409 695 287 1086 354 725 299 992 144 609 159 655 282 750 247 485 205 551 279 787 205 527 255 586 282 641 361 829 221 754 343
+19556 20950 16196 14814 23915 29211 41435 81091 62551 35769 40093 44854 42565 28869 53941 34067 21921 17647 29130 27084 25373 21594 30099 27359 23132 21204 21178 30702 30727 20651 21618 39359 31129 25600 34983 30562 29888 29271 32340 35404
+6187644 11024912 4629456 8111251 4320056 10716057 5676931 15375831 6565480 11143547 6398882 14597848 5845988 10980312 6379443 14654705 4973457 7929972 3861598 7926422 3748481 8049372 3610856 7891379 3750088 9681888 5351162 11412706 5710321 9255061 4184337 10080198 5421367 11194860 4967505 9135877 4955182 12140336 5510972 10473188
+289 161 327 142 549 256 755 549 1004 311 640 297 756 246 884 202 428 185 746 319 666 241 832 323 602 194 380 250 543 198 500 397 581 204 730 323 614 221 599 333
+30064 18709 13604 27581 44628 53834 63664 53703 62368 58880 32460 33816 45570 39334 37642 26663 9319 10893 22046 27002 22965 23377 32083 32120 28163 17989 17928 21179 25175 26790 24588 28416 31314 23465 32032 36778 29887 33577 32778 35010
+6801690 11512878 4861641 9319103 5353016 13380546 7162626 17752696 7995865 14092401 7068903 15799583 6864935 12738102 7182414 15413566 5087519 8123431 4328750 9109791 4241949 9002653 4340838 9391288 4376389 10206197 5675863 12029156 6211308 10345690 4708412 11221218 6086495 11964826 5662317 10847295 5595470 13474832 6211287 11995749
+427 127 248 279 873 409 930 303 819 424 451 183 681 300 524 137 140 87 495 278 530 238 750 335 644 142 290 142 390 243 518 234 517 165 569 331 534 222 528 277
+33417 27237 11395 15532 32540 40289 44583 61135 40293 70004 45489 50900 45848 28303 33059 34562 12772 16152 31425 28643 26721 20961 32470 28819 23086 24407 19870 16708 22872 26997 24655 25123 34578 24993 34354 30141 26214 34700 33982 33059
+7486118 12495506 5031562 9714226 6051190 15053001 8123475 20443559 8826251 17547762 8055251 17978815 7865552 13712712 7848187 16612192 5287001 8628383 5023991 10322980 4819111 9750307 5062490 10598400 4857275 11093355 6042101 12333933 6640918 11383602 5221117 12091466 6818455 12782473 6399140 12048271 6125883 14798256 6924897 13307095
+433 188 189 121 539 250 556 309 467 414 580 271 596 177 412 180 207 152 641 264 555 186 657 252 465 192 304 95 321 212 465 181 501 161 539 230 415 207 483 226
+20884 21576 13962 16573 27759 30749 49270 70358 53164 55367 46024 52861 49322 22794 31452 28473 9262 12314 27976 29787 24597 21837 31841 25963 20414 23886 21686 20256 22030 28440 27887 37052 31348 23573 30310 30241 25324 31264 32303 35937
+7833086 13071381 5262860 10149599 6609721 16038999 9180149 23539614 9964922 19896549 9030653 20147777 8929994 14290389 8456261 17364810 5391779 8867242 5613711 11533665 5327570 10506923 5750048 11557623 5257853 11895276 6445618 12838405 7038280 12447896 5803641 13642389 7449576 13463822 7014195 13183335 6620305 15831178 7577773 14716581
+236 130 235 126 403 161 561 296 559 273 531 258 574 119 366 130 130 98 496 241 458 181 557 202 374 169 311 118 285 199 473 252 410 137 416 201 362 164 417 216
+22212 17975 14214 25041 36217 49348 68027 64223 66689 49582 32062 37144 41595 34141 41605 25208 8529 9638 18203 29273 23196 21235 29267 33487 26340 19899 19054 22696 25706 26395 27801 28592 31205 27825 31197 31189 26166 32833 33394 41646
+8205339 13391469 5494826 11079104 7370517 18108515 10689921 26072995 11420901 21748998 9624802 21220994 9770343 15530538 9308691 17871680 5475204 8927363 5938887 12640133 5787523 11181158 6354645 12921551 5799915 12404133 6771781 13462517 7519690 13322695 6369425 14580499 8061287 14365523 7636570 14308541 7123908 16898523 8242240 16392248
+245 93 227 198 484 261 683 233 619 214 327 153 433 194 454 108 110 60 282 207 389 158 450 238 444 125 252 129 318 167 424 166 377 160 392 187 344 168 400 230
+46285 26079 18373 33617 30887 25048 36101 54169 44177 66742 36770 32993 38396 25468 42169 51104 30808 18964 30371 30406 24780 17278 32759 31950 19938 24829 23478 17936 24772 36004 25448 23407 32592 25212 32772 30391 24446 33771 32741 35025
+9183666 14190242 5827316 12479729 7976072 18560934 11345896 27836686 12265071 24544572 10324467 21974793 10507939 16163433 10154259 19939124 6126053 9556843 6566991 13749824 6276485 11571832 7033413 14109217 6164794 13185346 7202890 13756741 7965207 14735361 6860937 15143772 8693183 15052588 8283669 15317210 7570972 17959458 8873427 17560601
+523 146 290 247 373 101 306 174 356 278 357 121 367 122 419 247 500 167 455 195 377 113 455 201 301 154 302 89 286 217 352 113 365 132 384 166 300 158 359 175
+13354 19024 20834 18367 29814 23412 31413 52551 72326 32470 21971 41597 39298 34072 31256 43658 25928 16160 19318 17019 23740 21588 20621 19649 11806 16996 26061 22181 22352 21916 23961 17423 20790 35051 24773 28553 27854 32342 46795 24414
+9295772 14507649 6214415 12859398 8539082 18885698 11865658 29395154 13807726 25066833 10628367 23211974 11250180 17286964 10699755 21425063 6635910 9976285 6896873 13970472 6726656 12203863 7384959 14469883 6312690 13438449 7689265 14294115 8337741 15197739 7302167 15305608 9007616 16302915 8710140 16152439 8093992 18868945 9848113 18006942
+102 89 312 101 336 84 242 154 536 94 177 159 348 168 279 191 372 125 247 77 330 141 248 94 146 81 317 114 241 101 304 67 205 192 262 145 323 141 495 96
+23329 23204 19309 17932 36198 67150 64529 38617 32607 43495 35244 58940 43147 40324 40898 45705 31398 15572 17167 11863 18384 24626 34451 24774 37677 19041 14521 21161 37803 23466 15566 26664 29162 32133 29955 29431 24443 27824 31139 32670
+9660065 15062821 6552868 13189562 9251229 21878130 13218973 30004048 14296554 26235108 11263971 25440438 12072282 18727194 11478108 22947612 7272866 10334437 7163535 13861110 7028676 12984620 8081259 15123777 7118222 13802006 7868508 14736581 9095941 15727604 7517786 16025478 9528209 17298951 9258430 16991499 8516762 19446291 10398261 18933732
+220 117 265 93 395 313 503 96 198 137 305 223 357 201 355 181 418 114 204 37 227 158 415 123 524 94 145 101 415 107 167 131 291 155 316 144 264 112 285 143
+11604 18183 11218 8539 18651 89226 81712 29436 36299 39261 27881 28840 41892 55268 47265 30605 13255 14437 19781 18125 15204 20699 18604 32185 47339 11951 11639 18567 22206 25482 17450 29059 25324 24432 45106 34973 26630 23840 27257 24044
+9715544 15276206 6676046 12922835 9497053 26047317 14977745 30012352 14867556 27073163 11695492 25685931 12841781 20999135 12399787 23451105 7430141 10601369 7490360 14143031 7241868 13477269 8355088 16193753 8150630 13708158 7969605 14993132 9436516 16349536 7776182 16849300 9937697 17762097 10180330 18120704 8984884 19744231 10835442 19274957
+74 73 124 23 163 349 574 58 219 118 215 76 314 259 386 100 136 94 230 86 169 112 190 171 594 40 100 81 212 122 187 141 232 103 453 166 280 81 228 88
+20215 29650 30102 13420 27258 70133 74209 38214 30164 34718 24174 28412 43888 44532 56282 47653 34973 28436 23347 18315 19499 25507 25674 39225 46934 25446 16840 19285 20897 28103 18941 28012 25685 22110 40114 30071 25041 25287 27096 22685
+9989757 16181292 7278871 12971987 9956757 28793337 16500817 30559456 15267478 27581826 12021480 25890400 13643093 22475172 13528955 24971777 8138656 11712349 7900182 14419711 7559529 14235752 8802808 17632053 9146913 14449040 8201129 15278402 9735128 17095181 8066241 17559370 10346191 18054797 10951608 18880993 9400701 20113195 11257594 19512216
+172 153 398 57 255 227 461 85 164 88 172 67 311 175 416 168 422 220 266 83 226 141 274 204 531 141 170 81 185 134 204 127 230 81 366 126 247 90 220 79
+22519 23349 20057 15027 7663 8682 7926 4822 7888 5306 5568 11610 16116 14676 25144 22859 19349 19229 13976 15890 19375 17703 18240 24718 19098 14180 10077 6755 6871 7386 5470 11665 13476 10395 9104 6200 7097 7933 11388 12646
+10316020 16644958 7609872 13116920 9904088 27599207 16291509 29022214 15087987 26252971 11863715 25050328 13714480 22028373 13833970 24877931 8430096 12191018 8060228 14530805 7866091 14469269 9049320 18092784 9406767 14453316 8253994 14776745 9667746 16523289 8004707 17222519 10432395 17610196 10910939 18129092 9347444 19393836 11267672 19118469
+194 101 229 68 31 5 13 1 14 2 11 12 73 26 144 48 200 119 133 64 215 78 172 98 173 50 76 10 27 10 23 24 87 19 37 6 30 9 55 25
+1449 703 1206 1444 628 1549 1035 1398 1298 1405 1254 1670 1256 1657 1634 1530 1668 1789 1761 1817 1857 1931 1961 2096 2129 2104 2256 2299 2344 2425 2561 2549 2622 2730 2793 2900 2938 3081 3137 3234
+10095537 15689491 7450732 12418652 9672901 26038488 15911275 27366841 14744519 24764176 11599611 23649970 13404226 20808526 13530396 23479315 8262290 11569498 7904033 13770624 7717196 13719783 8873546 17136034 9226364 13715416 8105615 14031421 9486324 15680917 7870348 16345814 10238992 16721351 10709961 17219559 9189202 18419542 11066582 18170096
+1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 2 0 2 1 2 0 2 1 3 1 3 1 5 1 3 1 3 1 5 1 4 1
+1450 669 1179 1404 628 1541 1001 1390 1272 1428 1263 1650 1258 1662 1619 1515 1636 1769 1778 1828 1888 1935 1969 2102 2120 2124 2238 2291 2347 2428 2539 2582 2641 2716 2801 2902 2953 3063 3109 3221
+9880583 14789261 7294874 11759821 9447485 24570917 15539663 25810295 14408961 23366118 11342330 22332401 13101768 19662174 13234017 22163691 8097855 10984039 7752171 13056727 7572810 13015511 8702364 16237055 9050235 13023017 7960480 13330323 9309508 14889270 7738780 15523736 10050902 15884975 10514204 16364719 9035294 17502597 10869796 17277824
+1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 2 1 3 1 2 0 2 1 3 1 3 1 5 1 3 1 3 1 5 1 4 1
+1503 807 1164 1442 596 1575 1014 1398 1274 1431 1249 1648 1242 1659 1625 1548 1684 1776 1812 1848 1889 1921 1954 2070 2112 2121 2239 2276 2325 2431 2515 2560 2645 2748 2808 2923 2958 3077 3135 3243
+9672350 13951521 7142524 11142853 9226879 23193486 15177660 24347629 14081831 22052125 11091114 21093760 12806452 18584416 12945190 20929028 7938752 10434136 7604969 12386891 7432054 12352633 8535072 15390046 8878298 12371976 7818993 12670367 9136544 14145304 7609883 14749629 9867610 15100745 10323513 15562457 8885356 16641527 10678587 16440438
+1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 2 1 3 1 2 0 2 1 4 1 3 1 5 1 3 1 4 1 5 1 4 2
+1384 690 1153 1469 647 1547 1012 1372 1244 1413 1264 1648 1251 1664 1623 1551 1658 1780 1749 1840 1870 1916 1972 2104 2121 2106 2270 2319 2347 2411 2523 2568 2624 2730 2784 2903 2944 3076 3134 3243
+9466273 13156855 6993696 10564560 9013083 21896977 14824643 22971122 13762100 20815862 10846553 19929434 12518738 17571628 12663522 19768626 7782956 9917472 7459832 11756752 7294326 11729219 8372417 14595945 8710883 11759075 7681831 12052649 8968460 13444746 7484408 14022458 9688357 14362461 10136969 14807100 8738803 15832057 10492126 15653293
+1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 2 1 2 1 3 1 2 1 3 1 4 2 3 1 5 1 3 1 3 2 5 1 4 2
\ No newline at end of file
diff --git a/python/tflite_micro/signal/tflm_signal.bzl b/python/tflite_micro/signal/tflm_signal.bzl
index 9bf773e..1635b48 100644
--- a/python/tflite_micro/signal/tflm_signal.bzl
+++ b/python/tflite_micro/signal/tflm_signal.bzl
@@ -25,7 +25,7 @@
       srcs: Python source files for the Python library.
       deps: Dependencies for the Python library.
       visibility: Visibility for the Python library.
-      cc_op_defs: A list of c++ src files containing REGISTER_OP definitions.
+      cc_op_defs: A list of c++ libraries containing REGISTER_OP definitions.
       cc_op_kernels: A list of c++ targets containing kernels that are used
           by the Python library.
     """
@@ -39,12 +39,12 @@
         library_name = name + "_cc"
         native.cc_library(
             name = library_name,
-            srcs = cc_op_defs,
             copts = select({
                 "//conditions:default": ["-pthread"],
             }),
             alwayslink = 1,
             deps =
+                cc_op_defs +
                 cc_op_kernels +
                 ["@tensorflow_cc_deps//:cc_library"] +
                 select({"//conditions:default": []}),
diff --git a/python/tflite_micro/signal/utils/BUILD b/python/tflite_micro/signal/utils/BUILD
index 32a26fb..58b7dcf 100644
--- a/python/tflite_micro/signal/utils/BUILD
+++ b/python/tflite_micro/signal/utils/BUILD
@@ -1,4 +1,5 @@
 # Signal python utilities.
+load("@rules_python//python:defs.bzl", "py_library", "py_test")
 load("@tflm_pip_deps//:requirements.bzl", "requirement")
 load("@pybind11_bazel//:build_defs.bzl", "pybind_extension")
 
@@ -36,9 +37,39 @@
 py_library(
     name = "util",
     srcs = ["util.py"],
+    visibility = ["//visibility:public"],
     deps = [
+        requirement("tensorflow"),
         "//python/tflite_micro:runtime",
-        "//python/tflite_micro/signal:ops",
-        requirement("tensorflow-cpu"),
     ],
 )
+
+pybind_extension(
+    name = "wide_dynamic_func_lut_wrapper",  # :wide_dynamic_func_lut_wrapper.so
+    srcs = [
+        "wide_dynamic_func_lut_wrapper.cc",
+    ],
+)
+
+py_library(
+    name = "wide_dynamic_func_lut",
+    data = [
+        ":wide_dynamic_func_lut_wrapper.so",
+    ],
+)
+
+py_test(
+    name = "wide_dynamic_func_lut_test",
+    srcs = ["wide_dynamic_func_lut_test.py"],
+    data = [
+        ":wide_dynamic_func_lut_wrapper.so",
+    ],
+    python_version = "PY3",
+    srcs_version = "PY3",
+    tags = [
+        "noasan",
+        "nomsan",
+        "noubsan",
+    ],
+    visibility = ["//visibility:public"],
+)
diff --git a/python/tflite_micro/signal/utils/wide_dynamic_func_lut_test.py b/python/tflite_micro/signal/utils/wide_dynamic_func_lut_test.py
new file mode 100644
index 0000000..5cbcdd5
--- /dev/null
+++ b/python/tflite_micro/signal/utils/wide_dynamic_func_lut_test.py
@@ -0,0 +1,157 @@
+# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ==============================================================================
+"""Tests for signal.python.utils.wide_dynamic_func_lut"""
+import unittest
+from tflite_micro.python.tflite_micro.signal.utils import wide_dynamic_func_lut_wrapper
+
+
+class WideDynamicFuncLutTest(unittest.TestCase):
+
+  def testWideDynamicFuncLut(self):
+    self.maxDiff = None
+    expected_lut = [
+        32636,
+        32633,
+        32630,
+        -6,
+        0,
+        0,
+        32624,
+        -12,
+        0,
+        0,
+        32612,
+        -23,
+        -2,
+        0,
+        32587,
+        -48,
+        0,
+        0,
+        32539,
+        -96,
+        0,
+        0,
+        32443,
+        -190,
+        0,
+        0,
+        32253,
+        -378,
+        4,
+        0,
+        31879,
+        -739,
+        18,
+        0,
+        31158,
+        -1409,
+        62,
+        0,
+        29811,
+        -2567,
+        202,
+        0,
+        27446,
+        -4301,
+        562,
+        0,
+        23707,
+        -6265,
+        1230,
+        0,
+        18672,
+        -7458,
+        1952,
+        0,
+        13166,
+        -7030,
+        2212,
+        0,
+        8348,
+        -5342,
+        1868,
+        0,
+        4874,
+        -3459,
+        1282,
+        0,
+        2697,
+        -2025,
+        774,
+        0,
+        1446,
+        -1120,
+        436,
+        0,
+        762,
+        -596,
+        232,
+        0,
+        398,
+        -313,
+        122,
+        0,
+        207,
+        -164,
+        64,
+        0,
+        107,
+        -85,
+        34,
+        0,
+        56,
+        -45,
+        18,
+        0,
+        29,
+        -22,
+        8,
+        0,
+        15,
+        -13,
+        6,
+        0,
+        8,
+        -8,
+        4,
+        0,
+        4,
+        -2,
+        0,
+        0,
+        2,
+        -3,
+        2,
+        0,
+        1,
+        0,
+        0,
+        0,
+        1,
+        -3,
+        2,
+        0,
+        0,
+        0,
+        0,
+    ]
+    lut = wide_dynamic_func_lut_wrapper.wide_dynamic_func_lut(
+        0.95, 80.0, 7, 21)
+    self.assertEqual(lut, expected_lut)
+
+
+if __name__ == '__main__':
+  unittest.main()
diff --git a/python/tflite_micro/signal/utils/wide_dynamic_func_lut_wrapper.cc b/python/tflite_micro/signal/utils/wide_dynamic_func_lut_wrapper.cc
new file mode 100644
index 0000000..4ecf161
--- /dev/null
+++ b/python/tflite_micro/signal/utils/wide_dynamic_func_lut_wrapper.cc
@@ -0,0 +1,96 @@
+/* Copyright 2023 The TensorFlow Authors. All Rights Reserved.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+    http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+==============================================================================*/
+
+#include <pybind11/pybind11.h>
+#include <pybind11/pytypes.h>
+
+#include <cstddef>
+#include <cstdint>
+#include <limits>
+
+namespace py = pybind11;
+
+constexpr size_t kWideDynamicFunctionBits = 32;
+constexpr size_t kWideDynamicFunctionLUTSize =
+    (4 * kWideDynamicFunctionBits - 3);
+
+int16_t PcanGainLookupFunction(const float strength, const float offset,
+                               const int gain_bits, int32_t input_bits,
+                               uint32_t x) {
+  const float x_as_float =
+      static_cast<float>(x) / (static_cast<uint32_t>(1) << input_bits);
+  const float gain_as_float = (static_cast<uint32_t>(1) << gain_bits) *
+                              powf(x_as_float + offset, -strength);
+
+  if (gain_as_float > std::numeric_limits<int16_t>::max()) {
+    return std::numeric_limits<int16_t>::max();
+  }
+  return static_cast<int16_t>(gain_as_float + 0.5f);
+}
+
+py::list WideDynamicFuncLut(float strength, float offset, int input_bits,
+                            int gain_bits) {
+  // Avoid accessing outside of the buffer below gain_lut[4 * interval + 3].
+  int16_t gain_lut_storage[kWideDynamicFunctionLUTSize + 1];
+  int16_t* gain_lut = gain_lut_storage;
+
+  gain_lut[0] =
+      PcanGainLookupFunction(strength, offset, gain_bits, input_bits, 0);
+  gain_lut[1] =
+      PcanGainLookupFunction(strength, offset, gain_bits, input_bits, 1);
+  // This puts the pointer outside of the buffer making the calculation in the
+  // loop below a lot simpler.
+  gain_lut -= 6;
+
+  for (size_t interval = 2; interval <= kWideDynamicFunctionBits; ++interval) {
+    const uint32_t x0 = static_cast<uint32_t>(1) << (interval - 1);
+    const uint32_t x1 = x0 + (x0 >> 1);
+    const uint32_t x2 =
+        (interval == kWideDynamicFunctionBits) ? x0 + (x0 - 1) : 2 * x0;
+
+    const int16_t y0 =
+        PcanGainLookupFunction(strength, offset, gain_bits, input_bits, x0);
+    const int16_t y1 =
+        PcanGainLookupFunction(strength, offset, gain_bits, input_bits, x1);
+    const int16_t y2 =
+        PcanGainLookupFunction(strength, offset, gain_bits, input_bits, x2);
+
+    const int32_t diff1 = static_cast<int32_t>(y1 - y0);
+    const int32_t diff2 = static_cast<int32_t>(y2 - y0);
+    const int32_t a1 = 4 * diff1 - diff2;
+    const int32_t a2 = diff2 - a1;
+
+    gain_lut[4 * interval] = y0;
+    gain_lut[4 * interval + 1] = static_cast<int16_t>(a1);
+    gain_lut[4 * interval + 2] = static_cast<int16_t>(a2);
+    gain_lut[4 * interval + 3] = 0;
+  }
+  // Brings the pointer back to the start of the buffer post calculation for the
+  // lut
+  gain_lut += 6;
+
+  py::list lut_list = py::list();
+  for (size_t i = 0; i < kWideDynamicFunctionLUTSize; i++) {
+    lut_list.append(gain_lut[i]);
+  }
+
+  return lut_list;
+}
+
+PYBIND11_MODULE(wide_dynamic_func_lut_wrapper, m) {
+  m.doc() = "wide_dynamic_func_lut";
+  m.def("wide_dynamic_func_lut", &WideDynamicFuncLut, py::arg("strength"),
+        py::arg("offset"), py::arg("input_bits"), py::arg("gain_bits"));
+}
diff --git a/python/tflite_micro/whl_test.sh b/python/tflite_micro/whl_test.sh
index 8b6d97f..f3e8293 100755
--- a/python/tflite_micro/whl_test.sh
+++ b/python/tflite_micro/whl_test.sh
@@ -37,7 +37,7 @@
 
 # Run the package's post-installation checks.
 python3 << HEREDOC
-import sys
-from tflite_micro import postinstall_check
-sys.exit(0 if postinstall_check.passed() else 1)
+import sys, tflite_micro
+print(tflite_micro.__version__)
+sys.exit(0 if tflite_micro.postinstall_check.passed() else 1)
 HEREDOC
diff --git a/signal/micro/kernels/BUILD b/signal/micro/kernels/BUILD
index 4d37f06..b7ac658 100644
--- a/signal/micro/kernels/BUILD
+++ b/signal/micro/kernels/BUILD
@@ -10,19 +10,24 @@
     srcs = [
         "delay.cc",
         "energy.cc",
-        "fft_auto_scale.cc",
+        "fft_auto_scale_common.cc",
+        "fft_auto_scale_kernel.cc",
         "filter_bank.cc",
         "filter_bank_log.cc",
         "filter_bank_spectral_subtraction.cc",
         "filter_bank_square_root.cc",
+        "filter_bank_square_root_common.cc",
         "framer.cc",
         "irfft.cc",
         "overlap_add.cc",
+        "pcan.cc",
         "rfft.cc",
         "stacker.cc",
         "window.cc",
     ],
     hdrs = [
+        "fft_auto_scale_kernel.h",
+        "filter_bank_square_root.h",
         "irfft.h",
         "rfft.h",
     ],
@@ -40,9 +45,11 @@
         "//signal/src:filter_bank_square_root",
         "//signal/src:irfft",
         "//signal/src:overlap_add",
+        "//signal/src:pcan_argc_fixed",
         "//signal/src:rfft",
         "//signal/src:window",
         "//tensorflow/lite:type_to_tflitetype",
+        "//tensorflow/lite/c:common",
         "//tensorflow/lite/kernels:kernel_util",
         "//tensorflow/lite/kernels/internal:tensor",
         "//tensorflow/lite/micro:flatbuffer_utils",
@@ -324,3 +331,28 @@
         "//tensorflow/lite/micro/testing:micro_test",
     ],
 )
+
+cc_library(
+    name = "pcan_flexbuffers_generated_data",
+    srcs = [
+        "pcan_flexbuffers_generated_data.cc",
+    ],
+    hdrs = [
+        "pcan_flexbuffers_generated_data.h",
+    ],
+)
+
+cc_test(
+    name = "pcan_test",
+    srcs = [
+        "pcan_test.cc",
+    ],
+    deps = [
+        ":pcan_flexbuffers_generated_data",
+        "//tensorflow/lite/c:common",
+        "//tensorflow/lite/micro:op_resolvers",
+        "//tensorflow/lite/micro:test_helpers",
+        "//tensorflow/lite/micro/kernels:kernel_runner",
+        "//tensorflow/lite/micro/testing:micro_test",
+    ],
+)
diff --git a/signal/micro/kernels/delay.cc b/signal/micro/kernels/delay.cc
index 155e198..33ef35e 100644
--- a/signal/micro/kernels/delay.cc
+++ b/signal/micro/kernels/delay.cc
@@ -44,7 +44,7 @@
   tflm_signal::CircularBuffer** circular_buffers;
 };
 
-void* Init(TfLiteContext* context, const char* buffer, size_t length) {
+void* DelayInit(TfLiteContext* context, const char* buffer, size_t length) {
   auto* params = static_cast<TFLMSignalFrontendDelayParams*>(
       context->AllocatePersistentBuffer(context,
                                         sizeof(TFLMSignalFrontendDelayParams)));
@@ -58,7 +58,7 @@
   return params;
 }
 
-TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
+TfLiteStatus DelayPrepare(TfLiteContext* context, TfLiteNode* node) {
   TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
   TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
 
@@ -108,7 +108,7 @@
   return kTfLiteOk;
 }
 
-TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
+TfLiteStatus DelayEval(TfLiteContext* context, TfLiteNode* node) {
   auto* params =
       reinterpret_cast<TFLMSignalFrontendDelayParams*>(node->user_data);
   const TfLiteEvalTensor* input =
@@ -132,7 +132,7 @@
   return kTfLiteOk;
 }
 
-void Reset(TfLiteContext* context, void* buffer) {
+void DelayReset(TfLiteContext* context, void* buffer) {
   auto* params = static_cast<TFLMSignalFrontendDelayParams*>(buffer);
   for (int i = 0; i < params->outer_dims; ++i) {
     tflm_signal::CircularBufferReset(params->circular_buffers[i]);
@@ -145,8 +145,8 @@
 
 namespace tflm_signal {
 TFLMRegistration* Register_DELAY() {
-  static TFLMRegistration r =
-      micro::RegisterOp(Init, Prepare, Eval, nullptr, Reset);
+  static TFLMRegistration r = micro::RegisterOp(DelayInit, DelayPrepare,
+                                                DelayEval, nullptr, DelayReset);
   return &r;
 }
 }  // namespace tflm_signal
diff --git a/signal/micro/kernels/energy.cc b/signal/micro/kernels/energy.cc
index fa79bc8..6a86366 100644
--- a/signal/micro/kernels/energy.cc
+++ b/signal/micro/kernels/energy.cc
@@ -42,7 +42,7 @@
   int32_t start_index;
 };
 
-void* Init(TfLiteContext* context, const char* buffer, size_t length) {
+void* EnergyInit(TfLiteContext* context, const char* buffer, size_t length) {
   TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
 
   auto* data =
@@ -60,7 +60,7 @@
   return data;
 }
 
-TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
+TfLiteStatus EnergyPrepare(TfLiteContext* context, TfLiteNode* node) {
   TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
   TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
 
@@ -83,7 +83,7 @@
   return kTfLiteOk;
 }
 
-TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
+TfLiteStatus EnergyEval(TfLiteContext* context, TfLiteNode* node) {
   auto* params = reinterpret_cast<TFLMSignalEnergyParams*>(node->user_data);
 
   const TfLiteEvalTensor* input =
@@ -104,7 +104,8 @@
 
 namespace tflm_signal {
 TFLMRegistration* Register_ENERGY() {
-  static TFLMRegistration r = tflite::micro::RegisterOp(Init, Prepare, Eval);
+  static TFLMRegistration r =
+      tflite::micro::RegisterOp(EnergyInit, EnergyPrepare, EnergyEval);
   return &r;
 }
 }  // namespace tflm_signal
diff --git a/signal/micro/kernels/fft_auto_scale.cc b/signal/micro/kernels/fft_auto_scale_common.cc
similarity index 61%
rename from signal/micro/kernels/fft_auto_scale.cc
rename to signal/micro/kernels/fft_auto_scale_common.cc
index 8eb0d8f..8703ac6 100644
--- a/signal/micro/kernels/fft_auto_scale.cc
+++ b/signal/micro/kernels/fft_auto_scale_common.cc
@@ -12,26 +12,17 @@
 See the License for the specific language governing permissions and
 limitations under the License.
 ==============================================================================*/
-
-#include "signal/src/fft_auto_scale.h"
-
-#include <math.h>
-#include <stddef.h>
-#include <stdint.h>
-
-#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
+#include "signal/micro/kernels/fft_auto_scale_kernel.h"
 #include "tensorflow/lite/kernels/kernel_util.h"
 #include "tensorflow/lite/micro/kernels/kernel_util.h"
-#include "tensorflow/lite/micro/micro_context.h"
 
 namespace tflite {
-namespace {
 
 constexpr int kInputTensor = 0;
 constexpr int kOutputTensor = 0;
 constexpr int kScaleBitTensor = 1;
 
-TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
+TfLiteStatus FftAutoScalePrepare(TfLiteContext* context, TfLiteNode* node) {
   TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
   TF_LITE_ENSURE_EQ(context, NumOutputs(node), 2);
 
@@ -60,32 +51,4 @@
   return kTfLiteOk;
 }
 
-TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
-  const TfLiteEvalTensor* input =
-      tflite::micro::GetEvalInput(context, node, kInputTensor);
-  TfLiteEvalTensor* output =
-      tflite::micro::GetEvalOutput(context, node, kOutputTensor);
-  TfLiteEvalTensor* scale_bit =
-      tflite::micro::GetEvalOutput(context, node, kScaleBitTensor);
-
-  const int16_t* input_data = tflite::micro::GetTensorData<int16_t>(input);
-  int16_t* output_data = tflite::micro::GetTensorData<int16_t>(output);
-  int32_t* scale_bit_data = tflite::micro::GetTensorData<int32_t>(scale_bit);
-
-  *scale_bit_data =
-      tflm_signal::FftAutoScale(input_data, output->dims->data[0], output_data);
-  return kTfLiteOk;
-}
-
-}  // namespace
-
-// TODO(b/286250473): remove namespace once de-duped libraries
-namespace tflm_signal {
-
-TFLMRegistration* Register_FFT_AUTO_SCALE() {
-  static TFLMRegistration r = tflite::micro::RegisterOp(nullptr, Prepare, Eval);
-  return &r;
-}
-
-}  // namespace tflm_signal
 }  // namespace tflite
diff --git a/signal/micro/kernels/fft_auto_scale_kernel.cc b/signal/micro/kernels/fft_auto_scale_kernel.cc
new file mode 100644
index 0000000..4946fb3
--- /dev/null
+++ b/signal/micro/kernels/fft_auto_scale_kernel.cc
@@ -0,0 +1,64 @@
+/* Copyright 2023 The TensorFlow Authors. All Rights Reserved.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+    http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+==============================================================================*/
+
+#include "signal/micro/kernels/fft_auto_scale_kernel.h"
+
+#include <math.h>
+#include <stddef.h>
+#include <stdint.h>
+
+#include "signal/src/fft_auto_scale.h"
+#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
+#include "tensorflow/lite/kernels/kernel_util.h"
+#include "tensorflow/lite/micro/kernels/kernel_util.h"
+#include "tensorflow/lite/micro/micro_context.h"
+
+namespace tflite {
+namespace {
+
+constexpr int kInputTensor = 0;
+constexpr int kOutputTensor = 0;
+constexpr int kScaleBitTensor = 1;
+
+TfLiteStatus FftAutoScaleEval(TfLiteContext* context, TfLiteNode* node) {
+  const TfLiteEvalTensor* input =
+      tflite::micro::GetEvalInput(context, node, kInputTensor);
+  TfLiteEvalTensor* output =
+      tflite::micro::GetEvalOutput(context, node, kOutputTensor);
+  TfLiteEvalTensor* scale_bit =
+      tflite::micro::GetEvalOutput(context, node, kScaleBitTensor);
+
+  const int16_t* input_data = tflite::micro::GetTensorData<int16_t>(input);
+  int16_t* output_data = tflite::micro::GetTensorData<int16_t>(output);
+  int32_t* scale_bit_data = tflite::micro::GetTensorData<int32_t>(scale_bit);
+
+  *scale_bit_data =
+      tflm_signal::FftAutoScale(input_data, output->dims->data[0], output_data);
+  return kTfLiteOk;
+}
+
+}  // namespace
+
+// TODO(b/286250473): remove namespace once de-duped libraries
+namespace tflm_signal {
+
+TFLMRegistration* Register_FFT_AUTO_SCALE() {
+  static TFLMRegistration r =
+      tflite::micro::RegisterOp(nullptr, FftAutoScalePrepare, FftAutoScaleEval);
+  return &r;
+}
+
+}  // namespace tflm_signal
+}  // namespace tflite
diff --git a/tensorflow/lite/micro/examples/micro_speech/simple_features/simple_model_settings.cc b/signal/micro/kernels/fft_auto_scale_kernel.h
similarity index 60%
copy from tensorflow/lite/micro/examples/micro_speech/simple_features/simple_model_settings.cc
copy to signal/micro/kernels/fft_auto_scale_kernel.h
index e2cf661..9461c90 100644
--- a/tensorflow/lite/micro/examples/micro_speech/simple_features/simple_model_settings.cc
+++ b/signal/micro/kernels/fft_auto_scale_kernel.h
@@ -1,4 +1,4 @@
-/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
+/* Copyright 2023 The TensorFlow Authors. All Rights Reserved.
 
 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
@@ -12,12 +12,15 @@
 See the License for the specific language governing permissions and
 limitations under the License.
 ==============================================================================*/
+#ifndef SIGNAL_MICRO_KERNELS_FFT_AUTO_SCALE_KERNEL_H_
+#define SIGNAL_MICRO_KERNELS_FFT_AUTO_SCALE_KERNEL_H_
 
-#include "tensorflow/lite/micro/examples/micro_speech/simple_features/simple_model_settings.h"
+#include "tensorflow/lite/c/common.h"
 
-const char* kCategoryLabels[kCategoryCount] = {
-    "silence",
-    "unknown",
-    "yes",
-    "no",
-};
+namespace tflite {
+
+TfLiteStatus FftAutoScalePrepare(TfLiteContext* context, TfLiteNode* node);
+
+}  // namespace tflite
+
+#endif  // SIGNAL_MICRO_KERNELS_FFT_AUTO_SCALE_KERNEL_H_
diff --git a/signal/micro/kernels/fft_test.cc b/signal/micro/kernels/fft_test.cc
index 9d6fd25..bf54d41 100644
--- a/signal/micro/kernels/fft_test.cc
+++ b/signal/micro/kernels/fft_test.cc
@@ -274,11 +274,11 @@
   const TFLMRegistration* registration =
       tflite::tflm_signal::Register_RFFT_INT16();
 // See (b/287518815) for why this is needed.
-#if defined(HIFI4) || defined(HIFI5)
+#if defined(HIFI3) || defined(HIFI4) || defined(HIFI5)
   int tolerance = 9;
-#else   // defined(HIFI4) || defined(HIFI5)
+#else   // defined(HIFI3) || defined(HIFI4) || defined(HIFI5)
   int tolerance = 3;
-#endif  // defined(HIFI4) || defined(HIFI5)
+#endif  // defined(HIFI3) || defined(HIFI4) || defined(HIFI5)
   TF_LITE_MICRO_EXPECT_EQ(
       kTfLiteOk, tflite::testing::TestFFT<int16_t>(
                      input_shape, tflite::kRfftInt16Length512Input,
diff --git a/signal/micro/kernels/filter_bank.cc b/signal/micro/kernels/filter_bank.cc
index 7866ac3..1cf08d2 100644
--- a/signal/micro/kernels/filter_bank.cc
+++ b/signal/micro/kernels/filter_bank.cc
@@ -46,7 +46,8 @@
   uint64_t* work_area;
 };
 
-void* Init(TfLiteContext* context, const char* buffer, size_t length) {
+void* FilterBankInit(TfLiteContext* context, const char* buffer,
+                     size_t length) {
   TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
 
   auto* params = static_cast<TFLMSignalFilterBankParams*>(
@@ -70,7 +71,7 @@
   return params;
 }
 
-TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
+TfLiteStatus FilterBankPrepare(TfLiteContext* context, TfLiteNode* node) {
   TF_LITE_ENSURE_EQ(context, NumInputs(node), 6);
   TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
 
@@ -122,7 +123,7 @@
   return kTfLiteOk;
 }
 
-TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
+TfLiteStatus FilterBankEval(TfLiteContext* context, TfLiteNode* node) {
   auto* params = reinterpret_cast<TFLMSignalFilterBankParams*>(node->user_data);
 
   const TfLiteEvalTensor* input0 =
@@ -166,7 +167,8 @@
 namespace tflm_signal {
 
 TFLMRegistration* Register_FILTER_BANK() {
-  static TFLMRegistration r = tflite::micro::RegisterOp(Init, Prepare, Eval);
+  static TFLMRegistration r = tflite::micro::RegisterOp(
+      FilterBankInit, FilterBankPrepare, FilterBankEval);
   return &r;
 }
 
diff --git a/signal/micro/kernels/filter_bank_log.cc b/signal/micro/kernels/filter_bank_log.cc
index ea0cdb7..3d38e61 100644
--- a/signal/micro/kernels/filter_bank_log.cc
+++ b/signal/micro/kernels/filter_bank_log.cc
@@ -42,7 +42,8 @@
   int output_scale;
 };
 
-void* Init(TfLiteContext* context, const char* buffer, size_t length) {
+void* FilterBankLogInit(TfLiteContext* context, const char* buffer,
+                        size_t length) {
   TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
 
   auto* params = static_cast<TFLMSignalLogParams*>(
@@ -59,7 +60,7 @@
   return params;
 }
 
-TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
+TfLiteStatus FilterBankLogPrepare(TfLiteContext* context, TfLiteNode* node) {
   TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
   TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
 
@@ -82,7 +83,7 @@
   return kTfLiteOk;
 }
 
-TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
+TfLiteStatus FilterBankLogEval(TfLiteContext* context, TfLiteNode* node) {
   auto* params = reinterpret_cast<TFLMSignalLogParams*>(node->user_data);
 
   const TfLiteEvalTensor* input =
@@ -103,7 +104,8 @@
 namespace tflm_signal {
 
 TFLMRegistration* Register_FILTER_BANK_LOG() {
-  static TFLMRegistration r = tflite::micro::RegisterOp(Init, Prepare, Eval);
+  static TFLMRegistration r = tflite::micro::RegisterOp(
+      FilterBankLogInit, FilterBankLogPrepare, FilterBankLogEval);
   return &r;
 }
 
diff --git a/signal/micro/kernels/filter_bank_spectral_subtraction.cc b/signal/micro/kernels/filter_bank_spectral_subtraction.cc
index f5ea4d7..e069323 100644
--- a/signal/micro/kernels/filter_bank_spectral_subtraction.cc
+++ b/signal/micro/kernels/filter_bank_spectral_subtraction.cc
@@ -51,12 +51,14 @@
   size_t noise_estimate_size;
 };
 
-void ResetState(TFLMSignalSpectralSubtractionParams* params) {
+void FilterBankSpectralSubtractionResetState(
+    TFLMSignalSpectralSubtractionParams* params) {
   memset(params->noise_estimate, 0,
          sizeof(uint32_t) * params->config.num_channels);
 }
 
-void* Init(TfLiteContext* context, const char* buffer, size_t length) {
+void* FilterBankSpectralSubtractionInit(TfLiteContext* context,
+                                        const char* buffer, size_t length) {
   TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
 
   auto* params = static_cast<TFLMSignalSpectralSubtractionParams*>(
@@ -96,7 +98,8 @@
   return params;
 }
 
-TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
+TfLiteStatus FilterBankSpectralSubtractionPrepare(TfLiteContext* context,
+                                                  TfLiteNode* node) {
   TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
   TF_LITE_ENSURE_EQ(context, NumOutputs(node), 2);
 
@@ -125,7 +128,7 @@
   TfLiteTypeSizeOf(output->type, &params->noise_estimate_size);
   params->noise_estimate_size *= ElementCount(*noise_estimate->dims);
 
-  ResetState(params);
+  FilterBankSpectralSubtractionResetState(params);
 
   micro_context->DeallocateTempTfLiteTensor(input);
   micro_context->DeallocateTempTfLiteTensor(output);
@@ -133,7 +136,8 @@
   return kTfLiteOk;
 }
 
-TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
+TfLiteStatus FilterBankSpectralSubtractionEval(TfLiteContext* context,
+                                               TfLiteNode* node) {
   auto* params =
       reinterpret_cast<TFLMSignalSpectralSubtractionParams*>(node->user_data);
 
@@ -158,8 +162,9 @@
   return kTfLiteOk;
 }
 
-void Reset(TfLiteContext* context, void* buffer) {
-  ResetState(static_cast<TFLMSignalSpectralSubtractionParams*>(buffer));
+void FilterBankSpectralSubtractionReset(TfLiteContext* context, void* buffer) {
+  FilterBankSpectralSubtractionResetState(
+      static_cast<TFLMSignalSpectralSubtractionParams*>(buffer));
 }
 
 }  // namespace
@@ -167,8 +172,10 @@
 namespace tflm_signal {
 
 TFLMRegistration* Register_FILTER_BANK_SPECTRAL_SUBTRACTION() {
-  static TFLMRegistration r =
-      tflite::micro::RegisterOp(Init, Prepare, Eval, /*Free*/ nullptr, Reset);
+  static TFLMRegistration r = tflite::micro::RegisterOp(
+      FilterBankSpectralSubtractionInit, FilterBankSpectralSubtractionPrepare,
+      FilterBankSpectralSubtractionEval,
+      /*Free*/ nullptr, FilterBankSpectralSubtractionReset);
   return &r;
 }
 
diff --git a/signal/micro/kernels/filter_bank_square_root.cc b/signal/micro/kernels/filter_bank_square_root.cc
index 8df2617..bd7eff9 100644
--- a/signal/micro/kernels/filter_bank_square_root.cc
+++ b/signal/micro/kernels/filter_bank_square_root.cc
@@ -17,6 +17,7 @@
 
 #include <stdint.h>
 
+#include "signal/micro/kernels/filter_bank_square_root.h"
 #include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
 #include "tensorflow/lite/kernels/kernel_util.h"
 #include "tensorflow/lite/micro/kernels/kernel_util.h"
@@ -30,37 +31,8 @@
 constexpr int kScaleBitsTensor = 1;
 constexpr int kOutputTensor = 0;
 
-TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
-  TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
-  TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
-
-  MicroContext* micro_context = GetMicroContext(context);
-
-  TfLiteTensor* input =
-      micro_context->AllocateTempInputTensor(node, kInputTensor);
-  TfLiteTensor* scale_bits =
-      micro_context->AllocateTempInputTensor(node, kScaleBitsTensor);
-  TfLiteTensor* output =
-      micro_context->AllocateTempOutputTensor(node, kOutputTensor);
-  TF_LITE_ENSURE(context, input != nullptr);
-  TF_LITE_ENSURE(context, scale_bits != nullptr);
-  TF_LITE_ENSURE(context, output != nullptr);
-
-  TF_LITE_ENSURE_EQ(context, NumDimensions(input), 1);
-  TF_LITE_ENSURE_EQ(context, NumDimensions(scale_bits), 0);
-  TF_LITE_ENSURE_EQ(context, NumDimensions(output), 1);
-
-  TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteUInt64);
-  TF_LITE_ENSURE_TYPES_EQ(context, scale_bits->type, kTfLiteInt32);
-  TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteUInt32);
-
-  micro_context->DeallocateTempTfLiteTensor(input);
-  micro_context->DeallocateTempTfLiteTensor(output);
-  micro_context->DeallocateTempTfLiteTensor(scale_bits);
-  return kTfLiteOk;
-}
-
-TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
+TfLiteStatus FilterBankSquareRootEval(TfLiteContext* context,
+                                      TfLiteNode* node) {
   const TfLiteEvalTensor* input =
       tflite::micro::GetEvalInput(context, node, kInputTensor);
   const TfLiteEvalTensor* scale_bits =
@@ -83,7 +55,8 @@
 namespace tflm_signal {
 
 TFLMRegistration* Register_FILTER_BANK_SQUARE_ROOT() {
-  static TFLMRegistration r = tflite::micro::RegisterOp(nullptr, Prepare, Eval);
+  static TFLMRegistration r = tflite::micro::RegisterOp(
+      nullptr, FilterBankSquareRootPrepare, FilterBankSquareRootEval);
   return &r;
 }
 
diff --git a/signal/micro/kernels/filter_bank_square_root.h b/signal/micro/kernels/filter_bank_square_root.h
new file mode 100644
index 0000000..25b6779
--- /dev/null
+++ b/signal/micro/kernels/filter_bank_square_root.h
@@ -0,0 +1,27 @@
+/* Copyright 2023 The TensorFlow Authors. All Rights Reserved.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+    http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+==============================================================================*/
+#ifndef SIGNAL_MICRO_KERNELS_FILTER_BANK_SQUARE_ROOT_H_
+#define SIGNAL_MICRO_KERNELS_FILTER_BANK_SQUARE_ROOT_H_
+
+#include "tensorflow/lite/c/common.h"
+
+namespace tflite {
+
+TfLiteStatus FilterBankSquareRootPrepare(TfLiteContext* context,
+                                         TfLiteNode* node);
+
+}  // namespace tflite
+
+#endif  // SIGNAL_MICRO_KERNELS_FILTER_BANK_SQUARE_ROOT_H_
diff --git a/signal/micro/kernels/filter_bank_square_root_common.cc b/signal/micro/kernels/filter_bank_square_root_common.cc
new file mode 100644
index 0000000..b430901
--- /dev/null
+++ b/signal/micro/kernels/filter_bank_square_root_common.cc
@@ -0,0 +1,56 @@
+/* Copyright 2023 The TensorFlow Authors. All Rights Reserved.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+    http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+==============================================================================*/
+#include "signal/micro/kernels/filter_bank_square_root.h"
+#include "tensorflow/lite/kernels/kernel_util.h"
+#include "tensorflow/lite/micro/kernels/kernel_util.h"
+
+namespace tflite {
+
+constexpr int kInputTensor = 0;
+constexpr int kScaleBitsTensor = 1;
+constexpr int kOutputTensor = 0;
+
+TfLiteStatus FilterBankSquareRootPrepare(TfLiteContext* context,
+                                         TfLiteNode* node) {
+  TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
+  TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
+
+  MicroContext* micro_context = GetMicroContext(context);
+
+  TfLiteTensor* input =
+      micro_context->AllocateTempInputTensor(node, kInputTensor);
+  TfLiteTensor* scale_bits =
+      micro_context->AllocateTempInputTensor(node, kScaleBitsTensor);
+  TfLiteTensor* output =
+      micro_context->AllocateTempOutputTensor(node, kOutputTensor);
+  TF_LITE_ENSURE(context, input != nullptr);
+  TF_LITE_ENSURE(context, scale_bits != nullptr);
+  TF_LITE_ENSURE(context, output != nullptr);
+
+  TF_LITE_ENSURE_EQ(context, NumDimensions(input), 1);
+  TF_LITE_ENSURE_EQ(context, NumDimensions(scale_bits), 0);
+  TF_LITE_ENSURE_EQ(context, NumDimensions(output), 1);
+
+  TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteUInt64);
+  TF_LITE_ENSURE_TYPES_EQ(context, scale_bits->type, kTfLiteInt32);
+  TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteUInt32);
+
+  micro_context->DeallocateTempTfLiteTensor(input);
+  micro_context->DeallocateTempTfLiteTensor(output);
+  micro_context->DeallocateTempTfLiteTensor(scale_bits);
+  return kTfLiteOk;
+}
+
+}  // namespace tflite
diff --git a/signal/micro/kernels/framer.cc b/signal/micro/kernels/framer.cc
index 8437bd0..36f189c 100644
--- a/signal/micro/kernels/framer.cc
+++ b/signal/micro/kernels/framer.cc
@@ -48,7 +48,7 @@
   tflite::tflm_signal::CircularBuffer** circular_buffers;
 };
 
-void ResetState(TFLMSignalFramerParams* params) {
+void FramerResetState(TFLMSignalFramerParams* params) {
   for (int i = 0; i < params->outer_dims; ++i) {
     tflite::tflm_signal::CircularBufferReset(params->circular_buffers[i]);
     if (params->prefill) {
@@ -58,7 +58,7 @@
   }
 }
 
-void* Init(TfLiteContext* context, const char* buffer, size_t length) {
+void* FramerInit(TfLiteContext* context, const char* buffer, size_t length) {
   const uint8_t* buffer_t = reinterpret_cast<const uint8_t*>(buffer);
 
   auto* params =
@@ -76,7 +76,7 @@
   return params;
 }
 
-TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
+TfLiteStatus FramerPrepare(TfLiteContext* context, TfLiteNode* node) {
   TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
   TF_LITE_ENSURE_EQ(context, NumOutputs(node), 2);
 
@@ -132,7 +132,7 @@
         capacity, params->state_buffers[i], state_size);
   }
 
-  ResetState(params);
+  FramerResetState(params);
 
   micro_context->DeallocateTempTfLiteTensor(input);
   micro_context->DeallocateTempTfLiteTensor(output);
@@ -141,7 +141,7 @@
   return kTfLiteOk;
 }
 
-TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
+TfLiteStatus FramerEval(TfLiteContext* context, TfLiteNode* node) {
   auto* params = reinterpret_cast<TFLMSignalFramerParams*>(node->user_data);
 
   const TfLiteEvalTensor* input =
@@ -181,8 +181,8 @@
   return kTfLiteOk;
 }
 
-void Reset(TfLiteContext* context, void* buffer) {
-  ResetState(static_cast<TFLMSignalFramerParams*>(buffer));
+void FramerReset(TfLiteContext* context, void* buffer) {
+  FramerResetState(static_cast<TFLMSignalFramerParams*>(buffer));
 }
 
 }  // namespace
@@ -190,8 +190,8 @@
 namespace tflm_signal {
 // TODO(b/286250473): remove namespace once de-duped libraries above
 TFLMRegistration* Register_FRAMER() {
-  static TFLMRegistration r =
-      tflite::micro::RegisterOp(Init, Prepare, Eval, nullptr, Reset);
+  static TFLMRegistration r = tflite::micro::RegisterOp(
+      FramerInit, FramerPrepare, FramerEval, nullptr, FramerReset);
   return &r;
 }
 }  // namespace tflm_signal
diff --git a/signal/micro/kernels/irfft.cc b/signal/micro/kernels/irfft.cc
index 6cb3d7c..b0d58d5 100644
--- a/signal/micro/kernels/irfft.cc
+++ b/signal/micro/kernels/irfft.cc
@@ -50,7 +50,7 @@
 
 template <typename T, size_t (*get_needed_memory_func)(int32_t),
           void* (*init_func)(int32_t, void*, size_t)>
-void* Init(TfLiteContext* context, const char* buffer, size_t length) {
+void* IrfftInit(TfLiteContext* context, const char* buffer, size_t length) {
   TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
 
   auto* params = static_cast<TfLiteAudioFrontendIrfftParams*>(
@@ -79,7 +79,7 @@
 }
 
 template <TfLiteType TfLiteTypeEnum>
-TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
+TfLiteStatus IrfftPrepare(TfLiteContext* context, TfLiteNode* node) {
   TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
   TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
 
@@ -113,7 +113,7 @@
 }
 
 template <typename T, void (*apply_func)(void*, const Complex<T>* input, T*)>
-TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
+TfLiteStatus IrfftEval(TfLiteContext* context, TfLiteNode* node) {
   auto* params =
       reinterpret_cast<TfLiteAudioFrontendIrfftParams*>(node->user_data);
 
@@ -133,61 +133,61 @@
   return kTfLiteOk;
 }
 
-void* InitAll(TfLiteContext* context, const char* buffer, size_t length) {
+void* IrfftInitAll(TfLiteContext* context, const char* buffer, size_t length) {
   const uint8_t* buffer_t = reinterpret_cast<const uint8_t*>(buffer);
   const flexbuffers::Map& m = flexbuffers::GetRoot(buffer_t, length).AsMap();
   auto tensor_type = static_cast<tflite::TensorType>(m["T"].AsInt32());
 
   switch (tensor_type) {
     case TensorType_INT16: {
-      return Init<int16_t, tflm_signal::IrfftInt16GetNeededMemory,
-                  tflm_signal::IrfftInt16Init>(context, buffer, length);
+      return IrfftInit<int16_t, tflm_signal::IrfftInt16GetNeededMemory,
+                       tflm_signal::IrfftInt16Init>(context, buffer, length);
     }
     case TensorType_INT32: {
-      return Init<int32_t, tflm_signal::IrfftInt32GetNeededMemory,
-                  tflm_signal::IrfftInt32Init>(context, buffer, length);
+      return IrfftInit<int32_t, tflm_signal::IrfftInt32GetNeededMemory,
+                       tflm_signal::IrfftInt32Init>(context, buffer, length);
     }
     case TensorType_FLOAT32: {
-      return Init<float, tflm_signal::IrfftFloatGetNeededMemory,
-                  tflm_signal::IrfftFloatInit>(context, buffer, length);
+      return IrfftInit<float, tflm_signal::IrfftFloatGetNeededMemory,
+                       tflm_signal::IrfftFloatInit>(context, buffer, length);
     }
     default:
       return nullptr;
   }
 }
 
-TfLiteStatus PrepareAll(TfLiteContext* context, TfLiteNode* node) {
+TfLiteStatus IrfftPrepareAll(TfLiteContext* context, TfLiteNode* node) {
   auto* params =
       reinterpret_cast<TfLiteAudioFrontendIrfftParams*>(node->user_data);
 
   switch (params->fft_type) {
     case kTfLiteInt16: {
-      return Prepare<kTfLiteInt16>(context, node);
+      return IrfftPrepare<kTfLiteInt16>(context, node);
     }
     case kTfLiteInt32: {
-      return Prepare<kTfLiteInt32>(context, node);
+      return IrfftPrepare<kTfLiteInt32>(context, node);
     }
     case kTfLiteFloat32: {
-      return Prepare<kTfLiteFloat32>(context, node);
+      return IrfftPrepare<kTfLiteFloat32>(context, node);
     }
     default:
       return kTfLiteError;
   }
 }
 
-TfLiteStatus EvalAll(TfLiteContext* context, TfLiteNode* node) {
+TfLiteStatus IrfftEvalAll(TfLiteContext* context, TfLiteNode* node) {
   auto* params =
       reinterpret_cast<TfLiteAudioFrontendIrfftParams*>(node->user_data);
 
   switch (params->fft_type) {
     case kTfLiteInt16: {
-      return Eval<int16_t, tflm_signal::IrfftInt16Apply>(context, node);
+      return IrfftEval<int16_t, tflm_signal::IrfftInt16Apply>(context, node);
     }
     case kTfLiteInt32: {
-      return Eval<int32_t, tflm_signal::IrfftInt32Apply>(context, node);
+      return IrfftEval<int32_t, tflm_signal::IrfftInt32Apply>(context, node);
     }
     case kTfLiteFloat32: {
-      return Eval<float, tflm_signal::IrfftFloatApply>(context, node);
+      return IrfftEval<float, tflm_signal::IrfftFloatApply>(context, node);
     }
     default:
       return kTfLiteError;
@@ -201,28 +201,28 @@
 
 TFLMRegistration* Register_IRFFT() {
   static TFLMRegistration r =
-      tflite::micro::RegisterOp(InitAll, PrepareAll, EvalAll);
+      tflite::micro::RegisterOp(IrfftInitAll, IrfftPrepareAll, IrfftEvalAll);
   return &r;
 }
 
 TFLMRegistration* Register_IRFFT_FLOAT() {
   static TFLMRegistration r = tflite::micro::RegisterOp(
-      Init<float, IrfftFloatGetNeededMemory, IrfftFloatInit>,
-      Prepare<kTfLiteFloat32>, Eval<float, IrfftFloatApply>);
+      IrfftInit<float, IrfftFloatGetNeededMemory, IrfftFloatInit>,
+      IrfftPrepare<kTfLiteFloat32>, IrfftEval<float, IrfftFloatApply>);
   return &r;
 }
 
 TFLMRegistration* Register_IRFFT_INT16() {
   static TFLMRegistration r = tflite::micro::RegisterOp(
-      Init<int16_t, IrfftInt16GetNeededMemory, IrfftInt16Init>,
-      Prepare<kTfLiteInt16>, Eval<int16_t, IrfftInt16Apply>);
+      IrfftInit<int16_t, IrfftInt16GetNeededMemory, IrfftInt16Init>,
+      IrfftPrepare<kTfLiteInt16>, IrfftEval<int16_t, IrfftInt16Apply>);
   return &r;
 }
 
 TFLMRegistration* Register_IRFFT_INT32() {
   static TFLMRegistration r = tflite::micro::RegisterOp(
-      Init<int32_t, IrfftInt32GetNeededMemory, IrfftInt32Init>,
-      Prepare<kTfLiteInt32>, Eval<int32_t, IrfftInt32Apply>);
+      IrfftInit<int32_t, IrfftInt32GetNeededMemory, IrfftInt32Init>,
+      IrfftPrepare<kTfLiteInt32>, IrfftEval<int32_t, IrfftInt32Apply>);
   return &r;
 }
 
diff --git a/signal/micro/kernels/overlap_add.cc b/signal/micro/kernels/overlap_add.cc
index 8de7463..c365cd8 100644
--- a/signal/micro/kernels/overlap_add.cc
+++ b/signal/micro/kernels/overlap_add.cc
@@ -48,14 +48,15 @@
 };
 
 template <typename T>
-void ResetState(TFLMSignalOverlapAddParams<T>* params) {
+void OverlapAddResetState(TFLMSignalOverlapAddParams<T>* params) {
   for (int i = 0; i < params->outer_dims; i++) {
     memset(params->state_buffers[i], 0, sizeof(T) * params->frame_size);
   }
 }
 
 template <typename T>
-void* Init(TfLiteContext* context, const char* buffer, size_t length) {
+void* OverlapAddInit(TfLiteContext* context, const char* buffer,
+                     size_t length) {
   const uint8_t* buffer_t = reinterpret_cast<const uint8_t*>(buffer);
 
   auto* params = static_cast<TFLMSignalOverlapAddParams<T>*>(
@@ -73,7 +74,7 @@
 }
 
 template <typename T, TfLiteType TfLiteTypeEnum>
-TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
+TfLiteStatus OverlapAddPrepare(TfLiteContext* context, TfLiteNode* node) {
   TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
   TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
 
@@ -112,7 +113,7 @@
         static_cast<T*>(context->AllocatePersistentBuffer(
             context, params->frame_size * sizeof(T)));
   }
-  ResetState(params);
+  OverlapAddResetState(params);
 
   micro_context->DeallocateTempTfLiteTensor(input);
   micro_context->DeallocateTempTfLiteTensor(output);
@@ -120,7 +121,7 @@
 }
 
 template <typename T>
-TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
+TfLiteStatus OverlapAddEval(TfLiteContext* context, TfLiteNode* node) {
   auto* params =
       reinterpret_cast<TFLMSignalOverlapAddParams<T>*>(node->user_data);
   const TfLiteEvalTensor* input =
@@ -144,69 +145,70 @@
 }
 
 template <typename T>
-void Reset(TfLiteContext* context, void* buffer) {
-  ResetState(static_cast<TFLMSignalOverlapAddParams<T>*>(buffer));
+void OverlapAddReset(TfLiteContext* context, void* buffer) {
+  OverlapAddResetState(static_cast<TFLMSignalOverlapAddParams<T>*>(buffer));
 }
 
-void* InitAll(TfLiteContext* context, const char* buffer, size_t length) {
+void* OverlapAddInitAll(TfLiteContext* context, const char* buffer,
+                        size_t length) {
   const uint8_t* buffer_t = reinterpret_cast<const uint8_t*>(buffer);
   const flexbuffers::Map& m = flexbuffers::GetRoot(buffer_t, length).AsMap();
   auto tensor_type = static_cast<tflite::TensorType>(m["T"].AsInt32());
 
   switch (tensor_type) {
     case TensorType_INT16: {
-      return Init<int16_t>(context, buffer, length);
+      return OverlapAddInit<int16_t>(context, buffer, length);
     }
     case TensorType_FLOAT32: {
-      return Init<float>(context, buffer, length);
+      return OverlapAddInit<float>(context, buffer, length);
     }
     default:
       return nullptr;
   }
 }
 
-TfLiteStatus PrepareAll(TfLiteContext* context, TfLiteNode* node) {
+TfLiteStatus OverlapAddPrepareAll(TfLiteContext* context, TfLiteNode* node) {
   auto* params =
       reinterpret_cast<TFLMSignalOverlapAddParams<void>*>(node->user_data);
 
   switch (params->type) {
     case kTfLiteInt16: {
-      return Prepare<int16_t, kTfLiteInt16>(context, node);
+      return OverlapAddPrepare<int16_t, kTfLiteInt16>(context, node);
     }
     case kTfLiteFloat32: {
-      return Prepare<float, kTfLiteFloat32>(context, node);
+      return OverlapAddPrepare<float, kTfLiteFloat32>(context, node);
     }
     default:
       return kTfLiteError;
   }
 }
 
-TfLiteStatus EvalAll(TfLiteContext* context, TfLiteNode* node) {
+TfLiteStatus OverlapAddEvalAll(TfLiteContext* context, TfLiteNode* node) {
   auto* params =
       reinterpret_cast<TFLMSignalOverlapAddParams<void>*>(node->user_data);
 
   switch (params->type) {
     case kTfLiteInt16: {
-      return Eval<int16_t>(context, node);
+      return OverlapAddEval<int16_t>(context, node);
     }
     case kTfLiteFloat32: {
-      return Eval<float>(context, node);
+      return OverlapAddEval<float>(context, node);
     }
     default:
       return kTfLiteError;
   }
 }
 
-void ResetAll(TfLiteContext* context, void* buffer) {
+void OverlapAddResetAll(TfLiteContext* context, void* buffer) {
   auto* params = reinterpret_cast<TFLMSignalOverlapAddParams<void>*>(buffer);
 
   switch (params->type) {
     case kTfLiteInt16: {
-      Reset<int16_t>(context, buffer);
+      OverlapAddReset<int16_t>(context, buffer);
       break;
     }
     case kTfLiteFloat32: {
-      Reset<float>(context, buffer);
+      OverlapAddReset<float>(context, buffer);
       break;
     }
     default:
@@ -218,22 +220,23 @@
 
 namespace tflm_signal {
 TFLMRegistration* Register_OVERLAP_ADD() {
-  static TFLMRegistration r = tflite::micro::RegisterOp(
-      InitAll, PrepareAll, EvalAll, nullptr, ResetAll);
+  static TFLMRegistration r =
+      tflite::micro::RegisterOp(OverlapAddInitAll, OverlapAddPrepareAll,
+                                OverlapAddEvalAll, nullptr, OverlapAddResetAll);
   return &r;
 }
 
 TFLMRegistration* Register_OVERLAP_ADD_FLOAT() {
-  static TFLMRegistration r =
-      tflite::micro::RegisterOp(Init<float>, Prepare<float, kTfLiteFloat32>,
-                                Eval<float>, nullptr, Reset<float>);
+  static TFLMRegistration r = tflite::micro::RegisterOp(
+      OverlapAddInit<float>, OverlapAddPrepare<float, kTfLiteFloat32>,
+      OverlapAddEval<float>, nullptr, OverlapAddReset<float>);
   return &r;
 }
 
 TFLMRegistration* Register_OVERLAP_ADD_INT16() {
-  static TFLMRegistration r =
-      tflite::micro::RegisterOp(Init<int16_t>, Prepare<int16_t, kTfLiteInt16>,
-                                Eval<int16_t>, nullptr, Reset<int16_t>);
+  static TFLMRegistration r = tflite::micro::RegisterOp(
+      OverlapAddInit<int16_t>, OverlapAddPrepare<int16_t, kTfLiteInt16>,
+      OverlapAddEval<int16_t>, nullptr, OverlapAddReset<int16_t>);
   return &r;
 }
 }  // namespace tflm_signal
diff --git a/signal/micro/kernels/pcan.cc b/signal/micro/kernels/pcan.cc
new file mode 100644
index 0000000..9473e1b
--- /dev/null
+++ b/signal/micro/kernels/pcan.cc
@@ -0,0 +1,135 @@
+/* Copyright 2023 The TensorFlow Authors. All Rights Reserved.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+    http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+==============================================================================*/
+
+#include <stddef.h>
+#include <stdint.h>
+
+#include "signal/src/pcan_argc_fixed.h"
+#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
+#include "tensorflow/lite/kernels/kernel_util.h"
+#include "tensorflow/lite/micro/flatbuffer_utils.h"
+#include "tensorflow/lite/micro/kernels/kernel_util.h"
+#include "tensorflow/lite/micro/memory_helpers.h"
+#include "tensorflow/lite/micro/micro_context.h"
+
+namespace tflite {
+namespace tflm_signal {
+// TODO(b/286250473): remove namespace once de-duped libraries above
+
+constexpr int kInputTensor = 0;
+constexpr int kNoiseEstimateTensor = 1;
+constexpr int kGainLutTensor = 2;
+constexpr int kOutputTensor = 0;
+
+// Indices into the init flexbuffer's vector.
+// The parameter's name is in the comment that follows.
+// Elements in the vectors are ordered alphabetically by parameter name.
+constexpr int kSnrShiftIndex = 0;  // 'snr_shift'
+
+struct TfLitePcanParams {
+  int snr_shift;
+};
+
+void* PcanInit(TfLiteContext* context, const char* buffer, size_t length) {
+  auto* params = static_cast<TfLitePcanParams*>(
+      context->AllocatePersistentBuffer(context, sizeof(TfLitePcanParams)));
+
+  tflite::FlexbufferWrapper fbw(reinterpret_cast<const uint8_t*>(buffer),
+                                length);
+  params->snr_shift = fbw.ElementAsInt32(kSnrShiftIndex);
+  return params;
+}
+
+TfLiteStatus PcanPrepare(TfLiteContext* context, TfLiteNode* node) {
+  TF_LITE_ENSURE_EQ(context, NumInputs(node), 3);
+  TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
+
+  MicroContext* micro_context = GetMicroContext(context);
+
+  TfLiteTensor* input =
+      micro_context->AllocateTempInputTensor(node, kInputTensor);
+  TF_LITE_ENSURE(context, input != nullptr);
+  TfLiteTensor* noise_estimate =
+      micro_context->AllocateTempInputTensor(node, kNoiseEstimateTensor);
+  TF_LITE_ENSURE(context, noise_estimate != nullptr);
+  TfLiteTensor* gain_lut =
+      micro_context->AllocateTempInputTensor(node, kGainLutTensor);
+  TF_LITE_ENSURE(context, gain_lut != nullptr);
+  TfLiteTensor* output =
+      micro_context->AllocateTempOutputTensor(node, kOutputTensor);
+  TF_LITE_ENSURE(context, output != nullptr);
+
+  TF_LITE_ENSURE_EQ(context, NumDimensions(input), 1);
+  TF_LITE_ENSURE_EQ(context, NumDimensions(noise_estimate), 1);
+  TF_LITE_ENSURE_EQ(context, NumDimensions(gain_lut), 1);
+  TF_LITE_ENSURE_EQ(context, NumDimensions(output), 1);
+
+  TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteUInt32);
+  TF_LITE_ENSURE_TYPES_EQ(context, noise_estimate->type, kTfLiteUInt32);
+  TF_LITE_ENSURE_TYPES_EQ(context, gain_lut->type, kTfLiteInt16);
+  TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteUInt32);
+
+  micro_context->DeallocateTempTfLiteTensor(input);
+  micro_context->DeallocateTempTfLiteTensor(output);
+  micro_context->DeallocateTempTfLiteTensor(noise_estimate);
+  micro_context->DeallocateTempTfLiteTensor(gain_lut);
+  return kTfLiteOk;
+}
+
+TfLiteStatus PcanEval(TfLiteContext* context, TfLiteNode* node) {
+  auto* params = reinterpret_cast<TfLitePcanParams*>(node->user_data);
+
+  const TfLiteEvalTensor* input =
+      tflite::micro::GetEvalInput(context, node, kInputTensor);
+  TF_LITE_ENSURE(context, input != nullptr);
+  const TfLiteEvalTensor* noise_estimate =
+      tflite::micro::GetEvalInput(context, node, kNoiseEstimateTensor);
+  TF_LITE_ENSURE(context, noise_estimate != nullptr);
+  const TfLiteEvalTensor* gain_lut =
+      tflite::micro::GetEvalInput(context, node, kGainLutTensor);
+  TF_LITE_ENSURE(context, gain_lut != nullptr);
+  TfLiteEvalTensor* output =
+      tflite::micro::GetEvalOutput(context, node, kOutputTensor);
+  TF_LITE_ENSURE(context, output != nullptr);
+
+  const uint32_t* input_data = tflite::micro::GetTensorData<uint32_t>(input);
+  const uint32_t* noise_estimate_data =
+      tflite::micro::GetTensorData<uint32_t>(noise_estimate);
+  const int16_t* gain_lut_data =
+      tflite::micro::GetTensorData<int16_t>(gain_lut);
+  uint32_t* output_data = tflite::micro::GetTensorData<uint32_t>(output);
+
+  int num_channels = input->dims->data[0];
+
+  size_t output_byte_size;
+  TF_LITE_ENSURE_OK(
+      context, tflite::TfLiteEvalTensorByteLength(output, &output_byte_size));
+
+  memcpy(output_data, input_data, output_byte_size);
+
+  tflite::tflm_signal::ApplyPcanAutoGainControlFixed(
+      gain_lut_data, params->snr_shift, noise_estimate_data, output_data,
+      num_channels);
+  return kTfLiteOk;
+}
+
+TFLMRegistration* Register_PCAN() {
+  static TFLMRegistration r =
+      tflite::micro::RegisterOp(PcanInit, PcanPrepare, PcanEval);
+  return &r;
+}
+
+}  // namespace tflm_signal
+}  // namespace tflite
diff --git a/signal/micro/kernels/pcan_flexbuffers_generated_data.cc b/signal/micro/kernels/pcan_flexbuffers_generated_data.cc
new file mode 100644
index 0000000..5fc9a9f
--- /dev/null
+++ b/signal/micro/kernels/pcan_flexbuffers_generated_data.cc
@@ -0,0 +1,7 @@
+#include "signal/micro/kernels/pcan_flexbuffers_generated_data.h"
+
+const int g_gen_data_size_snr_shift_6_test = 20;
+const unsigned char g_gen_data_snr_shift_6_test[] = {
+    0x73, 0x6e, 0x72, 0x5f, 0x73, 0x68, 0x69, 0x66, 0x74, 0x00,
+    0x01, 0x0b, 0x01, 0x01, 0x01, 0x06, 0x04, 0x02, 0x24, 0x01,
+};
diff --git a/signal/micro/kernels/pcan_flexbuffers_generated_data.h b/signal/micro/kernels/pcan_flexbuffers_generated_data.h
new file mode 100644
index 0000000..32b4cd7
--- /dev/null
+++ b/signal/micro/kernels/pcan_flexbuffers_generated_data.h
@@ -0,0 +1,7 @@
+#ifndef SIGNAL_MICRO_KERNELS_PCAN_FLEXBUFFERS_GENERATED_DATA_H_
+#define SIGNAL_MICRO_KERNELS_PCAN_FLEXBUFFERS_GENERATED_DATA_H_
+
+extern const int g_gen_data_size_snr_shift_6_test;
+extern const unsigned char g_gen_data_snr_shift_6_test[];
+
+#endif  // SIGNAL_MICRO_KERNELS_PCAN_FLEXBUFFERS_GENERATED_DATA_H_
diff --git a/signal/micro/kernels/pcan_test.cc b/signal/micro/kernels/pcan_test.cc
new file mode 100644
index 0000000..aecb5d1
--- /dev/null
+++ b/signal/micro/kernels/pcan_test.cc
@@ -0,0 +1,132 @@
+/* Copyright 2023 The TensorFlow Authors. All Rights Reserved.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+    http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+==============================================================================*/
+
+#include "signal/micro/kernels/pcan_flexbuffers_generated_data.h"
+#include "tensorflow/lite/micro/kernels/kernel_runner.h"
+#include "tensorflow/lite/micro/test_helpers.h"
+#include "tensorflow/lite/micro/testing/micro_test.h"
+
+namespace tflite {
+namespace tflm_signal {
+namespace {
+
+TfLiteStatus TestPCAN(const unsigned char* init_data, int init_data_size,
+                      int* input_dims_data, const uint32_t* input_data,
+                      int* noise_estimate_dims_data,
+                      const uint32_t* noise_estimate_data,
+                      int* gain_lut_dims_data, const int16_t* gain_lut_data,
+                      int* output_dims_data, const uint32_t* golden,
+                      uint32_t* output_data) {
+  TfLiteIntArray* input_dims =
+      ::tflite::testing::IntArrayFromInts(input_dims_data);
+  TfLiteIntArray* noise_estimate_dims =
+      ::tflite::testing::IntArrayFromInts(noise_estimate_dims_data);
+  TfLiteIntArray* gain_lut_dims =
+      ::tflite::testing::IntArrayFromInts(gain_lut_dims_data);
+  TfLiteIntArray* output_dims =
+      ::tflite::testing::IntArrayFromInts(output_dims_data);
+  const int output_len = ElementCount(*output_dims);
+  constexpr int kInputsSize = 3;
+  constexpr int kOutputsSize = 1;
+  constexpr int kTensorsSize = kInputsSize + kOutputsSize;
+  TfLiteTensor tensors[kTensorsSize] = {
+      tflite::testing::CreateTensor(input_data, input_dims),
+      tflite::testing::CreateTensor(noise_estimate_data, noise_estimate_dims),
+      tflite::testing::CreateTensor(gain_lut_data, gain_lut_dims),
+      tflite::testing::CreateTensor(output_data, output_dims),
+  };
+  int inputs_array_data[] = {3, 0, 1, 2};
+  TfLiteIntArray* inputs_array =
+      ::tflite::testing::IntArrayFromInts(inputs_array_data);
+  int outputs_array_data[] = {1, 3};
+  TfLiteIntArray* outputs_array =
+      ::tflite::testing::IntArrayFromInts(outputs_array_data);
+
+  const TFLMRegistration* registration = tflite::tflm_signal::Register_PCAN();
+  micro::KernelRunner runner(*registration, tensors, kTensorsSize, inputs_array,
+                             outputs_array,
+                             /*builtin_data=*/nullptr);
+
+  // TfLite uses a char* for the raw bytes whereas flexbuffers use an unsigned
+  // char*. This small discrepancy results in compiler warnings unless we
+  // reinterpret_cast right before passing in the flexbuffer bytes to the
+  // KernelRunner.
+  TfLiteStatus status = runner.InitAndPrepare(
+      reinterpret_cast<const char*>(init_data), init_data_size);
+  if (status != kTfLiteOk) {
+    return status;
+  }
+  status = runner.Invoke();
+  if (status != kTfLiteOk) {
+    return status;
+  }
+  for (int i = 0; i < output_len; ++i) {
+    TF_LITE_MICRO_EXPECT_EQ(golden[i], output_data[i]);
+  }
+  return kTfLiteOk;
+}
+
+}  // namespace
+}  // namespace tflm_signal
+}  // namespace tflite
+
+TF_LITE_MICRO_TESTS_BEGIN
+
+TF_LITE_MICRO_TEST(Mix1Ref1Case) {
+  int input_shape[] = {1, 40};
+  int noise_estimate_shape[] = {1, 40};
+  int gain_lut_shape[] = {1, 125};
+  int output_shape[] = {1, 40};
+  const uint32_t input[] = {286, 298, 305, 291, 290, 279, 273, 257, 250, 240,
+                            240, 233, 234, 230, 221, 205, 183, 159, 156, 188,
+                            239, 298, 345, 374, 380, 369, 359, 364, 372, 354,
+                            302, 243, 194, 135, 64,  72,  171, 245, 277, 304};
+  const uint32_t noise_estimate[] = {
+      7310, 18308, 7796, 17878, 7413, 17141, 6978, 15789, 6390, 14745,
+      6135, 14314, 5981, 14130, 5649, 12594, 4677, 9768,  3987, 11550,
+      6109, 18308, 8819, 22977, 9713, 22670, 9176, 22363, 9509, 21748,
+      7719, 14929, 4959, 8294,  1636, 4423,  4371, 15052, 7080, 18677};
+
+  const int16_t gain_lut[] = {
+      32636, 32633,  32630, -6,     0,     -21589, 32624, -12,    0,     -21589,
+      32612, -23,    -2,    -21589, 32587, -48,    0,     -21589, 32539, -96,
+      0,     -21589, 32443, -190,   0,     -21589, 32253, -378,   4,     -21589,
+      31879, -739,   18,    -21589, 31158, -1409,  62,    -21589, 29811, -2567,
+      202,   -21589, 27446, -4301,  562,   -21589, 23707, -6265,  1230,  -21589,
+      18672, -7458,  1952,  -21589, 13166, -7030,  2212,  -21589, 8348,  -5342,
+      1868,  -21589, 4874,  -3459,  1282,  -21589, 2697,  -2025,  774,   -21589,
+      1446,  -1120,  436,   -21589, 762,   -596,   232,   -21589, 398,   -313,
+      122,   -21589, 207,   -164,   64,    -21589, 107,   -85,    34,    -21589,
+      56,    -45,    18,    -21589, 29,    -22,    8,     -21589, 15,    -13,
+      6,     -21589, 8,     -8,     4,     -21589, 4,     -2,     0,     -21589,
+      2,     -3,     2,     -21589, 1,     0,      0,     -21589, 1,     -3,
+      2,     -21589, 0,     0,      0};
+
+  uint32_t output[40];
+  const uint32_t golden[] = {1301, 836, 1354, 827, 1312, 811, 1263, 779,
+                             1192, 753, 1160, 743, 1140, 738, 1096, 698,
+                             956,  607, 845,  667, 1157, 836, 1461, 912,
+                             1546, 908, 1496, 904, 1527, 895, 1346, 758,
+                             999,  548, 378,  344, 908,  761, 1274, 843};
+  memset(output, 0, sizeof(output));
+  TF_LITE_MICRO_EXPECT_EQ(
+      kTfLiteOk,
+      tflite::tflm_signal::TestPCAN(
+          g_gen_data_snr_shift_6_test, g_gen_data_size_snr_shift_6_test,
+          input_shape, input, noise_estimate_shape, noise_estimate,
+          gain_lut_shape, gain_lut, output_shape, golden, output));
+}
+
+TF_LITE_MICRO_TESTS_END
diff --git a/signal/micro/kernels/rfft.cc b/signal/micro/kernels/rfft.cc
index fccc6eb..c9472b0 100644
--- a/signal/micro/kernels/rfft.cc
+++ b/signal/micro/kernels/rfft.cc
@@ -48,12 +48,13 @@
   int32_t output_length;
   TfLiteType fft_type;
   T* work_area;
+  int scratch_buffer_index;
   int8_t* state;
 };
 
 template <typename T, size_t (*get_needed_memory_func)(int32_t),
           void* (*init_func)(int32_t, void*, size_t)>
-void* Init(TfLiteContext* context, const char* buffer, size_t length) {
+void* RfftInit(TfLiteContext* context, const char* buffer, size_t length) {
   TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
 
   const uint8_t* buffer_t = reinterpret_cast<const uint8_t*>(buffer);
@@ -65,9 +66,6 @@
   params->fft_length = fbw.ElementAsInt32(kFftLengthIndex);
   params->fft_type = typeToTfLiteType<T>();
 
-  params->work_area = static_cast<T*>(context->AllocatePersistentBuffer(
-      context, params->fft_length * sizeof(T)));
-
   size_t state_size = (*get_needed_memory_func)(params->fft_length);
   params->state = static_cast<int8_t*>(
       context->AllocatePersistentBuffer(context, state_size * sizeof(int8_t)));
@@ -76,7 +74,7 @@
 }
 
 template <typename T, TfLiteType TfLiteTypeEnum>
-TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
+TfLiteStatus RfftPrepare(TfLiteContext* context, TfLiteNode* node) {
   TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
   TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
 
@@ -103,13 +101,15 @@
   params->output_length =
       output_shape.Dims(output_shape.DimensionsCount() - 1) / 2;
 
+  context->RequestScratchBufferInArena(context, params->fft_length * sizeof(T),
+                                       &params->scratch_buffer_index);
   micro_context->DeallocateTempTfLiteTensor(input);
   micro_context->DeallocateTempTfLiteTensor(output);
   return kTfLiteOk;
 }
 
 template <typename T, void (*apply_func)(void*, const T* input, Complex<T>*)>
-TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
+TfLiteStatus RfftEval(TfLiteContext* context, TfLiteNode* node) {
   auto* params =
       reinterpret_cast<TfLiteAudioFrontendRfftParams<T>*>(node->user_data);
 
@@ -122,74 +122,76 @@
       tflite::micro::GetEvalOutput(context, node, kOutputTensor);
   Complex<T>* output_data = tflite::micro::GetTensorData<Complex<T>>(output);
 
+  T* work_area = static_cast<T*>(
+      context->GetScratchBuffer(context, params->scratch_buffer_index));
+
   for (int input_idx = 0, output_idx = 0; input_idx < params->input_size;
        input_idx += params->input_length, output_idx += params->output_length) {
-    memcpy(params->work_area, &input_data[input_idx],
-           sizeof(T) * params->input_length);
+    memcpy(work_area, &input_data[input_idx], sizeof(T) * params->input_length);
     // Zero pad input to FFT length
-    memset(&params->work_area[params->input_length], 0,
+    memset(&work_area[params->input_length], 0,
            sizeof(T) * (params->fft_length - params->input_length));
 
-    (*apply_func)(params->state, params->work_area, &output_data[output_idx]);
+    (*apply_func)(params->state, work_area, &output_data[output_idx]);
   }
   return kTfLiteOk;
 }
 
-void* InitAll(TfLiteContext* context, const char* buffer, size_t length) {
+void* RfftInitAll(TfLiteContext* context, const char* buffer, size_t length) {
   const uint8_t* buffer_t = reinterpret_cast<const uint8_t*>(buffer);
   const flexbuffers::Map& m = flexbuffers::GetRoot(buffer_t, length).AsMap();
   auto tensor_type = static_cast<tflite::TensorType>(m["T"].AsInt32());
 
   switch (tensor_type) {
     case TensorType_INT16: {
-      return Init<int16_t, ::tflm_signal::RfftInt16GetNeededMemory,
-                  ::tflm_signal::RfftInt16Init>(context, buffer, length);
+      return RfftInit<int16_t, ::tflm_signal::RfftInt16GetNeededMemory,
+                      ::tflm_signal::RfftInt16Init>(context, buffer, length);
     }
     case TensorType_INT32: {
-      return Init<int32_t, ::tflm_signal::RfftInt32GetNeededMemory,
-                  ::tflm_signal::RfftInt32Init>(context, buffer, length);
+      return RfftInit<int32_t, ::tflm_signal::RfftInt32GetNeededMemory,
+                      ::tflm_signal::RfftInt32Init>(context, buffer, length);
     }
     case TensorType_FLOAT32: {
-      return Init<float, ::tflm_signal::RfftFloatGetNeededMemory,
-                  ::tflm_signal::RfftFloatInit>(context, buffer, length);
+      return RfftInit<float, ::tflm_signal::RfftFloatGetNeededMemory,
+                      ::tflm_signal::RfftFloatInit>(context, buffer, length);
     }
     default:
       return nullptr;
   }
 }
 
-TfLiteStatus PrepareAll(TfLiteContext* context, TfLiteNode* node) {
+TfLiteStatus RfftPrepareAll(TfLiteContext* context, TfLiteNode* node) {
   auto* params =
       reinterpret_cast<TfLiteAudioFrontendRfftParams<void>*>(node->user_data);
 
   switch (params->fft_type) {
     case kTfLiteInt16: {
-      return Prepare<int16_t, kTfLiteInt16>(context, node);
+      return RfftPrepare<int16_t, kTfLiteInt16>(context, node);
     }
     case kTfLiteInt32: {
-      return Prepare<int32_t, kTfLiteInt32>(context, node);
+      return RfftPrepare<int32_t, kTfLiteInt32>(context, node);
     }
     case kTfLiteFloat32: {
-      return Prepare<float, kTfLiteFloat32>(context, node);
+      return RfftPrepare<float, kTfLiteFloat32>(context, node);
     }
     default:
       return kTfLiteError;
   }
 }
 
-TfLiteStatus EvalAll(TfLiteContext* context, TfLiteNode* node) {
+TfLiteStatus RfftEvalAll(TfLiteContext* context, TfLiteNode* node) {
   auto* params =
       reinterpret_cast<TfLiteAudioFrontendRfftParams<void>*>(node->user_data);
 
   switch (params->fft_type) {
     case kTfLiteInt16: {
-      return Eval<int16_t, ::tflm_signal::RfftInt16Apply>(context, node);
+      return RfftEval<int16_t, ::tflm_signal::RfftInt16Apply>(context, node);
     }
     case kTfLiteInt32: {
-      return Eval<int32_t, ::tflm_signal::RfftInt32Apply>(context, node);
+      return RfftEval<int32_t, ::tflm_signal::RfftInt32Apply>(context, node);
     }
     case kTfLiteFloat32: {
-      return Eval<float, ::tflm_signal::RfftFloatApply>(context, node);
+      return RfftEval<float, ::tflm_signal::RfftFloatApply>(context, node);
     }
     default:
       return kTfLiteError;
@@ -202,34 +204,34 @@
 
 TFLMRegistration* Register_RFFT() {
   static TFLMRegistration r =
-      tflite::micro::RegisterOp(InitAll, PrepareAll, EvalAll);
+      tflite::micro::RegisterOp(RfftInitAll, RfftPrepareAll, RfftEvalAll);
   return &r;
 }
 
 TFLMRegistration* Register_RFFT_FLOAT() {
   static TFLMRegistration r = tflite::micro::RegisterOp(
-      Init<float, ::tflm_signal::RfftFloatGetNeededMemory,
-           ::tflm_signal::RfftFloatInit>,
-      Prepare<float, kTfLiteFloat32>,
-      Eval<float, ::tflm_signal::RfftFloatApply>);
+      RfftInit<float, ::tflm_signal::RfftFloatGetNeededMemory,
+               ::tflm_signal::RfftFloatInit>,
+      RfftPrepare<float, kTfLiteFloat32>,
+      RfftEval<float, ::tflm_signal::RfftFloatApply>);
   return &r;
 }
 
 TFLMRegistration* Register_RFFT_INT16() {
   static TFLMRegistration r = tflite::micro::RegisterOp(
-      Init<int16_t, ::tflm_signal::RfftInt16GetNeededMemory,
-           ::tflm_signal::RfftInt16Init>,
-      Prepare<int16_t, kTfLiteInt16>,
-      Eval<int16_t, ::tflm_signal::RfftInt16Apply>);
+      RfftInit<int16_t, ::tflm_signal::RfftInt16GetNeededMemory,
+               ::tflm_signal::RfftInt16Init>,
+      RfftPrepare<int16_t, kTfLiteInt16>,
+      RfftEval<int16_t, ::tflm_signal::RfftInt16Apply>);
   return &r;
 }
 
 TFLMRegistration* Register_RFFT_INT32() {
   static TFLMRegistration r = tflite::micro::RegisterOp(
-      Init<int32_t, ::tflm_signal::RfftInt32GetNeededMemory,
-           ::tflm_signal::RfftInt32Init>,
-      Prepare<int32_t, kTfLiteInt32>,
-      Eval<int32_t, ::tflm_signal::RfftInt32Apply>);
+      RfftInit<int32_t, ::tflm_signal::RfftInt32GetNeededMemory,
+               ::tflm_signal::RfftInt32Init>,
+      RfftPrepare<int32_t, kTfLiteInt32>,
+      RfftEval<int32_t, ::tflm_signal::RfftInt32Apply>);
   return &r;
 }
 
diff --git a/signal/micro/kernels/stacker.cc b/signal/micro/kernels/stacker.cc
index 42a2ee6..fc1a4a3 100644
--- a/signal/micro/kernels/stacker.cc
+++ b/signal/micro/kernels/stacker.cc
@@ -52,7 +52,7 @@
   tflm_signal::CircularBuffer* circular_buffer;
 };
 
-void* Init(TfLiteContext* context, const char* buffer, size_t length) {
+void* StackerInit(TfLiteContext* context, const char* buffer, size_t length) {
   const uint8_t* buffer_t = reinterpret_cast<const uint8_t*>(buffer);
 
   auto* params =
@@ -88,7 +88,7 @@
   return params;
 }
 
-TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
+TfLiteStatus StackerPrepare(TfLiteContext* context, TfLiteNode* node) {
   TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
   TF_LITE_ENSURE_EQ(context, NumOutputs(node), 2);
 
@@ -118,7 +118,7 @@
   return kTfLiteOk;
 }
 
-TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
+TfLiteStatus StackerEval(TfLiteContext* context, TfLiteNode* node) {
   auto* params = reinterpret_cast<TFLMSignalStackerParams*>(node->user_data);
   TF_LITE_ENSURE(context, params != nullptr);
 
@@ -157,7 +157,7 @@
   return kTfLiteOk;
 }
 
-void Reset(TfLiteContext* context, void* buffer) {
+void StackerReset(TfLiteContext* context, void* buffer) {
   auto* params = static_cast<TFLMSignalStackerParams*>(buffer);
   tflm_signal::CircularBufferReset(params->circular_buffer);
   params->stacker_has_first_frame = false;
@@ -167,8 +167,8 @@
 
 namespace tflm_signal {
 TFLMRegistration* Register_STACKER() {
-  static TFLMRegistration r =
-      tflite::micro::RegisterOp(Init, Prepare, Eval, /*Free*/ nullptr, Reset);
+  static TFLMRegistration r = tflite::micro::RegisterOp(
+      StackerInit, StackerPrepare, StackerEval, /*Free*/ nullptr, StackerReset);
   return &r;
 }
 }  // namespace tflm_signal
diff --git a/signal/micro/kernels/window.cc b/signal/micro/kernels/window.cc
index e850898..cd9c462 100644
--- a/signal/micro/kernels/window.cc
+++ b/signal/micro/kernels/window.cc
@@ -41,7 +41,7 @@
   int32_t input_size;
 };
 
-void* Init(TfLiteContext* context, const char* buffer, size_t length) {
+void* WindowInit(TfLiteContext* context, const char* buffer, size_t length) {
   const uint8_t* buffer_t = reinterpret_cast<const uint8_t*>(buffer);
 
   auto* params =
@@ -53,7 +53,7 @@
   return params;
 }
 
-TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
+TfLiteStatus WindowPrepare(TfLiteContext* context, TfLiteNode* node) {
   TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
   TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
 
@@ -87,7 +87,7 @@
   return kTfLiteOk;
 }
 
-TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
+TfLiteStatus WindowEval(TfLiteContext* context, TfLiteNode* node) {
   auto* params = reinterpret_cast<TFLMSignalWindowParams*>(node->user_data);
 
   const TfLiteEvalTensor* input =
@@ -114,7 +114,8 @@
 namespace tflm_signal {
 
 TFLMRegistration* Register_WINDOW() {
-  static TFLMRegistration r = tflite::micro::RegisterOp(Init, Prepare, Eval);
+  static TFLMRegistration r =
+      tflite::micro::RegisterOp(WindowInit, WindowPrepare, WindowEval);
   return &r;
 }
 
diff --git a/signal/micro/kernels/xtensa/fft_auto_scale_kernel.cc b/signal/micro/kernels/xtensa/fft_auto_scale_kernel.cc
new file mode 100644
index 0000000..fbd739b
--- /dev/null
+++ b/signal/micro/kernels/xtensa/fft_auto_scale_kernel.cc
@@ -0,0 +1,103 @@
+/* Copyright 2023 The TensorFlow Authors. All Rights Reserved.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+    http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+==============================================================================*/
+
+#include "signal/micro/kernels/fft_auto_scale_kernel.h"
+
+#include <math.h>
+#include <stddef.h>
+#include <stdint.h>
+
+#include "signal/src/fft_auto_scale.h"
+#include "signal/src/max_abs.h"
+#include "signal/src/msb.h"
+#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
+#include "tensorflow/lite/kernels/kernel_util.h"
+#include "tensorflow/lite/micro/kernels/kernel_util.h"
+#include "tensorflow/lite/micro/micro_context.h"
+
+#if XCHAL_HAVE_HIFI3
+#include <xtensa/tie/xt_hifi3.h>
+namespace {
+// Implementation for DSPs that support the Hifi3 ISA. Bit exact with the
+// portable version below.
+int XtensaFftAutoScale(const int16_t* input, int size, int16_t* output) {
+  const int16_t max = tflite::tflm_signal::MaxAbs16(input, size);
+  int scale_bits = (sizeof(int16_t) * 8) -
+                   tflite::tflm_signal::MostSignificantBit32(max) - 1;
+  int i;
+  if (scale_bits > 0) {
+    const ae_int16x4* input_16x4_ptr =
+        reinterpret_cast<const ae_int16x4*>(input);
+    ae_int16x4* output_16x4_ptr = reinterpret_cast<ae_int16x4*>(output);
+    const int num_iterations = ((size + 3) >> 2);
+    for (i = 0; i < num_iterations; ++i) {
+      ae_int16x4 input_16x4;
+      AE_L16X4_IP(input_16x4, input_16x4_ptr, 8);
+      ae_f16x4 input_f16x4 = *reinterpret_cast<ae_f16x4*>(&input_16x4);
+      input_f16x4 = AE_SLAA16S(input_f16x4, scale_bits);
+      input_16x4 = *reinterpret_cast<ae_int16x4*>(&input_f16x4);
+      AE_S16X4_IP(input_16x4, output_16x4_ptr, 8);
+    }
+  } else {
+    memcpy(output, input, size * sizeof(output[0]));
+    scale_bits = 0;
+  }
+  return scale_bits;
+}
+}  // namespace
+#endif
+
+namespace tflite {
+namespace {
+
+constexpr int kInputTensor = 0;
+constexpr int kOutputTensor = 0;
+constexpr int kScaleBitTensor = 1;
+
+TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
+  const TfLiteEvalTensor* input =
+      tflite::micro::GetEvalInput(context, node, kInputTensor);
+  TfLiteEvalTensor* output =
+      tflite::micro::GetEvalOutput(context, node, kOutputTensor);
+  TfLiteEvalTensor* scale_bit =
+      tflite::micro::GetEvalOutput(context, node, kScaleBitTensor);
+
+  const int16_t* input_data = tflite::micro::GetTensorData<int16_t>(input);
+  int16_t* output_data = tflite::micro::GetTensorData<int16_t>(output);
+  int32_t* scale_bit_data = tflite::micro::GetTensorData<int32_t>(scale_bit);
+
+#if XCHAL_HAVE_HIFI3
+  *scale_bit_data =
+      XtensaFftAutoScale(input_data, output->dims->data[0], output_data);
+#else
+  *scale_bit_data =
+      tflm_signal::FftAutoScale(input_data, output->dims->data[0], output_data);
+#endif
+  return kTfLiteOk;
+}
+
+}  // namespace
+
+// TODO(b/286250473): remove namespace once de-duped libraries
+namespace tflm_signal {
+
+TFLMRegistration* Register_FFT_AUTO_SCALE() {
+  static TFLMRegistration r =
+      tflite::micro::RegisterOp(nullptr, FftAutoScalePrepare, Eval);
+  return &r;
+}
+
+}  // namespace tflm_signal
+}  // namespace tflite
diff --git a/signal/micro/kernels/xtensa/filter_bank_square_root.cc b/signal/micro/kernels/xtensa/filter_bank_square_root.cc
new file mode 100644
index 0000000..60e4119
--- /dev/null
+++ b/signal/micro/kernels/xtensa/filter_bank_square_root.cc
@@ -0,0 +1,72 @@
+/* Copyright 2023 The TensorFlow Authors. All Rights Reserved.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+    http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+==============================================================================*/
+
+#include "signal/micro/kernels/filter_bank_square_root.h"
+
+#include <stdint.h>
+
+#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
+#include "tensorflow/lite/kernels/kernel_util.h"
+#include "tensorflow/lite/micro/kernels/kernel_util.h"
+#include "tensorflow/lite/micro/memory_helpers.h"
+#include "tensorflow/lite/micro/micro_utils.h"
+
+// Defined in square_root.S
+extern "C" uint32_t xtensa_sqrt_64(const uint64_t num);
+
+namespace tflite {
+namespace {
+
+constexpr int kInputTensor = 0;
+constexpr int kScaleBitsTensor = 1;
+constexpr int kOutputTensor = 0;
+
+void ApplyFilterbankSqrt(const uint64_t* input, int num_channels,
+                         int scale_down_bits, uint32_t* output) {
+  for (int i = 0; i < num_channels; ++i) {
+    output[i] = xtensa_sqrt_64(input[i]) >> scale_down_bits;
+  }
+}
+
+TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
+  const TfLiteEvalTensor* input =
+      tflite::micro::GetEvalInput(context, node, kInputTensor);
+  const TfLiteEvalTensor* scale_bits =
+      tflite::micro::GetEvalInput(context, node, kScaleBitsTensor);
+  TfLiteEvalTensor* output =
+      tflite::micro::GetEvalOutput(context, node, kOutputTensor);
+
+  const uint64_t* input_data = tflite::micro::GetTensorData<uint64_t>(input);
+  const int32_t* scale_bits_data =
+      tflite::micro::GetTensorData<int32_t>(scale_bits);
+  uint32_t* output_data = tflite::micro::GetTensorData<uint32_t>(output);
+  int32_t num_channels = input->dims->data[0];
+  ApplyFilterbankSqrt(input_data, num_channels, *scale_bits_data, output_data);
+  return kTfLiteOk;
+}
+
+}  // namespace
+
+namespace tflm_signal {
+
+TFLMRegistration* Register_FILTER_BANK_SQUARE_ROOT() {
+  static TFLMRegistration r =
+      tflite::micro::RegisterOp(nullptr, FilterBankSquareRootPrepare, Eval);
+  return &r;
+}
+
+}  // namespace tflm_signal
+
+}  // namespace tflite
diff --git a/signal/micro/kernels/xtensa/xtensa_square_root.S b/signal/micro/kernels/xtensa/xtensa_square_root.S
new file mode 100644
index 0000000..054d72f
--- /dev/null
+++ b/signal/micro/kernels/xtensa/xtensa_square_root.S
@@ -0,0 +1,400 @@
+/* Copyright 2023 The TensorFlow Authors. All Rights Reserved.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+    http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+==============================================================================*/
+
+.section .note.GNU-stack,"",@progbits
+
+#include "xtensa/config/core-isa.h"
+
+#ifdef __XTENSA_CALL0_ABI__
+#define NO_REGISTER_WINDOW (1)
+#endif
+
+#if XCHAL_HAVE_WINDOWED == 0
+#define NO_REGISTER_WINDOW
+#endif
+
+// Since the 64 bit sqrt jumps into the middle of the 32 bit sqrt under certain
+// conditions, both functions should reserve the same amount of stack space.
+#define XTENSA_SQRT_STACK_SIZE 32
+
+.text
+.type xtensa_sqrt_64, @function
+.align 4
+.global xtensa_sqrt_64
+
+// Make macros for our 64 bit functions, since we don't have a carry/borrow bit
+// in the base ISA, these take up way more cycles than they should. These are
+// the "preferred instruction idioms" from 8.9.2 of the base ISA manual. Since
+// these macros define a jump (and I couldn't find a way to be clever and use
+// something like __LINE__/__FILE__ to define these automatically, you may also
+// have to provide an 'opname' that contains a unique string to define a label
+// for the macro.
+
+// dest must not be the same as num2, or this function will not work!
+#define ADD_64(dest, num1, num2, opname) \
+  add.n dest##_low, num1##_low, num2##_low; \
+  add.n dest##_high, num1##_high, num2##_high; \
+  bgeu dest##_low, num2##_low, .add_64_jump_##opname; \
+  addi.n dest##_high, dest##_high, 1; \
+  .add_64_jump_##opname:
+
+// All three registers must be unique, or this function will not work!
+#define SUB_64(dest, num1, num2, opname) \
+  sub dest##_low, num1##_low, num2##_low; \
+  sub dest##_high, num1##_high, num2##_high; \
+  bgeu num1##_low, num2##_low, .sub_64_jump_##opname; \
+  addi.n dest##_high, dest##_high, -1; \
+  .sub_64_jump_##opname:
+
+#define SRLI_64(dest, val, imm) \
+  slli scratch4, val##_high, (32 - imm); \
+  srli dest##_high, val##_high, imm; \
+  srli dest##_low, val##_low, imm; \
+  or dest##_low, dest##_low, scratch4;
+
+#define COND_MOV_64(op, dest, val, test) \
+  mov##op dest##_low, val##_low, test; \
+  mov##op dest##_high, val##_high, test
+
+#define num_low a2
+#define num_high a3
+#define bit_low a4
+#define bit_high a5
+#define res_low a6
+#define res_high a7
+#define temp1_low a8
+#define temp1_high a9
+#define temp2_low a10
+#define temp2_high a11
+#define scratch1 a12
+#define scratch2 a13
+#define scratch3 a14
+#define scratch4 a15
+#define temp3_low scratch1
+#define temp3_high scratch2
+
+.align 4
+xtensa_sqrt_64:
+#ifdef NO_REGISTER_WINDOW
+addi.n a1, a1, -XTENSA_SQRT_STACK_SIZE
+s32i.n a0, a1, 4
+s32i.n a11, a1, 8
+s32i.n a12, a1, 12
+s32i.n a13, a1, 16
+s32i.n a14, a1, 20
+s32i.n a15, a1, 24
+#else
+entry a1, XTENSA_SQRT_STACK_SIZE
+#endif
+// In the event that the upper word of the number is all zero, we can just
+// pretend that we're doing a 32 bit sqrt (but the rounding condition at the
+// end is slightly different, so we've got a bit of an anomly there. Such is
+// life)
+beqz.n num_high, .xtensa_sqrt_32_start
+// ** uint64 res= 0;
+movi.n res_low, 0
+movi.n res_high, 0
+
+movi.n scratch2, 1
+
+// Setup 'bit' - first we need to know what bit to set it to.
+// ** int max_bit_number = 64 - MostSignificantBit_64(num);
+movi.n bit_low, 0
+nsau scratch1, num_high
+
+// ** max_bit_number |= 1;
+or scratch1, scratch2, scratch1
+
+// The ammount we shift by is 31 - what's in scratch1 for the max bit number.
+// This is because we've got the two words, so we can't do a 64 bit shift.
+movi.n scratch3, 31
+sub scratch1, scratch3, scratch1
+
+// Do the shift
+// ** uint32 bit = 1 << (63 - max_bit_number);
+ssl scratch1
+sll bit_high, scratch2
+
+// Figure out how many iterations we're going to need. However, we already have
+// 31 - max_bit_number in scratch1, so just add 32 to that.
+// ** int iterations = (63 - max_bit_number) / 2 + 1;
+addi.n scratch1, scratch1, 32
+srli scratch1, scratch1, 1
+add scratch1, scratch1, scratch2
+
+// If the number of iterations is equal to 32, this means that we're likely in
+// an overflow spot if we try and do a subtraction (since the upper most bit is
+// going to be set since the bit had to be shifted up so high). We have to do
+// one iteration of the loop where we use the pipeline destroying branch call
+// that can compare two unsigned numbers. If we need less than 32 iterations,
+// we can skip this slow path and jump to the tight inner loop.
+blti scratch1, 32, .xtensa_sqrt_64_inner_loop_start
+
+// Cache bit + res.
+ADD_64(temp1, bit, res, temp1_bit_res)
+// Since we've stored a copy of bit + res, we can right shift res (since both
+// branches of the conditional are going to need it, one branch just needs to
+// perform an extra addition).
+// ** res <<= 1;
+SRLI_64(res, res, 1);
+
+// ** if (num >= res_plus_bit) {
+bltu num_high, temp1_high, .xtensa_sqrt_64_branch_skip
+bne num_high, temp1_high, .xtensa_sqrt_64_comparison_failed
+bltu num_low, temp1_low, .xtensa_sqrt_64_branch_skip
+.xtensa_sqrt_64_comparison_failed:
+
+// **   num -= res + bit;
+SUB_64(temp2, num, temp1, temp2_num_temp1_early_branch)
+// Since the sub can't use the same registers, we have to move it back to where
+// it belongs.
+mov.n num_low, temp2_low
+mov.n num_high, temp2_high
+// **   res += bit;
+ADD_64(res, res, bit, res_res_bit_early_branch)
+// ** }
+.xtensa_sqrt_64_branch_skip:
+
+// ** bit >>= 2;
+SRLI_64(bit, bit, 2)
+// Make sure we knock off this iteration when we fall into the inner loop.
+sub scratch1, scratch1, scratch2
+
+.xtensa_sqrt_64_inner_loop_start:
+loop scratch1, .xtensa_sqrt_64_round
+
+// We don't have enough registers to be as verbose as the 32 bit version, so
+// this version is not as easy to read. Instead of having the two operations in
+// the same style of conditional move, we sort of decide to do both branches at
+// the same time of the if, then fix up what was incorrect at the end.
+SRLI_64(temp1, res, 1)
+ADD_64(res, res, bit, res_res_bit)
+
+SUB_64(temp2, num, res, num_res_temp2)
+ADD_64(res, temp1, bit, res_temp1_bit)
+
+COND_MOV_64(gez, num, temp2, temp2_high)
+COND_MOV_64(ltz, res, temp1, temp2_high)
+
+// ** bit >>= 2;
+SRLI_64(bit, bit, 2)
+
+.xtensa_sqrt_64_round:
+
+// Need to do if (num > res) { ++res; }, but we'll do it with conditional moves
+// again. Except we're going to do it slightly backwards, since we need to move
+// the result into the num register to be returned. We'll do this by setting
+// the return value to res + 1, but in the event that it was a mistake, we'll
+// conditionally move the raw result back into place.
+SUB_64(temp1, res, num, res_num_temp1)
+addi.n num_low, res_low, 1
+movgez num_low, res_low, temp1_high
+
+// But we may have overflowed num_low - set it back to result_low if it's been
+// zeroed out.
+moveqz num_low, res_low, num_low
+
+#ifdef NO_REGISTER_WINDOW
+l32i.n a0, a1, 4
+l32i.n a11, a1, 8
+l32i.n a12, a1, 12
+l32i.n a13, a1, 16
+l32i.n a14, a1, 20
+l32i.n a15, a1, 24
+addi a1, a1, XTENSA_SQRT_STACK_SIZE
+ret.n
+#else
+retw.n
+#endif
+.xtensa_sqrt_64_end:
+  .size xtensa_sqrt_64, . - xtensa_sqrt_64
+
+
+#undef ADD_64
+#undef SUB_64
+#undef SRLI_64
+#undef COND_MOV_64
+
+#undef num_low
+#undef num_high
+#undef bit_low
+#undef bit_high
+#undef res_low
+#undef res_high
+#undef temp1_low
+#undef temp1_high
+#undef temp2_low
+#undef temp2_high
+#undef scratch1
+#undef scratch2
+#undef scratch3
+#undef scratch4
+#undef temp3_low
+#undef temp3_high
+.text
+.type xtensa_sqrt_32, @function
+.align 4
+.global xtensa_sqrt_32
+
+// Make the program more readable...
+#define num a2
+#define bit a4
+#define res a5
+#define one a6
+#define max_bit_number a7
+#define iterations max_bit_number
+#define bit_plus_res a8
+#define num_minus_bit_plus_res a9
+#define res_shift_left_plus_bit a10
+#define res_minus_num res_shift_left_plus_bit
+
+xtensa_sqrt_32:
+#ifdef NO_REGISTER_WINDOW
+addi.n a1, a1, -XTENSA_SQRT_STACK_SIZE
+s32i.n a0, a1, 4
+s32i.n a11, a1, 8
+s32i.n a12, a1, 12
+s32i.n a13, a1, 16
+s32i.n a14, a1, 20
+s32i.n a15, a1, 24
+#else
+entry a1, XTENSA_SQRT_STACK_SIZE
+#endif
+
+.xtensa_sqrt_32_start:
+// If the number is zero, just quickly exit without doing anything.
+beqz.n num, .xtensa_sqrt_32_return
+
+// ** uint32 res = 0;
+movi.n res, 0
+// Also, setup the handy constant we need a few times.
+movi.n one, 1
+
+// This will give us (32 - index of the first bit that is set).
+// ** int max_bit_number = 32 - MostSignificantBit_32(num);
+nsau max_bit_number, num
+
+// ** max_bit_number |= one;
+or max_bit_number, max_bit_number, one
+
+// The ammount we shift by is 31 - what we stored in max_bit_number.
+movi.n a15, 31
+sub max_bit_number, a15, max_bit_number
+
+// Do the shift.
+// ** uint32 bit = 1 << (31 - max_bit_number);
+ssl max_bit_number
+sll bit, one
+
+// Compute the number of iterations we're going to need.
+// ** int iterations = (31 - max_bit_number) / 2 + 1;
+srli iterations, max_bit_number, 1
+add iterations, iterations, one
+
+// If the number of iterations is equal to 16, this means that we're likely in
+// an overflow spot if we try and do a subtraction (since the upper most bit is
+// going to be set since the bit had to be shifted up so high). We have to do
+// one iteration of the loop where we use the pipeline destroying branch call
+// that can compare two unsigned numbers. If we need less than 16 iterations,
+// we can skip this slow path and jump to the tight inner loop.
+blti iterations, 16, .xtensa_sqrt_32_inner_loop_start
+
+// Cache bit + res into another register.
+add.n bit_plus_res, bit, res
+// Since we've stored a copy of bit + res, we can right shift res (since both
+// branches of the conditional are going to need it, one branch just needs to
+// perform an extra addition).
+// ** res <<= 1;
+srli res, res, 1
+// ** if (num >= res_plus_bit) {
+bltu num, bit_plus_res, .xtensa_sqrt_32_branch_skip
+// **   num -= res + bit;
+sub num, num, bit_plus_res
+// **   res += bit;
+add res, res, bit
+// ** }
+.xtensa_sqrt_32_branch_skip:
+
+// ** bit >>= 2;
+srli bit, bit, 2
+// Make sure we knock off this iteration when we fall into the inner loop.
+sub iterations, iterations, one
+
+.xtensa_sqrt_32_inner_loop_start:
+// Start a zero overhead loop for the number of remaining iterations.
+loop iterations, .xtensa_sqrt_32_round
+
+// Cache bit + res into another register.
+add.n bit_plus_res, bit, res
+// ** res <<= 1;
+srli res, res, 1
+
+// We can dodge a hefty branch penalty by doing conditional moves - so we need
+// to compute the values for num and res for what would happen if we took the
+// if part of the condition. If the condition is true, then we'll copy stuff
+// across.
+
+// compute num - bit_plus_res. We can use this for the conditional check
+// against zero.
+sub num_minus_bit_plus_res, num, bit_plus_res
+// compute the shifted res + bit.
+add res_shift_left_plus_bit, res, bit
+
+// Copy stuff if the condition is true.
+movgez num, num_minus_bit_plus_res, num_minus_bit_plus_res
+movgez res, res_shift_left_plus_bit, num_minus_bit_plus_res
+
+// ** bit >>= 2;
+srli bit, bit, 2
+
+.xtensa_sqrt_32_round:
+
+// Need to do if (num > res) { ++res; }, but we'll do it with conditional moves
+// again. Except we're going to do it slightly backwards, since we need to move
+// the result into the num register to be returned. We'll do this by setting
+// the return value to res + 1, but in the event that it was a mistake, we'll
+// conditionally move the raw result back into place.
+sub res_minus_num, res, num
+add.n num, res, one
+movgez num, res, res_minus_num
+
+// But we might have also pooched the rounding by adding an extra bit, make sure
+// we don't explode when we overflow.
+clamps num, num, 16
+
+.xtensa_sqrt_32_return:
+#ifdef NO_REGISTER_WINDOW
+l32i.n a0, a1, 4
+l32i.n a11, a1, 8
+l32i.n a12, a1, 12
+l32i.n a13, a1, 16
+l32i.n a14, a1, 20
+l32i.n a15, a1, 24
+addi a1, a1, XTENSA_SQRT_STACK_SIZE
+ret.n
+#else
+retw.n
+#endif
+
+#undef num
+#undef bit
+#undef res
+#undef one
+#undef max_bit_number
+#undef iterations
+#undef bit_plus_res
+#undef num_minus_bit_plus_res
+#undef res_shift_left_plus_bit
+#undef res_minus_num
diff --git a/signal/src/BUILD b/signal/src/BUILD
index c09f608..e5c1060 100644
--- a/signal/src/BUILD
+++ b/signal/src/BUILD
@@ -142,3 +142,13 @@
         ":square_root_64",
     ],
 )
+
+cc_library(
+    name = "pcan_argc_fixed",
+    srcs = ["pcan_argc_fixed.cc"],
+    hdrs = ["pcan_argc_fixed.h"],
+    deps = [
+        ":msb_32",
+        "//tensorflow/lite/kernels/internal:compatibility",
+    ],
+)
diff --git a/signal/src/max_abs.cc b/signal/src/max_abs.cc
index 365938d..0ad117a 100644
--- a/signal/src/max_abs.cc
+++ b/signal/src/max_abs.cc
@@ -15,11 +15,58 @@
 
 #include "signal/src/max_abs.h"
 
+#if defined(XTENSA)
+#include <stdint.h>
+#include <xtensa/tie/xt_misc.h>
+#endif
+#if XCHAL_HAVE_HIFI3
+#include <xtensa/tie/xt_hifi3.h>
+static inline ae_p24x2s MaxAbs16Single(ae_p24x2s max, ae_p24x2s current) {
+  return AE_MAXABSSP24S(max, current);
+}
+#elif XCHAL_HAVE_HIFI_MINI || XCHAL_HAVE_HIFI2 || XCHAL_HAVE_HIFI_EP
+#include <xtensa/tie/xt_hifi2.h>
+static inline ae_p24x2s MaxAbs16Single(ae_p24x2s max, ae_p24x2s current) {
+  current = AE_ABSSP24S(current);
+  return AE_MAXP24S(max, current);
+}
+#endif
+
 // TODO(b/286250473): remove namespace once de-duped libraries
 namespace tflite {
 namespace tflm_signal {
 
+#if XCHAL_HAVE_HIFI_MINI || XCHAL_HAVE_HIFI2 || XCHAL_HAVE_HIFI_EP || \
+    XCHAL_HAVE_HIFI3
+int16_t XtensaMaxAbs16(const int16_t* input, int size) {
+  int i;
+  ae_p24x2s current_24x2;
+  // AE_LP16X2F_IU() effectively pre-increments the address in input_16x2 by 4
+  //  bytes before loading, so we need to initialize it accordingly.
+  const ae_p16x2s* input_16x2 = (const ae_p16x2s*)(input - 2);
+  ae_p24x2s max = AE_ZEROP48();
+  const int num_iterations = size / 2;
+  for (i = 0; i < num_iterations; i++) {
+    // Advancing the pointer by 2 X 16-bits.
+    AE_LP16X2F_IU(current_24x2, input_16x2, 4);
+    max = MaxAbs16Single(max, current_24x2);
+  }
+  if (size & 1) {  // n is odd
+    // Advancing the pointer by 2 X 16-bits.
+    current_24x2 = AE_LP16F_I((ae_p16s*)input_16x2, 4);
+    max = MaxAbs16Single(max, current_24x2);
+  }
+  const int max_L = AE_TRUNCA16P24S_L(max);
+  const int max_H = AE_TRUNCA16P24S_H(max);
+  return (max_L >= max_H) ? max_L : max_H;
+}
+#endif
+
 int16_t MaxAbs16(const int16_t* input, int size) {
+#if XCHAL_HAVE_HIFI_MINI || XCHAL_HAVE_HIFI2 || XCHAL_HAVE_HIFI_EP || \
+    XCHAL_HAVE_HIFI3
+  return XtensaMaxAbs16(input, size);
+#else
   int16_t max = 0;
   for (int i = 0; i < size; i++) {
     const int16_t value = input[i];
@@ -30,6 +77,8 @@
     }
   }
   return max;
+#endif
 }
+
 }  // namespace tflm_signal
 }  // namespace tflite
diff --git a/signal/src/msb_32.cc b/signal/src/msb_32.cc
index 6f12dc4..67f2664 100644
--- a/signal/src/msb_32.cc
+++ b/signal/src/msb_32.cc
@@ -15,13 +15,21 @@
 
 #include "signal/src/msb.h"
 
+#if defined(XTENSA)
+#include <xtensa/tie/xt_misc.h>
+#endif
+
 namespace tflite {
 namespace tflm_signal {
 // TODO(b/286250473): remove namespace once de-duped libraries above
 
 // TODO(b/291167350):  can allow __builtin_clz to be used in more cases here
 uint32_t MostSignificantBit32(uint32_t x) {
-#if defined(__GNUC__)
+#if defined(XTENSA)
+  // XT_NSAU returns the number of left shifts needed to put the MSB in the
+  // leftmost position. Returns 32 if the argument is 0.
+  return 32 - XT_NSAU(x);
+#elif defined(__GNUC__)
   if (x) {
     return 32 - __builtin_clz(x);
   }
diff --git a/signal/src/msb_64.cc b/signal/src/msb_64.cc
index 233985c..7416438 100644
--- a/signal/src/msb_64.cc
+++ b/signal/src/msb_64.cc
@@ -15,12 +15,25 @@
 
 #include "signal/src/msb.h"
 
+#if defined(XTENSA)
+#include <xtensa/tie/xt_misc.h>
+#endif
+
 namespace tflite {
 namespace tflm_signal {
 // TODO(b/286250473): remove namespace once de-duped libraries above
 
 uint32_t MostSignificantBit64(uint64_t x) {
-#if defined(__GNUC__)
+#if defined(XTENSA)
+  // XT_NSAU returns the number of left shifts needed to put the MSB in the
+  // leftmost position. Returns 32 if the argument is 0.
+  uint32_t upper = 64 - XT_NSAU((uint32_t)(x >> 32));
+  if (upper != 32) {
+    return upper;
+  }
+  // Only if the upper bits are all clear do we want to look at the lower bits.
+  return 32 - XT_NSAU((uint32_t)x);
+#elif defined(__GNUC__)
   if (x) {
     return 64 - __builtin_clzll(x);
   }
diff --git a/signal/src/pcan_argc_fixed.cc b/signal/src/pcan_argc_fixed.cc
new file mode 100644
index 0000000..2700b28
--- /dev/null
+++ b/signal/src/pcan_argc_fixed.cc
@@ -0,0 +1,75 @@
+/* Copyright 2023 The TensorFlow Authors. All Rights Reserved.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+    http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+==============================================================================*/
+
+#include "pcan_argc_fixed.h"
+
+namespace tflite {
+namespace tflm_signal {
+
+int16_t WideDynamicFunction(const uint32_t x, const int16_t* lut) {
+  if (x <= 2) {
+    return lut[x];
+  }
+
+  const int16_t interval = MostSignificantBit32(x);
+  lut += 4 * interval - 6;
+
+  const int16_t frac =
+      ((interval < 11) ? (x << (11 - interval)) : (x >> (interval - 11))) &
+      0x3FF;
+
+  int32_t result = ((int32_t)lut[2] * frac) >> 5;
+  result += (int32_t)((uint32_t)lut[1] << 5);
+  result *= frac;
+  result = (result + (1 << 14)) >> 15;
+  result += lut[0];
+  return (int16_t)result;
+}
+
+// Evaluate the piecewise polynomial "shrink" function defined by
+//   shrink(x) = x^2 / 4  for x < 2,
+//   shrink(x) = x - 1    for x >= 2.
+// The input x has kPcanSnrBits fractional bits, and the output has
+// kPcanOutputBits fractional bits.
+uint32_t PcanShrink(const uint32_t x) {
+  TFLITE_DCHECK(kPcanSnrBits >= kPcanOutputBits);
+  if (x < (2 << kPcanSnrBits)) {
+    // Compute x^2 / 4.
+    return (x * x) >> (2 + 2 * kPcanSnrBits - kPcanOutputBits);
+  } else {
+    // Compute x - 1.
+    return (x >> (kPcanSnrBits - kPcanOutputBits)) - (1 << kPcanOutputBits);
+  }
+}
+
+void ApplyPcanAutoGainControlFixed(const int16_t* gain_lut, int32_t snr_shift,
+                                   const uint32_t* noise_estimate,
+                                   uint32_t* filterbank_output,
+                                   int num_channels) {
+  int i;
+  for (i = 0; i < num_channels; ++i) {
+    // The gain has gain_bits fractional bits, and filterbank_output[i] has
+    // -input_correction_bits fractional bits. The product is shifted so that
+    // the resulting snr has kPcanSnrBits fractional bits.
+    const uint32_t gain = WideDynamicFunction(noise_estimate[i], gain_lut);
+    const uint32_t snr = ((uint64_t)filterbank_output[i] * gain) >> snr_shift;
+    // Result has kPcanOutputBits fractional bits.
+    // NOTE: This assumes filterbank_output_scale = 1 << kPcanOutputBits.
+    filterbank_output[i] = PcanShrink(snr);
+  }
+}
+
+}  // namespace tflm_signal
+}  // namespace tflite
diff --git a/signal/src/pcan_argc_fixed.h b/signal/src/pcan_argc_fixed.h
new file mode 100644
index 0000000..36eaf3d
--- /dev/null
+++ b/signal/src/pcan_argc_fixed.h
@@ -0,0 +1,41 @@
+/* Copyright 2023 The TensorFlow Authors. All Rights Reserved.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+    http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+==============================================================================*/
+
+#ifndef SIGNAL_MICRO_KERNELS__SRC_PCAN_AGC_FIXED_H
+#define SIGNAL_MICRO_KERNELS__SRC_PCAN_AGC_FIXED_H
+#include <cstdint>
+
+#include "msb.h"
+#include "tensorflow/lite/kernels/internal/compatibility.h"
+
+namespace tflite {
+namespace tflm_signal {
+
+#define kPcanSnrBits 12
+#define kPcanOutputBits 6
+
+int16_t WideDynamicFunction(const uint32_t x, const int16_t* lut);
+
+uint32_t PcanShrink(const uint32_t x);
+
+void ApplyPcanAutoGainControlFixed(const int16_t* gain_lut, int32_t snr_shift,
+                                   const uint32_t* noise_estimate,
+                                   uint32_t* filterbank_output,
+                                   int num_channels);
+
+}  // namespace tflm_signal
+}  // namespace tflite
+
+#endif  // SIGNAL_MICRO_KERNELS__PCAN_AGC_FIXED_H
diff --git a/signal/tensorflow_core/kernels/BUILD b/signal/tensorflow_core/kernels/BUILD
index 3b7d1be..33f5d08 100644
--- a/signal/tensorflow_core/kernels/BUILD
+++ b/signal/tensorflow_core/kernels/BUILD
@@ -66,6 +66,15 @@
 )
 
 tflm_signal_kernel_library(
+    name = "pcan_kernel",
+    srcs = ["pcan_kernel.cc"],
+    deps = [
+        "//signal/src:pcan_argc_fixed",
+        "@tensorflow_cc_deps//:cc_library",
+    ],
+)
+
+tflm_signal_kernel_library(
     name = "stacker_kernel",
     srcs = ["stacker_kernel.cc"],
     deps = [
diff --git a/signal/tensorflow_core/kernels/pcan_kernel.cc b/signal/tensorflow_core/kernels/pcan_kernel.cc
new file mode 100644
index 0000000..a1adde0
--- /dev/null
+++ b/signal/tensorflow_core/kernels/pcan_kernel.cc
@@ -0,0 +1,53 @@
+/* Copyright 2023 The TensorFlow Authors. All Rights Reserved.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+    http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+==============================================================================*/
+
+#include "signal/src/pcan_argc_fixed.h"
+#include "tensorflow/core/framework/op_kernel.h"
+#include "tensorflow/core/framework/types.h"
+
+namespace tensorflow {
+namespace signal {
+
+class PcanOp : public tensorflow::OpKernel {
+ public:
+  explicit PcanOp(tensorflow::OpKernelConstruction* context)
+      : tensorflow::OpKernel(context) {
+    OP_REQUIRES_OK(context, context->GetAttr("snr_shift", &snr_shift_));
+  }
+
+  void Compute(tensorflow::OpKernelContext* context) override {
+    tensorflow::Tensor* output_tensor = nullptr;
+    const uint32_t* input = context->input(0).flat<uint32_t>().data();
+    const uint32_t* noise_estimate = context->input(1).flat<uint32_t>().data();
+    const int16_t* gain_lut = context->input(2).flat<int16_t>().data();
+    int32_t num_channels = context->input(0).NumElements();
+    OP_REQUIRES_OK(context,
+                   context->allocate_output(0, {num_channels}, &output_tensor));
+    uint32_t* output = output_tensor->flat<uint32_t>().data();
+
+    memcpy(output, input, sizeof(uint32_t) * num_channels);
+    tflite::tflm_signal::ApplyPcanAutoGainControlFixed(
+        gain_lut, snr_shift_, noise_estimate, output, num_channels);
+  }
+
+ private:
+  int snr_shift_;
+};
+
+REGISTER_KERNEL_BUILDER(Name("SignalPCAN").Device(tensorflow::DEVICE_CPU),
+                        PcanOp);
+
+}  // namespace signal
+}  // namespace tensorflow
diff --git a/signal/tensorflow_core/ops/BUILD b/signal/tensorflow_core/ops/BUILD
index 185c593..8ef47d8 100644
--- a/signal/tensorflow_core/ops/BUILD
+++ b/signal/tensorflow_core/ops/BUILD
@@ -54,6 +54,14 @@
 )
 
 tflm_signal_kernel_library(
+    name = "pcan_op",
+    srcs = ["pcan_op.cc"],
+    deps = [
+        "@tensorflow_cc_deps//:cc_library",
+    ],
+)
+
+tflm_signal_kernel_library(
     name = "stacker_op",
     srcs = ["stacker_op.cc"],
     deps = [
diff --git a/signal/tensorflow_core/ops/delay_op.cc b/signal/tensorflow_core/ops/delay_op.cc
index dfee3d2..fb816a6 100644
--- a/signal/tensorflow_core/ops/delay_op.cc
+++ b/signal/tensorflow_core/ops/delay_op.cc
@@ -22,11 +22,11 @@
 namespace tensorflow {
 namespace signal {
 
-Status DelayShape(InferenceContext* c) {
+absl::Status DelayShape(InferenceContext* c) {
   ShapeHandle out;
   TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(0), 1, &out));
   c->set_output(0, out);
-  return OkStatus();
+  return absl::OkStatus();
 }
 
 // TODO(b/286250473): change back name after name clash resolved
diff --git a/signal/tensorflow_core/ops/energy_op.cc b/signal/tensorflow_core/ops/energy_op.cc
index 9ca74ed..d4f7cb7 100644
--- a/signal/tensorflow_core/ops/energy_op.cc
+++ b/signal/tensorflow_core/ops/energy_op.cc
@@ -22,7 +22,7 @@
 namespace tensorflow {
 namespace signal {
 
-Status EnergyShape(InferenceContext* c) {
+absl::Status EnergyShape(InferenceContext* c) {
   ShapeHandle out;
 
   TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &out));
@@ -30,7 +30,7 @@
 
   TF_RETURN_IF_ERROR(c->ReplaceDim(out, 0, c->MakeDim(length), &out));
   c->set_output(0, out);
-  return OkStatus();
+  return absl::OkStatus();
 }
 
 // TODO(b/286250473): change back name after name clash resolved
diff --git a/signal/tensorflow_core/ops/fft_ops.cc b/signal/tensorflow_core/ops/fft_ops.cc
index 4f52a2b..63d8e78 100644
--- a/signal/tensorflow_core/ops/fft_ops.cc
+++ b/signal/tensorflow_core/ops/fft_ops.cc
@@ -22,7 +22,7 @@
 namespace tensorflow {
 namespace signal {
 
-Status RfftShape(InferenceContext* c) {
+absl::Status RfftShape(InferenceContext* c) {
   ShapeHandle out;
   int fft_length;
   TF_RETURN_IF_ERROR(c->GetAttr<int>("fft_length", &fft_length));
@@ -30,17 +30,17 @@
   auto dim = ((fft_length / 2) + 1) * 2;  // * 2 for complex
   TF_RETURN_IF_ERROR(c->ReplaceDim(out, -1, c->MakeDim(dim), &out));
   c->set_output(0, out);
-  return OkStatus();
+  return absl::OkStatus();
 }
 
-Status IrfftShape(InferenceContext* c) {
+absl::Status IrfftShape(InferenceContext* c) {
   ShapeHandle out;
   int fft_length;
   TF_RETURN_IF_ERROR(c->GetAttr<int>("fft_length", &fft_length));
   TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(0), 1, &out));
   TF_RETURN_IF_ERROR(c->ReplaceDim(out, -1, c->MakeDim(fft_length), &out));
   c->set_output(0, out);
-  return OkStatus();
+  return absl::OkStatus();
 }
 
 // TODO(b/286250473): change back name after name clash resolved
@@ -107,7 +107,7 @@
       TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &out));
       c->set_output(0, out);
       c->set_output(1, c->Scalar());
-      return OkStatus();
+      return absl::OkStatus();
     })
     .Doc(R"doc(
 Shifts the input left until the amplitude is maximized without clipping. Returns
diff --git a/signal/tensorflow_core/ops/filter_bank_ops.cc b/signal/tensorflow_core/ops/filter_bank_ops.cc
index de16715..7e021ff 100644
--- a/signal/tensorflow_core/ops/filter_bank_ops.cc
+++ b/signal/tensorflow_core/ops/filter_bank_ops.cc
@@ -22,7 +22,7 @@
 namespace tensorflow {
 namespace signal {
 
-Status FilterBankShape(InferenceContext* c) {
+absl::Status FilterBankShape(InferenceContext* c) {
   ShapeHandle out;
   shape_inference::DimensionHandle unused;
   int num_channels;
@@ -49,7 +49,7 @@
       c->WithValue(c->Dim(c->input(5), 0), num_channels + 1, &unused));
   TF_RETURN_IF_ERROR(c->ReplaceDim(out, 0, c->MakeDim(num_channels), &out));
   c->set_output(0, out);
-  return OkStatus();
+  return absl::OkStatus();
 }
 
 // TODO(b/286250473): change back name after name clash resolved
@@ -92,7 +92,7 @@
       ShapeHandle out;
       TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &out));
       c->set_output(0, out);
-      return OkStatus();
+      return absl::OkStatus();
     })
     .Doc(R"doc(
 Applies a square root to each element in the input then shift right by
@@ -122,7 +122,7 @@
       TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &out));
       c->set_output(0, out);
       c->set_output(1, out);
-      return OkStatus();
+      return absl::OkStatus();
     })
     .Doc(R"doc(
 Applies spectral subtraction to a filter bank output of size num_channels
@@ -152,7 +152,7 @@
       ShapeHandle out;
       TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &out));
       c->set_output(0, out);
-      return OkStatus();
+      return absl::OkStatus();
     })
     .Doc(R"doc(
 Applies natural log to each element in input with pre-shift and post scaling.
diff --git a/signal/tensorflow_core/ops/framer_op.cc b/signal/tensorflow_core/ops/framer_op.cc
index ebac6e7..bf77699 100644
--- a/signal/tensorflow_core/ops/framer_op.cc
+++ b/signal/tensorflow_core/ops/framer_op.cc
@@ -22,7 +22,7 @@
 namespace tensorflow {
 namespace signal {
 
-Status FramerShape(InferenceContext* c) {
+absl::Status FramerShape(InferenceContext* c) {
   ShapeHandle unused;
   ShapeHandle in;
   int frame_step, frame_size;
@@ -41,7 +41,7 @@
   TF_RETURN_IF_ERROR(c->ReplaceDim(out, -1, c->MakeDim(frame_size), &out));
   c->set_output(0, out);
   c->set_output(1, c->Scalar());
-  return OkStatus();
+  return absl::OkStatus();
 }
 
 // TODO(b/286250473): change back name after name clash resolved
diff --git a/signal/tensorflow_core/ops/overlap_add_op.cc b/signal/tensorflow_core/ops/overlap_add_op.cc
index 759faa9..74ccb1f 100644
--- a/signal/tensorflow_core/ops/overlap_add_op.cc
+++ b/signal/tensorflow_core/ops/overlap_add_op.cc
@@ -22,7 +22,7 @@
 namespace tensorflow {
 namespace signal {
 
-Status OverlapAddShape(InferenceContext* c) {
+absl::Status OverlapAddShape(InferenceContext* c) {
   shape_inference::DimensionHandle unused;
   ShapeHandle in;
   ShapeHandle out;
@@ -39,7 +39,7 @@
         c->ReplaceDim(out, -1, c->MakeDim(n_frames * frame_step), &out));
   }
   c->set_output(0, out);
-  return OkStatus();
+  return absl::OkStatus();
 }
 
 // TODO(b/286250473): change back name after name clash resolved
diff --git a/signal/tensorflow_core/ops/pcan_op.cc b/signal/tensorflow_core/ops/pcan_op.cc
new file mode 100644
index 0000000..2a8490f
--- /dev/null
+++ b/signal/tensorflow_core/ops/pcan_op.cc
@@ -0,0 +1,60 @@
+/* Copyright 2023 The TensorFlow Authors. All Rights Reserved.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+    http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+==============================================================================*/
+
+#include "tensorflow/core/framework/op.h"
+#include "tensorflow/core/framework/shape_inference.h"
+
+using ::tensorflow::shape_inference::InferenceContext;
+using ::tensorflow::shape_inference::ShapeHandle;
+
+namespace tensorflow {
+namespace signal {
+
+namespace {
+
+absl::Status PcanShape(InferenceContext* c) {
+  ShapeHandle out, lut;
+  TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &out));
+  TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 1, &out));
+  TF_RETURN_IF_ERROR(c->WithRank(c->input(2), 1, &lut));
+
+  c->set_output(0, out);
+  return absl::OkStatus();
+}
+
+}  // namespace
+
+REGISTER_OP("SignalPCAN")
+    .Attr("snr_shift: int")
+    .Input("input: uint32")
+    .Input("noise_estimate: uint32")
+    .Input("gain_lut: int16")
+    .Output("output: uint32")
+    .SetShapeFn(PcanShape)
+    .Doc(R"doc(
+Determines whether per-channel amplitude-normalized (PCAN) auto gain control is
+applied, using either floating-point or fixed-point computation. If enabled,
+the dynamic range of the filterbank output is compressed by dividing by a power
+of the noise estimate.
+
+input: A 1-D array of mel-spectrum subband filter bank outputs.
+noise_estimate: A 1-D array of mel-spectrun subbabd noise estimates.
+gain_lut: A 1-D lookup table for gain calculation.
+output: A 1-D array of processed subband filter bank.
+snr_shift: Amount of right shift when calculcating the SNR.
+)doc");
+
+}  // namespace signal
+}  // namespace tensorflow
diff --git a/signal/tensorflow_core/ops/stacker_op.cc b/signal/tensorflow_core/ops/stacker_op.cc
index 2aa69c0..5fd2aca 100644
--- a/signal/tensorflow_core/ops/stacker_op.cc
+++ b/signal/tensorflow_core/ops/stacker_op.cc
@@ -22,7 +22,7 @@
 namespace tensorflow {
 namespace signal {
 
-Status StackerShape(InferenceContext* c) {
+absl::Status StackerShape(InferenceContext* c) {
   int num_channels, stacker_left_context, stacker_right_context;
   TF_RETURN_IF_ERROR(c->GetAttr<int>("num_channels", &num_channels));
   TF_RETURN_IF_ERROR(
@@ -41,7 +41,7 @@
       c->ReplaceDim(out, 0, c->MakeDim(num_channels * output_frames), &out));
   c->set_output(0, out);
   c->set_output(1, c->Scalar());
-  return OkStatus();
+  return absl::OkStatus();
 }
 
 // TODO(b/286250473): change back name after name clash resolved
diff --git a/signal/tensorflow_core/ops/window_op.cc b/signal/tensorflow_core/ops/window_op.cc
index 24e51b2..5a08da8 100644
--- a/signal/tensorflow_core/ops/window_op.cc
+++ b/signal/tensorflow_core/ops/window_op.cc
@@ -22,7 +22,7 @@
 namespace tensorflow {
 namespace signal {
 
-Status WindowShape(InferenceContext* c) {
+absl::Status WindowShape(InferenceContext* c) {
   ShapeHandle out;
   TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 1, &out));
   TF_RETURN_IF_ERROR(c->WithRankAtLeast(c->input(0), 1, &out));
@@ -33,7 +33,7 @@
   TF_RETURN_IF_ERROR(c->WithValue(c->Dim(c->input(1), 0),
                                   InferenceContext::Value(dim_in), &dim_in));
   c->set_output(0, out);
-  return OkStatus();
+  return absl::OkStatus();
 }
 
 // TODO(b/286250473): change back name to "Window" after name clash resolved
@@ -55,4 +55,4 @@
 )doc");
 
 }  // namespace signal
-}  // namespace tensorflow
\ No newline at end of file
+}  // namespace tensorflow
diff --git a/tensorflow/compiler/mlir/lite/kernels/internal/BUILD b/tensorflow/compiler/mlir/lite/kernels/internal/BUILD
new file mode 100644
index 0000000..4ebbc21
--- /dev/null
+++ b/tensorflow/compiler/mlir/lite/kernels/internal/BUILD
@@ -0,0 +1,10 @@
+package(
+    default_visibility = ["//visibility:public"],
+    licenses = ["notice"],
+)
+
+cc_library(
+    name = "compatibility_macros",
+    hdrs = ["compatibility_macros.h"],
+    deps = ["//tensorflow/lite/kernels/internal:compatibility"],
+)
diff --git a/tensorflow/lite/micro/examples/micro_speech/simple_features/simple_model_settings.cc b/tensorflow/compiler/mlir/lite/kernels/internal/compatibility_macros.h
similarity index 60%
copy from tensorflow/lite/micro/examples/micro_speech/simple_features/simple_model_settings.cc
copy to tensorflow/compiler/mlir/lite/kernels/internal/compatibility_macros.h
index e2cf661..5d07380 100644
--- a/tensorflow/lite/micro/examples/micro_speech/simple_features/simple_model_settings.cc
+++ b/tensorflow/compiler/mlir/lite/kernels/internal/compatibility_macros.h
@@ -1,4 +1,4 @@
-/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
+/* Copyright 2024 The TensorFlow Authors. All Rights Reserved.
 
 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
@@ -13,11 +13,9 @@
 limitations under the License.
 ==============================================================================*/
 
-#include "tensorflow/lite/micro/examples/micro_speech/simple_features/simple_model_settings.h"
+#ifndef TENSORFLOW_COMPILER_MLIR_LITE_KERNELS_INTERNAL_COMPATABILITY_MACROS_H_
+#define TENSORFLOW_COMPILER_MLIR_LITE_KERNELS_INTERNAL_COMPATABILITY_MACROS_H_
 
-const char* kCategoryLabels[kCategoryCount] = {
-    "silence",
-    "unknown",
-    "yes",
-    "no",
-};
+#include "tensorflow/lite/kernels/internal/compatibility.h"  // IWYU pragma: keep
+
+#endif  // TENSORFLOW_COMPILER_MLIR_LITE_KERNELS_INTERNAL_COMPATABILITY_MACROS_H_
diff --git a/tensorflow/compiler/mlir/lite/schema/BUILD b/tensorflow/compiler/mlir/lite/schema/BUILD
new file mode 100644
index 0000000..f54726b
--- /dev/null
+++ b/tensorflow/compiler/mlir/lite/schema/BUILD
@@ -0,0 +1,41 @@
+load("@flatbuffers//:build_defs.bzl", "flatbuffer_cc_library")
+
+package(
+    default_visibility = [
+        "//visibility:public",
+    ],
+    licenses = ["notice"],
+)
+
+exports_files(
+    srcs = ["schema.fbs"],
+)
+
+flatbuffer_cc_library(
+    name = "schema_fbs",
+    srcs = ["schema.fbs"],
+)
+
+# Generic schema for inference on device (but with reflections makes bigger).
+flatbuffer_cc_library(
+    name = "schema_fbs_with_reflection",
+    srcs = ["schema.fbs"],
+    flatc_args = [
+        "--reflect-types",
+        "--reflect-names",
+        "--no-union-value-namespacing",
+        "--gen-object-api",
+    ],
+    out_prefix = "reflection/",
+)
+
+cc_library(
+    name = "schema_utils",
+    srcs = ["schema_utils.cc"],
+    hdrs = ["schema_utils.h"],
+    deps = [
+        ":schema_fbs",
+        "//tensorflow/compiler/mlir/lite/kernels/internal:compatibility_macros",
+        "@flatbuffers//:runtime_cc",
+    ],
+)
diff --git a/tensorflow/lite/schema/schema.fbs b/tensorflow/compiler/mlir/lite/schema/schema.fbs
similarity index 79%
rename from tensorflow/lite/schema/schema.fbs
rename to tensorflow/compiler/mlir/lite/schema/schema.fbs
index 4c84646..7ab78be 100644
--- a/tensorflow/lite/schema/schema.fbs
+++ b/tensorflow/compiler/mlir/lite/schema/schema.fbs
@@ -58,6 +58,7 @@
   UINT32 = 15,
   UINT16 = 16,
   INT4 = 17,
+  BFLOAT16 = 18,
 }
 
 // Custom quantization parameters for experimenting with new quantization
@@ -235,8 +236,12 @@
   // represented with -1.
   shape_signature:[int]; // Optional.
 
-  // If false, the rank or the number of tensor dimensions is unknown.
-  // If false, "shape" must be [].
+  // This field is added to distinguish between scalars and tensors of unknown
+  // ranks (both of which shape is []).
+  // For scalars (rank = 0), shape = [] and has_rank = true.
+  // For tensors with known rank (rank > 0) and shape, shape = [...] and
+  // has_rank = true.
+  // For tensors with unknown rank and shape, shape = [] and has_rank = false.
   has_rank: bool = false;
 
   // The nested Tensor types for VARIANT type. This is always empty for
@@ -420,6 +425,53 @@
   BITCAST = 159,
   BITWISE_XOR = 160,
   RIGHT_SHIFT = 161,
+  // All Operators start with STABLEHLO_ prefixes are subject to change
+  // Many of the ops below can not be executed by TFlite runtime
+  STABLEHLO_LOGISTIC = 162, // WARNING: Do not have runtime support
+  STABLEHLO_ADD = 163,
+  STABLEHLO_DIVIDE = 164, // WARNING: No runtime support yet
+  STABLEHLO_MULTIPLY = 165,
+  STABLEHLO_MAXIMUM = 166,
+  STABLEHLO_RESHAPE = 167, // WARNING: No runtime support yet
+  STABLEHLO_CLAMP = 168, // WARNING: No runtime support
+  STABLEHLO_CONCATENATE = 169, // WARNING: No runtime support
+  STABLEHLO_BROADCAST_IN_DIM = 170, // WARNING: No runtime support
+  STABLEHLO_CONVOLUTION = 171, // WARNING: No runtime support
+  STABLEHLO_SLICE = 172, // WARNING: No runtime support
+  STABLEHLO_CUSTOM_CALL = 173, // WARNING: No runtime support
+  STABLEHLO_REDUCE = 174, // WARNING: No runtime support
+  STABLEHLO_ABS = 175, // WARNING: No runtime support
+  STABLEHLO_AND = 176, // WARNING: No runtime support
+  STABLEHLO_COSINE = 177, // WARNING: No runtime support
+  STABLEHLO_EXPONENTIAL = 178, // WARNING: No runtime support
+  STABLEHLO_FLOOR = 179, // WARNING: No runtime support
+  STABLEHLO_LOG = 180, // WARNING: No runtime support
+  STABLEHLO_MINIMUM = 181,
+  STABLEHLO_NEGATE = 182, // WARNING: No runtime support
+  STABLEHLO_OR = 183, // WARNING: No runtime support
+  STABLEHLO_POWER = 184, // WARNING: No runtime support
+  STABLEHLO_REMAINDER = 185, // WARNING: No runtime support
+  STABLEHLO_RSQRT = 186, // WARNING: No runtime support
+  STABLEHLO_SELECT = 187, // WARNING: No runtime support
+  STABLEHLO_SUBTRACT = 188, // WARNING: No runtime support
+  STABLEHLO_TANH = 189, // WARNING: No runtime support
+  STABLEHLO_SCATTER = 190,
+  STABLEHLO_COMPARE = 191, // WARNING: No runtime support
+  STABLEHLO_CONVERT = 192, // WARNING: No runtime support
+  STABLEHLO_DYNAMIC_SLICE = 193, // WARNING: No runtime support
+  STABLEHLO_DYNAMIC_UPDATE_SLICE = 194, // WARNING: No runtime support
+  STABLEHLO_PAD = 195,
+  STABLEHLO_IOTA = 196, // WARNING: No runtime support
+  STABLEHLO_DOT_GENERAL = 197, // WARNING: No runtime support
+  STABLEHLO_REDUCE_WINDOW = 198,
+  STABLEHLO_SORT = 199, // WARNING: No runtime support
+  STABLEHLO_WHILE = 200, // WARNING: No runtime support
+  STABLEHLO_GATHER = 201,
+  STABLEHLO_TRANSPOSE = 202, // WARNING: No runtime support
+  DILATE = 203,
+  STABLEHLO_RNG_BIT_GENERATOR = 204,
+  REDUCE_WINDOW = 205 (deprecated),
+  STABLEHLO_COMPOSITE = 206, // WARNING: No runtime support
 }
 // LINT.ThenChange(nnapi_linter/linter.proto)
 
@@ -551,6 +603,192 @@
   BitcastOptions,
   BitwiseXorOptions,
   RightShiftOptions,
+  // DO NOT add new options this union, will cause failure in Java api
+  // generation otherwise
+  // Add new builtin options into builtin options 2 instead
+}
+
+union BuiltinOptions2{
+  StablehloConcatenateOptions,
+  StablehloBroadcastInDimOptions,
+  StablehloSliceOptions,
+  StablehloConvolutionOptions,
+  StablehloCustomCallOptions,
+  StablehloReduceOptions,
+  StablehloScatterOptions,
+  StablehloCompareOptions,
+  StablehloDynamicSliceOptions,
+  StablehloPadOptions,
+  StablehloIotaOptions,
+  StablehloDotGeneralOptions,
+  StablehloReduceWindowOptions,
+  StablehloSortOptions,
+  StablehloWhileOptions,
+  StablehloGatherOptions,
+  StablehloTransposeOptions,
+  DilateOptions,
+  StablehloRngBitGeneratorOptions,
+  ReduceWindowOptions (deprecated),
+  StableHLOCompositeOptions,
+}
+
+table StablehloGatherOptions{
+  offset_dims : [long];
+  collapsed_slice_dims : [long];
+  start_index_map : [long];
+  index_vector_dim : long;
+  slice_sizes : [long];
+  indices_are_sorted : bool;
+}
+
+table StablehloTransposeOptions{
+  permutation : [long];
+}
+
+enum StablehloPrecisionConfig : uint {
+  DEFAULT,
+  HIGH,
+  HIGHEST,
+}
+
+table StablehloDotGeneralOptions{
+  lhs_batching_dimensions : [long];
+  rhs_batching_dimensions : [long];
+  lhs_contracting_dimensions : [long];
+  rhs_contracting_dimensions : [long];
+  precision_config : [StablehloPrecisionConfig];
+}
+
+table StablehloReduceWindowOptions{
+  window_dimensions : [long];
+  window_strides : [long];
+  base_dilations : [long];
+  window_dilations : [long];
+  padding : [long];
+  body_subgraph_index : int;
+}
+
+table StablehloWhileOptions{
+  cond_subgraph_index : int;
+  body_subgraph_index : int;
+}
+
+table StablehloSortOptions{
+  dimension : long;
+  is_stable : bool;
+  comparator_subgraph_index : int;
+}
+
+table StablehloConcatenateOptions {
+  dimension : long;
+}
+
+table StablehloBroadcastInDimOptions{
+  broadcast_dimensions : [long];
+}
+
+enum StablehloComparisonDirection : uint {
+  STABLEHLO_COMPARISON_DIRECTION_EQ,
+  STABLEHLO_COMPARISON_DIRECTION_NE,
+  STABLEHLO_COMPARISON_DIRECTION_GE,
+  STABLEHLO_COMPARISON_DIRECTION_GT,
+  STABLEHLO_COMPARISON_DIRECTION_LE,
+  STABLEHLO_COMPARISON_DIRECTION_LT,
+
+}
+
+enum StablehloComparisonType : uint {
+  STABLEHLO_COMPARISON_TYPE_NOTYPE,
+  STABLEHLO_COMPARISON_TYPE_FLOAT,
+  STABLEHLO_COMPARISON_TYPE_FLOAT_TOTAL_ORDER,
+  STABLEHLO_COMPARISON_TYPE_SIGNED,
+  STABLEHLO_COMPARISON_TYPE_UNSIGNED,
+}
+
+table StablehloCompareOptions{
+  comparison_direction : StablehloComparisonDirection;
+  compare_type : StablehloComparisonType;
+}
+
+table StablehloDynamicSliceOptions{
+  slice_sizes : [long];
+}
+
+table StablehloPadOptions{
+  edge_padding_low : [long];
+  edge_padding_high : [long];
+  interior_padding : [long];
+}
+
+table StablehloIotaOptions{
+  iota_dimension : long;
+}
+
+table StablehloCustomCallOptions {
+  call_target_name : string;
+  has_side_effect : bool;
+  backend_config: string;
+  api_version : int; // will be decprecated
+  called_computations: [int]; // should point to subgraphs of the computations
+  custom_attributes : [ubyte];
+}
+
+table StablehloReduceOptions {
+  dimensions : [long];
+  body_subgraph_index : int;
+}
+
+table StablehloSliceOptions{
+  start_indices : [long];
+  limit_indices : [long];
+  strides : [long];
+}
+
+table StablehloConvolutionOptions{
+  window_strides : [long];
+  padding : [long];
+  lhs_dilation : [long];
+  rhs_dilation : [long];
+  window_reversal : [bool];
+  input_batch_dimension : long;
+  input_feature_dimension : long;
+  input_spatial_dimensions : [long];
+  kernel_input_feature_dimension : long;
+  kernel_output_feature_dimension : long;
+  kernel_spatial_dimensions : [long];
+  output_batch_dimension : long;
+  output_feature_dimension : long;
+  output_spatial_dimensions	: [long];
+  feature_group_count : long;
+  batch_group_count : long;
+  precision_config : [StablehloPrecisionConfig];
+}
+
+table StablehloScatterOptions {
+  indices_are_sorted: bool;
+  update_window_dims: [long];
+  inserted_window_dims: [long];
+  scatter_dims_to_operand_dims: [long];
+  index_vector_dim: long;
+  unique_indices: bool;
+  update_computation_subgraph_index: int;
+}
+
+enum RngAlgorithm : byte {
+  // An algorithm auto-selected by the system according to device type.
+  DEFAULT = 0,
+  // The Philox algorithm, as described in paper
+  // ['Parallel Random Numbers: As Easy as 1, 2, 3']
+  // (https://www.thesalmons.org/john/random123/papers/random123sc11.pdf)
+  PHILOX = 1,
+  // The ThreeFry algorithm, as described in paper
+  // ['Parallel Random Numbers: As Easy as 1, 2, 3']
+  // (https://www.thesalmons.org/john/random123/papers/random123sc11.pdf)
+  THREEFRY = 2,
+}
+
+table StablehloRngBitGeneratorOptions {
+  algorithm:RngAlgorithm;
 }
 
 // LINT.IfChange
@@ -575,6 +813,9 @@
   fused_activation_function:ActivationFunctionType;
   dilation_w_factor:int = 1;
   dilation_h_factor:int = 1;
+  // Parameters for Conv2D version 8 or above.
+  // When set, quantized_bias_type defines the dtype for both bias and accumulator.
+  quantized_bias_type: TensorType;
 }
 
 // Options for both Conv3D and Conv3DTranspose.
@@ -682,6 +923,10 @@
   // If set to true, then weights-only op will use asymmetric quantization for
   // inputs.
   asymmetric_quantize_inputs: bool;
+
+  // Parameters for FullyConnected version 11 or above.
+  // When set, quantized_bias_type defines the dtype for both bias and accumulator.
+  quantized_bias_type: TensorType;
 }
 
 table SoftmaxOptions {
@@ -941,6 +1186,11 @@
 
   // Parameters supported by version 4:
   fused_activation_function:ActivationFunctionType = NONE;
+
+  // Parameters for TransposeConv version 5 or above.
+  // If set, use this for bias and accumulator.
+  // When set, quantized_bias_type defines the dtype for both bias and accumulator.
+  quantized_bias_type: TensorType;
 }
 
 table ExpandDimsOptions {
@@ -1198,6 +1448,23 @@
 table RightShiftOptions {
 }
 
+table DilateOptions {
+}
+
+enum ReduceWindowFunction : int {
+  UNSUPPORTED,
+  ADD,
+  MUL,
+  MINIMUM,
+  MAXIMUM,
+  ALL,
+  ANY,
+}
+
+table ReduceWindowOptions (deprecated) {
+  reduce_function: ReduceWindowFunction;
+}
+
 // An OperatorCode can be an enum value (BuiltinOperator) if the operator is a
 // builtin, or a string if the operator is custom.
 table OperatorCode {
@@ -1222,6 +1489,14 @@
   FLEXBUFFERS = 0,
 }
 
+table StableHLOCompositeOptions {
+  name:string;
+  decomposition_subgraph_index:int32;
+  composite_attributes:[ubyte];
+  composite_attributes_format:CustomOptionsFormat;
+  version:int32;
+}
+
 // An operator takes tensors as inputs and outputs. The type of operation being
 // performed is determined by an index into the list of valid OperatorCodes,
 // while the specifics of each operations is configured using builtin_options
@@ -1264,6 +1539,11 @@
   // beginning of the file and is only valid if > 1
   large_custom_options_offset: ulong;
   large_custom_options_size: ulong;
+
+  // Flatbuffers union struct has a 128 elements limit in JAVA, so a second
+  // union is added, in the case of where BuitlinOptions2 runs out, a third
+  // one can be added
+  builtin_options_2 : BuiltinOptions2;
 }
 
 // The root type, defining a subgraph, which typically represents an entire
diff --git a/tensorflow/compiler/mlir/lite/schema/schema_generated.h b/tensorflow/compiler/mlir/lite/schema/schema_generated.h
new file mode 100644
index 0000000..7eeedf8
--- /dev/null
+++ b/tensorflow/compiler/mlir/lite/schema/schema_generated.h
@@ -0,0 +1,22 @@
+/* Copyright 2024 The TensorFlow Authors. All Rights Reserved.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+    http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+==============================================================================*/
+#ifndef TENSORFLOW_COMPILER_MLIR_LITE_SCHEMA_SCHEMA_GENERATED_H_
+#define TENSORFLOW_COMPILER_MLIR_LITE_SCHEMA_SCHEMA_GENERATED_H_
+
+// This file should only be used by the make build to redirect schema_utils.cc
+// usage of the generated schema to the proper location.
+#include "tensorflow/lite/schema/schema_generated.h"  // IWYU pragma: keep
+
+#endif  // TENSORFLOW_LITE_SCHEMA_SCHEMA_UTILS_H_
diff --git a/tensorflow/lite/schema/schema_utils.cc b/tensorflow/compiler/mlir/lite/schema/schema_utils.cc
similarity index 89%
rename from tensorflow/lite/schema/schema_utils.cc
rename to tensorflow/compiler/mlir/lite/schema/schema_utils.cc
index fc19290..a173380 100644
--- a/tensorflow/lite/schema/schema_utils.cc
+++ b/tensorflow/compiler/mlir/lite/schema/schema_utils.cc
@@ -12,16 +12,16 @@
 See the License for the specific language governing permissions and
 limitations under the License.
 ==============================================================================*/
-#include "tensorflow/lite/schema/schema_utils.h"
+#include "tensorflow/compiler/mlir/lite/schema/schema_utils.h"
 
 #include <algorithm>
 
-#include "tensorflow/lite/kernels/internal/compatibility.h"
+#include "tensorflow/compiler/mlir/lite/kernels/internal/compatibility_macros.h"
 
 namespace tflite {
 
 // The following GetBuiltinCode methods are the utility methods for reading
-// builtin operatore code, ensuring compatibility issues between v3 and v3a
+// builtin operator code, ensuring compatibility issues between v3 and v3a
 // schema. Always the maximum value of the two fields always will be the correct
 // value as follows:
 //
@@ -29,7 +29,7 @@
 //
 // The `builtin_code` field is not available in the v3 models. Flatbuffer
 // library will feed zero value, which is the default value in the v3a schema.
-// The actual builtin operatore code value will exist in the
+// The actual builtin operator code value will exist in the
 // `deprecated_builtin_code` field. At the same time, it implies that
 // `deprecated_builtin_code` >= `builtin_code` and the maximum value of the two
 // fields will be same with `deprecated_builtin_code'.
diff --git a/tensorflow/compiler/mlir/lite/schema/schema_utils.h b/tensorflow/compiler/mlir/lite/schema/schema_utils.h
new file mode 100644
index 0000000..7498aa0
--- /dev/null
+++ b/tensorflow/compiler/mlir/lite/schema/schema_utils.h
@@ -0,0 +1,33 @@
+/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+    http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+==============================================================================*/
+#ifndef TENSORFLOW_COMPILER_MLIR_LITE_SCHEMA_SCHEMA_UTILS_H_
+#define TENSORFLOW_COMPILER_MLIR_LITE_SCHEMA_SCHEMA_UTILS_H_
+
+#include "flatbuffers/flatbuffers.h"
+#include "tensorflow/compiler/mlir/lite/schema/schema_generated.h"
+
+namespace tflite {
+
+// The following methods are introduced to resolve op builtin code shortage
+// problem. The new builtin operator will be assigned to the extended builtin
+// code field in the flatbuffer schema. Those methods helps to hide builtin code
+// details.
+BuiltinOperator GetBuiltinCode(const OperatorCode *op_code);
+
+BuiltinOperator GetBuiltinCode(const OperatorCodeT *op_code);
+
+}  // namespace tflite
+
+#endif  // TENSORFLOW_COMPILER_MLIR_LITE_SCHEMA_SCHEMA_UTILS_H_
diff --git a/tensorflow/extra_rules.bzl b/tensorflow/extra_rules.bzl
index 7a3523e..29e0bda 100644
--- a/tensorflow/extra_rules.bzl
+++ b/tensorflow/extra_rules.bzl
@@ -19,6 +19,10 @@
     """Config setting for all Fusion F1 based cores."""
     return "//tensorflow/lite/micro/kernels:xtensa_fusion_f1_default"
 
+def xtensa_hifi_3_config():
+    """Config setting for all HiFi 3 based cores."""
+    return "//tensorflow/lite/micro/kernels:xtensa_hifi_3_default"
+
 def xtensa_hifi_3z_config():
     """Config setting for all HiFi 3z based cores."""
     return "//tensorflow/lite/micro/kernels:xtensa_hifi_3z_default"
diff --git a/tensorflow/lite/build_def.bzl b/tensorflow/lite/build_def.bzl
index e8fc49c..e65ec23 100644
--- a/tensorflow/lite/build_def.bzl
+++ b/tensorflow/lite/build_def.bzl
@@ -3,6 +3,7 @@
     copts = [
         "-DFARMHASH_NO_CXX_STRING",
         "-Wno-sign-compare",
+        "-Wno-unused-parameter",
         "-fno-exceptions",  # Exceptions are unused in TFLite.
     ]
     return copts
diff --git a/tensorflow/lite/builtin_ops.h b/tensorflow/lite/builtin_ops.h
index f9871ad..5dba0f6 100644
--- a/tensorflow/lite/builtin_ops.h
+++ b/tensorflow/lite/builtin_ops.h
@@ -189,6 +189,51 @@
   kTfLiteBuiltinBitcast = 159,
   kTfLiteBuiltinBitwiseXor = 160,
   kTfLiteBuiltinRightShift = 161,
+  kTfLiteBuiltinStablehloLogistic = 162,
+  kTfLiteBuiltinStablehloAdd = 163,
+  kTfLiteBuiltinStablehloDivide = 164,
+  kTfLiteBuiltinStablehloMultiply = 165,
+  kTfLiteBuiltinStablehloMaximum = 166,
+  kTfLiteBuiltinStablehloReshape = 167,
+  kTfLiteBuiltinStablehloClamp = 168,
+  kTfLiteBuiltinStablehloConcatenate = 169,
+  kTfLiteBuiltinStablehloBroadcastInDim = 170,
+  kTfLiteBuiltinStablehloConvolution = 171,
+  kTfLiteBuiltinStablehloSlice = 172,
+  kTfLiteBuiltinStablehloCustomCall = 173,
+  kTfLiteBuiltinStablehloReduce = 174,
+  kTfLiteBuiltinStablehloAbs = 175,
+  kTfLiteBuiltinStablehloAnd = 176,
+  kTfLiteBuiltinStablehloCosine = 177,
+  kTfLiteBuiltinStablehloExponential = 178,
+  kTfLiteBuiltinStablehloFloor = 179,
+  kTfLiteBuiltinStablehloLog = 180,
+  kTfLiteBuiltinStablehloMinimum = 181,
+  kTfLiteBuiltinStablehloNegate = 182,
+  kTfLiteBuiltinStablehloOr = 183,
+  kTfLiteBuiltinStablehloPower = 184,
+  kTfLiteBuiltinStablehloRemainder = 185,
+  kTfLiteBuiltinStablehloRsqrt = 186,
+  kTfLiteBuiltinStablehloSelect = 187,
+  kTfLiteBuiltinStablehloSubtract = 188,
+  kTfLiteBuiltinStablehloTanh = 189,
+  kTfLiteBuiltinStablehloScatter = 190,
+  kTfLiteBuiltinStablehloCompare = 191,
+  kTfLiteBuiltinStablehloConvert = 192,
+  kTfLiteBuiltinStablehloDynamicSlice = 193,
+  kTfLiteBuiltinStablehloDynamicUpdateSlice = 194,
+  kTfLiteBuiltinStablehloPad = 195,
+  kTfLiteBuiltinStablehloIota = 196,
+  kTfLiteBuiltinStablehloDotGeneral = 197,
+  kTfLiteBuiltinStablehloReduceWindow = 198,
+  kTfLiteBuiltinStablehloSort = 199,
+  kTfLiteBuiltinStablehloWhile = 200,
+  kTfLiteBuiltinStablehloGather = 201,
+  kTfLiteBuiltinStablehloTranspose = 202,
+  kTfLiteBuiltinDilate = 203,
+  kTfLiteBuiltinStablehloRngBitGenerator = 204,
+  kTfLiteBuiltinReduceWindow = 205,
+  kTfLiteBuiltinStablehloComposite = 206,
 } TfLiteBuiltinOperator;
 
 #ifdef __cplusplus
diff --git a/tensorflow/lite/c/builtin_op_data.h b/tensorflow/lite/c/builtin_op_data.h
index 7628e5a..0606819 100644
--- a/tensorflow/lite/c/builtin_op_data.h
+++ b/tensorflow/lite/c/builtin_op_data.h
@@ -15,6 +15,9 @@
 #ifndef TENSORFLOW_LITE_C_BUILTIN_OP_DATA_H_
 #define TENSORFLOW_LITE_C_BUILTIN_OP_DATA_H_
 
+/// For documentation, see
+/// third_party/tensorflow/lite/core/c/builtin_op_data.h
+
 #include "tensorflow/lite/core/c/builtin_op_data.h"
 
 #endif  // TENSORFLOW_LITE_C_BUILTIN_OP_DATA_H_
diff --git a/tensorflow/lite/c/c_api_types.h b/tensorflow/lite/c/c_api_types.h
index cdbf1fd..05cda07 100644
--- a/tensorflow/lite/c/c_api_types.h
+++ b/tensorflow/lite/c/c_api_types.h
@@ -15,6 +15,12 @@
 #ifndef TENSORFLOW_LITE_C_C_API_TYPES_H_
 #define TENSORFLOW_LITE_C_C_API_TYPES_H_
 
+/// \file
+///
+/// C API types for TensorFlow Lite.
+///
+/// For documentation, see tensorflow/lite/core/c/c_api_types.h
+
 #include "tensorflow/lite/core/c/c_api_types.h"
 
 #endif  // TENSORFLOW_LITE_C_C_API_TYPES_H_
diff --git a/tensorflow/lite/c/common.h b/tensorflow/lite/c/common.h
index e3e8001..8a8b513 100644
--- a/tensorflow/lite/c/common.h
+++ b/tensorflow/lite/c/common.h
@@ -13,25 +13,17 @@
 limitations under the License.
 ==============================================================================*/
 
-// This file defines common C types and APIs for implementing operations,
-// delegates and other constructs in TensorFlow Lite. The actual operations and
-// delegates can be defined using C++, but the interface between the interpreter
-// and the operations are C.
-//
-// Summary of abstractions
-// TF_LITE_ENSURE - Self-sufficient error checking
-// TfLiteStatus - Status reporting
-// TfLiteIntArray - stores tensor shapes (dims),
-// TfLiteContext - allows an op to access the tensors
-// TfLiteTensor - tensor (a multidimensional array)
-// TfLiteNode - a single node or operation
-// TfLiteRegistration - the implementation of a conceptual operation.
-// TfLiteDelegate - allows delegation of nodes to alternative backends.
-//
-// Some abstractions in this file are created and managed by Interpreter.
-//
-// NOTE: The order of values in these structs are "semi-ABI stable". New values
-// should be added only to the end of structs and never reordered.
+/// \file
+///
+/// This file defines common C types and APIs for implementing operations,
+/// delegates and other constructs in TensorFlow Lite. The actual operations and
+/// delegates can be defined using C++, but the interface between the
+/// interpreter and the operations are C.
+///
+/// For documentation, see tensorflow/lite/core/c/common.h.
+///
+/// See also c_api_opaque.h which has more ABI-stable variants of some of these
+/// APIs.
 
 #ifndef TENSORFLOW_LITE_C_COMMON_H_
 #define TENSORFLOW_LITE_C_COMMON_H_
diff --git a/tensorflow/lite/core/api/error_reporter.h b/tensorflow/lite/core/api/error_reporter.h
index 99ab8cf..1e0ef7d 100644
--- a/tensorflow/lite/core/api/error_reporter.h
+++ b/tensorflow/lite/core/api/error_reporter.h
@@ -61,9 +61,9 @@
 // reduce binary size, define TF_LITE_STRIP_ERROR_STRINGS when compiling and
 // every call will be stubbed out, taking no memory.
 #ifndef TF_LITE_STRIP_ERROR_STRINGS
-#define TF_LITE_REPORT_ERROR(reporter, ...)                             \
-  do {                                                                  \
-    static_cast<tflite::ErrorReporter*>(reporter)->Report(__VA_ARGS__); \
+#define TF_LITE_REPORT_ERROR(reporter, ...)                               \
+  do {                                                                    \
+    static_cast<::tflite::ErrorReporter*>(reporter)->Report(__VA_ARGS__); \
   } while (false)
 #else  // TF_LITE_STRIP_ERROR_STRINGS
 #define TF_LITE_REPORT_ERROR(reporter, ...)
diff --git a/tensorflow/lite/core/api/flatbuffer_conversions.cc b/tensorflow/lite/core/api/flatbuffer_conversions.cc
index 9f955df..3526810 100644
--- a/tensorflow/lite/core/api/flatbuffer_conversions.cc
+++ b/tensorflow/lite/core/api/flatbuffer_conversions.cc
@@ -15,11 +15,13 @@
 
 #include "tensorflow/lite/core/api/flatbuffer_conversions.h"
 
+#include <algorithm>
 #include <cstddef>
 #include <cstdint>
 #include <memory>
 
 #include "flatbuffers/flatbuffers.h"  // from @flatbuffers
+#include "flatbuffers/vector.h"  // from @flatbuffers
 #include "tensorflow/lite/core/api/error_reporter.h"
 #include "tensorflow/lite/core/c/builtin_op_data.h"
 #include "tensorflow/lite/core/c/common.h"
@@ -76,9 +78,10 @@
 // Copies the contents from the flatbuffer int vector `flatbuffer` into the
 // int array `buffer`. `flat_vector` and `buffer` represent the same
 // configuration operation for a given operation.
-TfLiteStatus FlatBufferIntVectorToArray(
-    int max_size_of_buffer, const flatbuffers::Vector<int32_t>* flat_vector,
-    int* buffer, ErrorReporter* error_reporter, const char* op_name) {
+template <typename DataType = int32_t>
+static TfLiteStatus FlatBufferIntVectorToArray(
+    int max_size_of_buffer, const flatbuffers::Vector<DataType>* flat_vector,
+    DataType* buffer, ErrorReporter* error_reporter, const char* op_name) {
   if (!flat_vector) {
     TF_LITE_REPORT_ERROR(error_reporter,
                          "Input array not provided for operation '%s'.\n",
@@ -86,7 +89,7 @@
     return kTfLiteError;
   } else {
     size_t num_dimensions = flat_vector->size();
-    if (num_dimensions > max_size_of_buffer / sizeof(int)) {
+    if (num_dimensions > max_size_of_buffer / sizeof(DataType)) {
       TF_LITE_REPORT_ERROR(
           error_reporter,
           "Found too many dimensions in the input array of operation '%s'.\n",
@@ -142,6 +145,18 @@
   return kTfLiteMirrorPaddingUnknown;
 }
 
+TfLiteRngAlgorithm ConvertRngAlgorithm(RngAlgorithm algorithm) {
+  switch (algorithm) {
+    case RngAlgorithm_THREEFRY:
+      return kTfLiteRngAlgorithmThreefry;
+    case RngAlgorithm_PHILOX:
+      return kTfLiteRngAlgorithmPhilox;
+    case RngAlgorithm_DEFAULT:
+      return kTfLiteRngAlgorithmDefault;
+  }
+  return kTfLiteRngAlgorithmUnknown;
+}
+
 #ifndef TF_LITE_STATIC_MEMORY
 TfLiteStatus ParseOpDataTfLite(const Operator* op, BuiltinOperator op_type,
                                ErrorReporter* error_reporter,
@@ -857,6 +872,97 @@
       *builtin_data = params.release();
       return kTfLiteOk;
     }
+    case BuiltinOperator_STABLEHLO_SCATTER: {
+      return ParseStablehloScatter(op, error_reporter, allocator, builtin_data);
+    }
+    case BuiltinOperator_STABLEHLO_RNG_BIT_GENERATOR: {
+      return ParseStablehloRngBitGenerator(op, error_reporter, allocator,
+                                           builtin_data);
+    }
+    case BuiltinOperator_STABLEHLO_GATHER: {
+      return ParseStablehloGather(op, error_reporter, allocator, builtin_data);
+    }
+    case BuiltinOperator_STABLEHLO_REDUCE_WINDOW: {
+      return ParseStablehloReduceWindow(op, error_reporter, allocator,
+                                        builtin_data);
+    }
+    case BuiltinOperator_REDUCE_WINDOW: {
+      auto params = safe_allocator.Allocate<TfLiteReduceWindowParams>();
+      TF_LITE_ENSURE(error_reporter, params != nullptr);
+      if (const auto* reduce_params =
+              op->builtin_options_2_as_ReduceWindowOptions()) {
+        switch (reduce_params->reduce_function()) {
+          case ReduceWindowFunction_ADD:
+            params->reduce_function = TfLiteReduceWindowFunctionAdd;
+            break;
+          case ReduceWindowFunction_MUL:
+            params->reduce_function = TfLiteReduceWindowFunctionMul;
+            break;
+          case ReduceWindowFunction_MINIMUM:
+            params->reduce_function = TfLiteReduceWindowFunctionMin;
+            break;
+          case ReduceWindowFunction_MAXIMUM:
+            params->reduce_function = TfLiteReduceWindowFunctionMax;
+            break;
+          case ReduceWindowFunction_ALL:
+            params->reduce_function = TfLiteReduceWindowFunctionAll;
+            break;
+          case ReduceWindowFunction_ANY:
+            params->reduce_function = TfLiteReduceWindowFunctionAny;
+            break;
+          case ReduceWindowFunction_UNSUPPORTED:
+          default:
+            return kTfLiteError;
+        }
+      }
+      *builtin_data = params.release();
+      return kTfLiteOk;
+    }
+    case BuiltinOperator_STABLEHLO_PAD: {
+      return ParseStablehloPad(op, error_reporter, allocator, builtin_data);
+    }
+    case BuiltinOperator_STABLEHLO_COMPOSITE: {
+      return ParseStablehloComposite(op, error_reporter, allocator,
+                                     builtin_data);
+    }
+    // TODO: skip param parsing for now since ops below don't have kernels
+    case BuiltinOperator_STABLEHLO_SLICE:
+    case BuiltinOperator_STABLEHLO_BROADCAST_IN_DIM:
+    case BuiltinOperator_STABLEHLO_CONVOLUTION:
+    case BuiltinOperator_STABLEHLO_LOGISTIC:
+    case BuiltinOperator_STABLEHLO_ADD:
+    case BuiltinOperator_STABLEHLO_DIVIDE:
+    case BuiltinOperator_STABLEHLO_MULTIPLY:
+    case BuiltinOperator_STABLEHLO_MAXIMUM:
+    case BuiltinOperator_STABLEHLO_RESHAPE:
+    case BuiltinOperator_STABLEHLO_CLAMP:
+    case BuiltinOperator_STABLEHLO_CONCATENATE:
+    case BuiltinOperator_STABLEHLO_CUSTOM_CALL:
+    case BuiltinOperator_STABLEHLO_REDUCE:
+    case BuiltinOperator_STABLEHLO_ABS:
+    case BuiltinOperator_STABLEHLO_AND:
+    case BuiltinOperator_STABLEHLO_COSINE:
+    case BuiltinOperator_STABLEHLO_EXPONENTIAL:
+    case BuiltinOperator_STABLEHLO_FLOOR:
+    case BuiltinOperator_STABLEHLO_LOG:
+    case BuiltinOperator_STABLEHLO_MINIMUM:
+    case BuiltinOperator_STABLEHLO_NEGATE:
+    case BuiltinOperator_STABLEHLO_OR:
+    case BuiltinOperator_STABLEHLO_POWER:
+    case BuiltinOperator_STABLEHLO_REMAINDER:
+    case BuiltinOperator_STABLEHLO_RSQRT:
+    case BuiltinOperator_STABLEHLO_SELECT:
+    case BuiltinOperator_STABLEHLO_SUBTRACT:
+    case BuiltinOperator_STABLEHLO_TANH:
+    case BuiltinOperator_STABLEHLO_DYNAMIC_SLICE:
+    case BuiltinOperator_STABLEHLO_DYNAMIC_UPDATE_SLICE:
+    case BuiltinOperator_STABLEHLO_IOTA:
+    case BuiltinOperator_STABLEHLO_COMPARE:
+    case BuiltinOperator_STABLEHLO_CONVERT:
+    case BuiltinOperator_STABLEHLO_DOT_GENERAL:
+    case BuiltinOperator_STABLEHLO_SORT:
+    case BuiltinOperator_STABLEHLO_WHILE:
+    case BuiltinOperator_STABLEHLO_TRANSPOSE:
 
     // Below are the ops with no builtin_data structure.
     // TODO(aselle): Implement call in BuiltinOptions, but nullptrs are
@@ -899,6 +1005,7 @@
     case BuiltinOperator_SIGN:
     case BuiltinOperator_BITCAST:
     case BuiltinOperator_WHERE:
+    case BuiltinOperator_DILATE:
       return kTfLiteOk;
     case BuiltinOperator_PLACEHOLDER_FOR_GREATER_OP_CODES:
       return kTfLiteError;
@@ -914,6 +1021,9 @@
     case TensorType_FLOAT16:
       *type = kTfLiteFloat16;
       return kTfLiteOk;
+    case TensorType_BFLOAT16:
+      *type = kTfLiteBFloat16;
+      return kTfLiteOk;
     case TensorType_FLOAT32:
       *type = kTfLiteFloat32;
       return kTfLiteOk;
@@ -999,7 +1109,7 @@
   } else {
     // TODO(b/157480169): We should either return kTfLiteError or fill in some
     // reasonable defaults in the params struct. We are not doing so until we
-    // better undertand the ramifications of changing the legacy behavior.
+    // better understand the ramifications of changing the legacy behavior.
   }
 
   *builtin_data = params.release();
@@ -1029,7 +1139,7 @@
   } else {
     // TODO(b/157480169): We should either return kTfLiteError or fill in some
     // reasonable defaults in the params struct. We are not doing so until we
-    // better undertand the ramifications of changing the legacy behavior.
+    // better understand the ramifications of changing the legacy behavior.
   }
 
   *builtin_data = params.release();
@@ -1054,7 +1164,7 @@
   } else {
     // TODO(b/157480169): We should either return kTfLiteError or fill in some
     // reasonable defaults in the params struct. We are not doing so until we
-    // better undertand the ramifications of changing the legacy behavior.
+    // better understand the ramifications of changing the legacy behavior.
   }
 
   *builtin_data = params.release();
@@ -1134,7 +1244,7 @@
   } else {
     // TODO(b/157480169): We should either return kTfLiteError or fill in some
     // reasonable defaults in the params struct. We are not doing so until we
-    // better undertand the ramifications of changing the legacy behavior.
+    // better understand the ramifications of changing the legacy behavior.
   }
 
   *builtin_data = params.release();
@@ -1192,7 +1302,7 @@
   } else {
     // TODO(b/157480169): We should either return kTfLiteError or fill in some
     // reasonable defaults in the params struct. We are not doing so until we
-    // better undertand the ramifications of changing the legacy behavior.
+    // better understand the ramifications of changing the legacy behavior.
   }
 
   *builtin_data = params.release();
@@ -1220,10 +1330,13 @@
 
     params->dilation_width_factor = schema_params->dilation_w_factor();
     params->dilation_height_factor = schema_params->dilation_h_factor();
+    TF_LITE_ENSURE_STATUS(
+        ConvertTensorType(schema_params->quantized_bias_type(),
+                          &params->quantized_bias_type, error_reporter));
   } else {
     // TODO(b/157480169): We should either return kTfLiteError or fill in some
     // reasonable defaults in the params struct. We are not doing so until we
-    // better undertand the ramifications of changing the legacy behavior.
+    // better understand the ramifications of changing the legacy behavior.
   }
 
   *builtin_data = params.release();
@@ -1274,7 +1387,7 @@
   } else {
     // TODO(b/157480169): We should either return kTfLiteError or fill in some
     // reasonable defaults in the params struct. We are not doing so until we
-    // better undertand the ramifications of changing the legacy behavior.
+    // better understand the ramifications of changing the legacy behavior.
   }
 
   *builtin_data = params.release();
@@ -1310,7 +1423,7 @@
   } else {
     // TODO(b/157480169): We should either return kTfLiteError or fill in some
     // reasonable defaults in the params struct. We are not doing so until we
-    // better undertand the ramifications of changing the legacy behavior.
+    // better understand the ramifications of changing the legacy behavior.
   }
 
   *builtin_data = params.release();
@@ -1434,7 +1547,9 @@
     params->keep_num_dims = schema_params->keep_num_dims();
     params->asymmetric_quantize_inputs =
         schema_params->asymmetric_quantize_inputs();
-
+    TF_LITE_ENSURE_STATUS(
+        ConvertTensorType(schema_params->quantized_bias_type(),
+                          &params->quantized_bias_type, error_reporter));
     switch (schema_params->weights_format()) {
       case FullyConnectedOptionsWeightsFormat_DEFAULT:
         params->weights_format = kTfLiteFullyConnectedWeightsFormatDefault;
@@ -1451,7 +1566,7 @@
   } else {
     // TODO(b/157480169): We should either return kTfLiteError or fill in some
     // reasonable defaults in the params struct. We are not doing so until we
-    // better undertand the ramifications of changing the legacy behavior.
+    // better understand the ramifications of changing the legacy behavior.
   }
 
   *builtin_data = params.release();
@@ -1528,7 +1643,7 @@
   } else {
     // TODO(b/157480169): We should either return kTfLiteError or fill in some
     // reasonable defaults in the params struct. We are not doing so until we
-    // better undertand the ramifications of changing the legacy behavior.
+    // better understand the ramifications of changing the legacy behavior.
   }
 
   *builtin_data = params.release();
@@ -1555,7 +1670,7 @@
   } else {
     // TODO(b/157480169): We should either return kTfLiteError or fill in some
     // reasonable defaults in the params struct. We are not doing so until we
-    // better undertand the ramifications of changing the legacy behavior.
+    // better understand the ramifications of changing the legacy behavior.
   }
 
   *builtin_data = params.release();
@@ -1711,7 +1826,7 @@
   } else {
     // TODO(b/157480169): We should either return kTfLiteError or fill in some
     // reasonable defaults in the params struct. We are not doing so until we
-    // better undertand the ramifications of changing the legacy behavior.
+    // better understand the ramifications of changing the legacy behavior.
   }
 
   *builtin_data = params.release();
@@ -1735,7 +1850,7 @@
   } else {
     // TODO(b/157480169): We should either return kTfLiteError or fill in some
     // reasonable defaults in the params struct. We are not doing so until we
-    // better undertand the ramifications of changing the legacy behavior.
+    // better understand the ramifications of changing the legacy behavior.
   }
 
   *builtin_data = params.release();
@@ -1776,7 +1891,7 @@
   } else {
     // TODO(b/157480169): We should either return kTfLiteError or fill in some
     // reasonable defaults in the params struct. We are not doing so until we
-    // better undertand the ramifications of changing the legacy behavior.
+    // better understand the ramifications of changing the legacy behavior.
   }
 
   *builtin_data = params.release();
@@ -1822,7 +1937,7 @@
   } else {
     // TODO(b/157480169): We should either return kTfLiteError or fill in some
     // reasonable defaults in the params struct. We are not doing so until we
-    // better undertand the ramifications of changing the legacy behavior.
+    // better understand the ramifications of changing the legacy behavior.
   }
 
   *builtin_data = params.release();
@@ -1880,7 +1995,7 @@
   } else {
     // TODO(b/157480169): We should either return kTfLiteError or fill in some
     // reasonable defaults in the params struct. We are not doing so until we
-    // better undertand the ramifications of changing the legacy behavior.
+    // better understand the ramifications of changing the legacy behavior.
   }
 
   *builtin_data = params.release();
@@ -1933,7 +2048,7 @@
   } else {
     // TODO(b/157480169): We should either return kTfLiteError or fill in some
     // reasonable defaults in the params struct. We are not doing so until we
-    // better undertand the ramifications of changing the legacy behavior.
+    // better understand the ramifications of changing the legacy behavior.
   }
 
   *builtin_data = params.release();
@@ -1994,6 +2109,307 @@
   return kTfLiteOk;
 }
 
+TfLiteStatus ParseStablehloReduceWindow(const Operator* op,
+                                        ErrorReporter* error_reporter,
+                                        BuiltinDataAllocator* allocator,
+                                        void** builtin_data) {
+  CheckParsePointerParams(op, error_reporter, allocator, builtin_data);
+
+  SafeBuiltinDataAllocator safe_allocator(allocator);
+  auto params = safe_allocator.Allocate<TfLiteStablehloReduceWindowParams>();
+
+  const StablehloReduceWindowOptions* schema_params =
+      op->builtin_options_2_as_StablehloReduceWindowOptions();
+  if (schema_params) {
+    if (!schema_params->window_dimensions() ||
+        schema_params->window_dimensions()->size() == 0) {
+      TF_LITE_REPORT_ERROR(error_reporter,
+                           "'window_dimensions' attribute is not optional for "
+                           "'stablehlo.reduce_window' and cannot be empty.");
+      return kTfLiteError;
+    }
+
+    const size_t rank = schema_params->window_dimensions()->size();
+
+    auto LoadAttr = [&error_reporter](
+                        int64_t* params_array, size_t params_array_size_bytes,
+                        const flatbuffers::Vector<int64_t>* flatbuffer_vector,
+                        const char* attr_name, const size_t expected_size,
+                        const int64_t fill_value) -> TfLiteStatus {
+      if (flatbuffer_vector && flatbuffer_vector->size()) {
+        if (expected_size != 0 && flatbuffer_vector->size() != expected_size) {
+          TF_LITE_REPORT_ERROR(
+              error_reporter,
+              "'%s' attribute of 'stablehlo.reduce_window' does not have the "
+              "expected size (%llu != %llu).",
+              attr_name, flatbuffer_vector->size(), expected_size);
+          return kTfLiteError;
+        }
+        TfLiteStatus status = FlatBufferIntVectorToArray(
+            params_array_size_bytes, flatbuffer_vector, params_array,
+            error_reporter, "stablehlo.reduce_window");
+        if (status != kTfLiteOk) {
+          TF_LITE_REPORT_ERROR(error_reporter, "Check the '%s' attribute.",
+                               attr_name);
+          return status;
+        }
+      } else {
+        std::fill_n(params_array, params_array_size_bytes / sizeof(int64_t),
+                    fill_value);
+      }
+      return kTfLiteOk;
+    };
+
+    TF_LITE_ENSURE_STATUS(
+        LoadAttr(params->window_dimensions, sizeof(params->window_dimensions),
+                 schema_params->window_dimensions(), "window_dimensions",
+                 /*expected_size=*/rank, /*fill_value=*/1));
+    TF_LITE_ENSURE_STATUS(
+        LoadAttr(params->window_strides, sizeof(params->window_strides),
+                 schema_params->window_strides(), "window_strides",
+                 /*expected_size=*/rank, /*fill_value=*/1));
+    TF_LITE_ENSURE_STATUS(
+        LoadAttr(params->base_dilations, sizeof(params->base_dilations),
+                 schema_params->base_dilations(), "base_dilations",
+                 /*expected_size=*/rank, /*fill_value=*/1));
+    TF_LITE_ENSURE_STATUS(
+        LoadAttr(params->window_dilations, sizeof(params->window_dilations),
+                 schema_params->window_dilations(), "window_dilations",
+                 /*expected_size=*/rank, /*fill_value=*/1));
+    TF_LITE_ENSURE_STATUS(LoadAttr(params->padding, sizeof(params->padding),
+                                   schema_params->padding(), "padding",
+                                   /*expected_size=*/2 * rank,
+                                   /*fill_value=*/0));
+
+    params->body_subgraph_index = schema_params->body_subgraph_index();
+    *builtin_data = params.release();
+    return kTfLiteOk;
+  }
+  TF_LITE_REPORT_ERROR(
+      error_reporter,
+      "Could not get 'stablehlo.reduce_window' operation parameters.");
+  return kTfLiteError;
+}
+
+TfLiteStatus ParseStablehloScatter(const Operator* op,
+                                   ErrorReporter* error_reporter,
+                                   BuiltinDataAllocator* allocator,
+                                   void** builtin_data) {
+  CheckParsePointerParams(op, error_reporter, allocator, builtin_data);
+
+  SafeBuiltinDataAllocator safe_allocator(allocator);
+  std::unique_ptr<TfLiteStablehloScatterParams,
+                  SafeBuiltinDataAllocator::BuiltinDataDeleter>
+      params = safe_allocator.Allocate<TfLiteStablehloScatterParams>();
+  TF_LITE_ENSURE(error_reporter, params != nullptr);
+
+  const StablehloScatterOptions* schema_params =
+      op->builtin_options_2_as_StablehloScatterOptions();
+  if (schema_params) {
+    params->indices_are_sorted = schema_params->indices_are_sorted();
+
+    if (schema_params->update_window_dims()) {
+      TF_LITE_ENSURE_STATUS(FlatBufferIntVectorToArray<int64_t>(
+          schema_params->update_window_dims()->size() * sizeof(int64_t),
+          schema_params->update_window_dims(), params->update_window_dims,
+          error_reporter, "stablehlo_scatter"));
+      params->num_update_window_dims =
+          schema_params->update_window_dims()->size();
+    }
+
+    if (schema_params->inserted_window_dims()) {
+      TF_LITE_ENSURE_STATUS(FlatBufferIntVectorToArray<int64_t>(
+          schema_params->inserted_window_dims()->size() * sizeof(int64_t),
+          schema_params->inserted_window_dims(), params->inserted_window_dims,
+          error_reporter, "stablehlo_scatter"));
+      params->num_inserted_window_dims =
+          schema_params->inserted_window_dims()->size();
+    }
+
+    if (schema_params->scatter_dims_to_operand_dims()) {
+      TF_LITE_ENSURE_STATUS(FlatBufferIntVectorToArray<int64_t>(
+          schema_params->scatter_dims_to_operand_dims()->size() *
+              sizeof(int64_t),
+          schema_params->scatter_dims_to_operand_dims(),
+          params->scatter_dims_to_operand_dims, error_reporter,
+          "stablehlo_scatter"));
+      params->num_scatter_dims_to_operand_dims =
+          schema_params->scatter_dims_to_operand_dims()->size();
+    }
+
+    params->index_vector_dim = schema_params->index_vector_dim();
+    params->unique_indices = schema_params->unique_indices();
+    params->update_computation_subgraph_index =
+        schema_params->update_computation_subgraph_index();
+  } else {
+    // TODO(b/157480169): We should either return kTfLiteError or fill in some
+    // reasonable defaults in the params struct. We are not doing so until we
+    // better understand the ramifications of changing the legacy behavior.
+  }
+  *builtin_data = params.release();
+  return kTfLiteOk;
+}
+
+TfLiteStatus ParseStablehloRngBitGenerator(const Operator* op,
+                                           ErrorReporter* error_reporter,
+                                           BuiltinDataAllocator* allocator,
+                                           void** builtin_data) {
+  CheckParsePointerParams(op, error_reporter, allocator, builtin_data);
+
+  SafeBuiltinDataAllocator safe_allocator(allocator);
+  std::unique_ptr<TfLiteStablehloRngBitGeneratorParams,
+                  SafeBuiltinDataAllocator::BuiltinDataDeleter>
+      params = safe_allocator.Allocate<TfLiteStablehloRngBitGeneratorParams>();
+  TF_LITE_ENSURE(error_reporter, params != nullptr);
+
+  const StablehloRngBitGeneratorOptions* schema_params =
+      op->builtin_options_2_as_StablehloRngBitGeneratorOptions();
+  if (schema_params != nullptr) {
+    params->algorithm = ConvertRngAlgorithm(schema_params->algorithm());
+  } else {
+    // TODO(b/157480169): We should either return kTfLiteError or fill in some
+    // reasonable defaults in the params struct. We are not doing so until we
+    // better understand the ramifications of changing the legacy behavior.
+  }
+
+  *builtin_data = params.release();
+  return kTfLiteOk;
+}
+
+TfLiteStatus ParseStablehloGather(const Operator* op,
+                                  ErrorReporter* error_reporter,
+                                  BuiltinDataAllocator* allocator,
+                                  void** builtin_data) {
+  CheckParsePointerParams(op, error_reporter, allocator, builtin_data);
+
+  SafeBuiltinDataAllocator safe_allocator(allocator);
+  std::unique_ptr<TfLiteStablehloGatherParams,
+                  SafeBuiltinDataAllocator::BuiltinDataDeleter>
+      params = safe_allocator.Allocate<TfLiteStablehloGatherParams>();
+  TF_LITE_ENSURE(error_reporter, params != nullptr);
+
+  const StablehloGatherOptions* schema_params =
+      op->builtin_options_2_as_StablehloGatherOptions();
+
+  if (schema_params != nullptr) {
+    TF_LITE_ENSURE_STATUS(FlatBufferIntVectorToArray<int64_t>(
+        /*max_size_of_buffer=*/schema_params->offset_dims()->size() *
+            sizeof(int64_t),
+        /*flat_vector=*/schema_params->offset_dims(),
+        /*buffer=*/params->offset_dims, /*error_reporter=*/error_reporter,
+        /*op_name=*/"stablehlo_gather"));
+    params->num_offset_dims = schema_params->offset_dims()->size();
+
+    TF_LITE_ENSURE_STATUS(FlatBufferIntVectorToArray<int64_t>(
+        schema_params->collapsed_slice_dims()->size() * sizeof(int64_t),
+        schema_params->collapsed_slice_dims(), params->collapsed_slice_dims,
+        error_reporter, "stablehlo_gather"));
+    params->num_collapsed_slice_dims =
+        schema_params->collapsed_slice_dims()->size();
+
+    TF_LITE_ENSURE_STATUS(FlatBufferIntVectorToArray<int64_t>(
+        schema_params->start_index_map()->size() * sizeof(int64_t),
+        schema_params->start_index_map(), params->start_index_map,
+        error_reporter, "stablehlo_gather"));
+    params->num_start_index_map = schema_params->start_index_map()->size();
+
+    params->index_vector_dim = schema_params->index_vector_dim();
+
+    TF_LITE_ENSURE_STATUS(FlatBufferIntVectorToArray<int64_t>(
+        schema_params->slice_sizes()->size() * sizeof(int64_t),
+        schema_params->slice_sizes(), params->slice_sizes, error_reporter,
+        "stablehlo_gather"));
+    params->num_slice_sizes = schema_params->slice_sizes()->size();
+
+    params->indices_are_sorted = schema_params->indices_are_sorted();
+  } else {
+    // TODO(b/157480169): We should either return kTfLiteError or fill in some
+    // reasonable defaults in the params struct. We are not doing so until we
+    // better understand the ramifications of changing the legacy behavior.
+  }
+
+  *builtin_data = params.release();
+  return kTfLiteOk;
+}
+
+TfLiteStatus ParseStablehloPad(const Operator* op,
+                               ErrorReporter* error_reporter,
+                               BuiltinDataAllocator* allocator,
+                               void** builtin_data) {
+  CheckParsePointerParams(op, error_reporter, allocator, builtin_data);
+
+  SafeBuiltinDataAllocator safe_allocator(allocator);
+  auto params = safe_allocator.Allocate<TfLiteStablehloPadParams>();
+  const StablehloPadOptions* schema_params =
+      op->builtin_options_2_as_StablehloPadOptions();
+
+  if (schema_params) {
+    auto LoadAttr =
+        [&error_reporter](
+            int64_t* params_array, const size_t params_array_size_bytes,
+            const flatbuffers::Vector<int64_t>* const flatbuffer_vector,
+            const char* const attr_name) -> TfLiteStatus {
+      TfLiteStatus status = FlatBufferIntVectorToArray(
+          params_array_size_bytes, flatbuffer_vector, params_array,
+          error_reporter, "stablehlo.pad");
+      if (status != kTfLiteOk) {
+        TF_LITE_REPORT_ERROR(error_reporter, "Check the '%s' attribute.",
+                             attr_name);
+      }
+      return status;
+    };
+
+    TF_LITE_ENSURE_STATUS(
+        LoadAttr(params->edge_padding_low, sizeof(params->edge_padding_low),
+                 schema_params->edge_padding_low(), "edge_padding_low"));
+    TF_LITE_ENSURE_STATUS(
+        LoadAttr(params->edge_padding_high, sizeof(params->edge_padding_high),
+                 schema_params->edge_padding_high(), "edge_padding_high"));
+    TF_LITE_ENSURE_STATUS(
+        LoadAttr(params->interior_padding, sizeof(params->interior_padding),
+                 schema_params->interior_padding(), "interior_padding"));
+    if (schema_params->edge_padding_low()->size() !=
+            schema_params->edge_padding_high()->size() ||
+        schema_params->edge_padding_low()->size() !=
+            schema_params->interior_padding()->size()) {
+      TF_LITE_REPORT_ERROR(error_reporter,
+                           "'stablehlo.pad' operation parameter array sizes "
+                           "are not consistent.");
+      return kTfLiteError;
+    }
+    *builtin_data = params.release();
+    return kTfLiteOk;
+  }
+  TF_LITE_REPORT_ERROR(error_reporter,
+                       "Could not get 'stablehlo.pad' operation parameters.");
+  return kTfLiteError;
+}
+
+TfLiteStatus ParseStablehloComposite(const Operator* op,
+                                     ErrorReporter* error_reporter,
+                                     BuiltinDataAllocator* allocator,
+                                     void** builtin_data) {
+  CheckParsePointerParams(op, error_reporter, allocator, builtin_data);
+
+  SafeBuiltinDataAllocator safe_allocator(allocator);
+  auto params = safe_allocator.Allocate<TfLiteStablehloCompositeParams>();
+  const StableHLOCompositeOptions* schema_params =
+      op->builtin_options_2_as_StableHLOCompositeOptions();
+  if (schema_params) {
+    params->name = schema_params->name()->c_str();
+    params->version = schema_params->version();
+    params->subgraph_index = schema_params->decomposition_subgraph_index();
+    params->attributes = schema_params->composite_attributes()->data();
+    params->attributes_size = schema_params->composite_attributes()->size();
+    *builtin_data = params.release();
+    return kTfLiteOk;
+  }
+  TF_LITE_REPORT_ERROR(
+      error_reporter,
+      "Could not get 'stablehlo.composite' operation parameters.");
+  return kTfLiteError;
+}
+
 // We have this parse function instead of directly returning kTfLiteOk from the
 // switch-case in ParseOpData because this function is used as part of the
 // selective registration for the OpResolver implementation in micro.
@@ -2034,7 +2450,7 @@
   } else {
     // TODO(b/157480169): We should either return kTfLiteError or fill in some
     // reasonable defaults in the params struct. We are not doing so until we
-    // better undertand the ramifications of changing the legacy behavior.
+    // better understand the ramifications of changing the legacy behavior.
   }
 
   *builtin_data = params.release();
@@ -2075,7 +2491,7 @@
   } else {
     // TODO(b/157480169): We should either return kTfLiteError or fill in some
     // reasonable defaults in the params struct. We are not doing so until we
-    // better undertand the ramifications of changing the legacy behavior.
+    // better understand the ramifications of changing the legacy behavior.
   }
 
   *builtin_data = params.release();
@@ -2108,7 +2524,7 @@
   } else {
     // TODO(b/157480169): We should either return kTfLiteError or fill in some
     // reasonable defaults in the params struct. We are not doing so until we
-    // better undertand the ramifications of changing the legacy behavior.
+    // better understand the ramifications of changing the legacy behavior.
   }
 
   *builtin_data = params.release();
@@ -2132,7 +2548,7 @@
   } else {
     // TODO(b/157480169): We should either return kTfLiteError or fill in some
     // reasonable defaults in the params struct. We are not doing so until we
-    // better undertand the ramifications of changing the legacy behavior.
+    // better understand the ramifications of changing the legacy behavior.
   }
 
   *builtin_data = params.release();
@@ -2156,7 +2572,7 @@
   } else {
     // TODO(b/157480169): We should either return kTfLiteError or fill in some
     // reasonable defaults in the params struct. We are not doing so until we
-    // better undertand the ramifications of changing the legacy behavior.
+    // better understand the ramifications of changing the legacy behavior.
   }
 
   *builtin_data = params.release();
@@ -2214,7 +2630,7 @@
   } else {
     // TODO(b/157480169): We should either return kTfLiteError or fill in some
     // reasonable defaults in the params struct. We are not doing so until we
-    // better undertand the ramifications of changing the legacy behavior.
+    // better understand the ramifications of changing the legacy behavior.
   }
 
   *builtin_data = params.release();
@@ -2270,7 +2686,7 @@
   } else {
     // TODO(b/157480169): We should either return kTfLiteError or fill in some
     // reasonable defaults in the params struct. We are not doing so until we
-    // better undertand the ramifications of changing the legacy behavior.
+    // better understand the ramifications of changing the legacy behavior.
   }
 
   *builtin_data = params.release();
@@ -2295,7 +2711,7 @@
   } else {
     // TODO(b/157480169): We should either return kTfLiteError or fill in some
     // reasonable defaults in the params struct. We are not doing so until we
-    // better undertand the ramifications of changing the legacy behavior.
+    // better understand the ramifications of changing the legacy behavior.
   }
 
   *builtin_data = params.release();
@@ -2322,7 +2738,7 @@
   } else {
     // TODO(b/157480169): We should either return kTfLiteError or fill in some
     // reasonable defaults in the params struct. We are not doing so until we
-    // better undertand the ramifications of changing the legacy behavior.
+    // better understand the ramifications of changing the legacy behavior.
   }
 
   *builtin_data = params.release();
@@ -2365,10 +2781,13 @@
 
     params->activation =
         ConvertActivation(transpose_conv_params->fused_activation_function());
+    TF_LITE_ENSURE_STATUS(
+        ConvertTensorType(transpose_conv_params->quantized_bias_type(),
+                          &params->quantized_bias_type, error_reporter));
   } else {
     // TODO(b/157480169): We should either return kTfLiteError or fill in some
     // reasonable defaults in the params struct. We are not doing so until we
-    // better undertand the ramifications of changing the legacy behavior.
+    // better understand the ramifications of changing the legacy behavior.
   }
   *builtin_data = params.release();
   return kTfLiteOk;
@@ -2392,7 +2811,7 @@
   } else {
     // TODO(b/157480169): We should either return kTfLiteError or fill in some
     // reasonable defaults in the params struct. We are not doing so until we
-    // better undertand the ramifications of changing the legacy behavior.
+    // better understand the ramifications of changing the legacy behavior.
   }
 
   *builtin_data = params.release();
@@ -2423,7 +2842,7 @@
   } else {
     // TODO(b/157480169): We should either return kTfLiteError or fill in some
     // reasonable defaults in the params struct. We are not doing so until we
-    // better undertand the ramifications of changing the legacy behavior.
+    // better understand the ramifications of changing the legacy behavior.
   }
 
   *builtin_data = params.release();
@@ -2448,7 +2867,7 @@
   } else {
     // TODO(b/157480169): We should either return kTfLiteError or fill in some
     // reasonable defaults in the params struct. We are not doing so until we
-    // better undertand the ramifications of changing the legacy behavior.
+    // better understand the ramifications of changing the legacy behavior.
   }
 
   *builtin_data = params.release();
diff --git a/tensorflow/lite/core/api/flatbuffer_conversions.h b/tensorflow/lite/core/api/flatbuffer_conversions.h
index 9ffe397..c01e887 100644
--- a/tensorflow/lite/core/api/flatbuffer_conversions.h
+++ b/tensorflow/lite/core/api/flatbuffer_conversions.h
@@ -420,6 +420,36 @@
                              BuiltinDataAllocator* allocator,
                              void** builtin_data);
 
+TfLiteStatus ParseStablehloScatter(const Operator* op,
+                                   ErrorReporter* error_reporter,
+                                   BuiltinDataAllocator* allocator,
+                                   void** builtin_data);
+
+TfLiteStatus ParseStablehloRngBitGenerator(const Operator* op,
+                                           ErrorReporter* error_reporter,
+                                           BuiltinDataAllocator* allocator,
+                                           void** builtin_data);
+
+TfLiteStatus ParseStablehloGather(const Operator* op,
+                                  ErrorReporter* error_reporter,
+                                  BuiltinDataAllocator* allocator,
+                                  void** builtin_data);
+
+TfLiteStatus ParseStablehloReduceWindow(const Operator* op,
+                                        ErrorReporter* error_reporter,
+                                        BuiltinDataAllocator* allocator,
+                                        void** builtin_data);
+
+TfLiteStatus ParseStablehloPad(const Operator* op,
+                               ErrorReporter* error_reporter,
+                               BuiltinDataAllocator* allocator,
+                               void** builtin_data);
+
+TfLiteStatus ParseStablehloComposite(const Operator* op,
+                                     ErrorReporter* error_reporter,
+                                     BuiltinDataAllocator* allocator,
+                                     void** builtin_data);
+
 }  // namespace tflite
 
 #endif  // TENSORFLOW_LITE_CORE_API_FLATBUFFER_CONVERSIONS_H_
diff --git a/tensorflow/lite/core/c/builtin_op_data.h b/tensorflow/lite/core/c/builtin_op_data.h
index e9c6eb3..e1428e7 100644
--- a/tensorflow/lite/core/c/builtin_op_data.h
+++ b/tensorflow/lite/core/c/builtin_op_data.h
@@ -21,6 +21,7 @@
 #define TENSORFLOW_LITE_CORE_C_BUILTIN_OP_DATA_H_
 
 #include <stdbool.h>
+#include <stddef.h>
 #include <stdint.h>
 
 #include "tensorflow/lite/core/c/common.h"
@@ -32,6 +33,10 @@
 // TfLiteReshapeParams can't have dynamic data so we fix the maximum possible
 // number of dimensions.
 #define TFLITE_RESHAPE_PARAMS_MAX_DIMENSION_COUNT 8
+#define TFLITE_STABLEHLO_SCATTER_PARAMS_MAX_DIMENSION_COUNT 8
+#define TFLITE_STABLEHLO_GATHER_PARAMS_MAX_DIMENSION_COUNT 8
+#define TFLITE_STABLEHLO_REDUCE_WINDOW_PARAMS_MAX_DIMENSION_COUNT 8
+#define TFLITE_STABLEHLO_PAD_PARAMS_MAX_DIMENSION_COUNT 8
 
 // TODO(aselle): Consider using "if this then that" for testing.
 
@@ -90,6 +95,10 @@
   // Note: Version 2 supports dilation values not equal to 1.
   int dilation_width_factor;
   int dilation_height_factor;
+
+  // Parameters for CONV_2D version 7 or above.
+  // Used to determine the default value for the quantized bias.
+  TfLiteType quantized_bias_type;
 } TfLiteConvParams;
 
 typedef struct {
@@ -193,6 +202,10 @@
   // If set to true and the weights are quantized, then non constant inputs
   // are quantized at evaluation time with asymmetric quantization.
   bool asymmetric_quantize_inputs;
+
+  // Parameters for FullyConnected version 10 or above.
+  // Used to determine the default value for the quantized bias.
+  TfLiteType quantized_bias_type;
 } TfLiteFullyConnectedParams;
 
 typedef enum {
@@ -341,7 +354,7 @@
   // These fields are only used in old models for backward compatibility.
   // In the current implementation, we use the 2nd input of the op as the shape,
   // and these fields are unused.
-  int shape[TFLITE_RESHAPE_PARAMS_MAX_DIMENSION_COUNT];
+  int32_t shape[TFLITE_RESHAPE_PARAMS_MAX_DIMENSION_COUNT];
   int num_dimensions;
 } TfLiteReshapeParams;
 
@@ -398,7 +411,7 @@
 typedef struct {
   // TODO(ahentz): We can't have dynamic data in this struct, at least not yet.
   // For now we will fix the maximum possible number of dimensions.
-  int squeeze_dims[8];
+  int32_t squeeze_dims[8];
   int num_squeeze_dims;
 } TfLiteSqueezeParams;
 
@@ -430,6 +443,10 @@
 
   // Parameters supported by version 4:
   TfLiteFusedActivation activation;
+
+  // Parameters for TransposeConv version 5 or above.
+  // Used to determine the default value for the quantized bias.
+  TfLiteType quantized_bias_type;
 } TfLiteTransposeConvParams;
 
 typedef struct {
@@ -535,6 +552,108 @@
   bool approximate;
 } TfLiteGeluParams;
 
+typedef struct {
+  int64_t dimension;
+} TfLiteStablehloConcatenateParams;
+
+typedef struct {
+  // See the stablehlo spec for the explanation of the attributes:
+  // https://github.com/openxla/stablehlo/blob/main/docs/spec.md#scatter
+  bool indices_are_sorted;
+  int64_t
+      update_window_dims[TFLITE_STABLEHLO_SCATTER_PARAMS_MAX_DIMENSION_COUNT];
+  int num_update_window_dims;
+  int64_t
+      inserted_window_dims[TFLITE_STABLEHLO_SCATTER_PARAMS_MAX_DIMENSION_COUNT];
+  int num_inserted_window_dims;
+  int64_t scatter_dims_to_operand_dims
+      [TFLITE_STABLEHLO_SCATTER_PARAMS_MAX_DIMENSION_COUNT];
+  int num_scatter_dims_to_operand_dims;
+  int64_t index_vector_dim;
+  bool unique_indices;
+  int update_computation_subgraph_index;
+} TfLiteStablehloScatterParams;
+
+typedef enum {
+  kTfLiteRngAlgorithmUnknown = 0,
+  // An algorithm auto-selected by the system according to device type.
+  kTfLiteRngAlgorithmDefault,
+  // The Philox algorithm, as described in paper
+  // ['Parallel Random Numbers: As Easy as 1, 2, 3']
+  // (https://www.thesalmons.org/john/random123/papers/random123sc11.pdf)
+  kTfLiteRngAlgorithmPhilox,
+  // The ThreeFry algorithm, as described in paper
+  // ['Parallel Random Numbers: As Easy as 1, 2, 3']
+  // (https://www.thesalmons.org/john/random123/papers/random123sc11.pdf)
+  kTfLiteRngAlgorithmThreefry,
+} TfLiteRngAlgorithm;
+
+typedef struct {
+  TfLiteRngAlgorithm algorithm;
+} TfLiteStablehloRngBitGeneratorParams;
+
+typedef struct {
+  // See the stablehlo spec for the explanation of the attributes:
+  // https://github.com/openxla/stablehlo/blob/main/docs/spec.md#gather
+  int64_t offset_dims[TFLITE_STABLEHLO_GATHER_PARAMS_MAX_DIMENSION_COUNT];
+  int num_offset_dims;
+  int64_t
+      collapsed_slice_dims[TFLITE_STABLEHLO_GATHER_PARAMS_MAX_DIMENSION_COUNT];
+  int num_collapsed_slice_dims;
+  int64_t start_index_map[TFLITE_STABLEHLO_GATHER_PARAMS_MAX_DIMENSION_COUNT];
+  int num_start_index_map;
+  int64_t index_vector_dim;
+  int64_t slice_sizes[TFLITE_STABLEHLO_GATHER_PARAMS_MAX_DIMENSION_COUNT];
+  int num_slice_sizes;
+  bool indices_are_sorted;
+} TfLiteStablehloGatherParams;
+
+typedef struct {
+  // See the stablehlo spec for the explanation of the attributes:
+  // https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_window
+  int64_t window_dimensions
+      [TFLITE_STABLEHLO_REDUCE_WINDOW_PARAMS_MAX_DIMENSION_COUNT];
+  int64_t
+      window_strides[TFLITE_STABLEHLO_REDUCE_WINDOW_PARAMS_MAX_DIMENSION_COUNT];
+  int64_t
+      base_dilations[TFLITE_STABLEHLO_REDUCE_WINDOW_PARAMS_MAX_DIMENSION_COUNT];
+  int64_t window_dilations
+      [TFLITE_STABLEHLO_REDUCE_WINDOW_PARAMS_MAX_DIMENSION_COUNT];
+  int64_t
+      padding[2 * TFLITE_STABLEHLO_REDUCE_WINDOW_PARAMS_MAX_DIMENSION_COUNT];
+  int body_subgraph_index;
+} TfLiteStablehloReduceWindowParams;
+
+enum TfLiteReduceWindowFunction {
+  TfLiteReduceWindowFunctionUnsupported,
+  TfLiteReduceWindowFunctionAdd,
+  TfLiteReduceWindowFunctionMul,
+  TfLiteReduceWindowFunctionMin,
+  TfLiteReduceWindowFunctionMax,
+  TfLiteReduceWindowFunctionAll,
+  TfLiteReduceWindowFunctionAny
+};
+
+typedef struct {
+  enum TfLiteReduceWindowFunction reduce_function;
+} TfLiteReduceWindowParams;
+
+typedef struct {
+  // See the stablehlo spec for the explanation of the attributes:
+  // https://github.com/openxla/stablehlo/blob/main/docs/spec.md#pad
+  int64_t edge_padding_low[TFLITE_STABLEHLO_PAD_PARAMS_MAX_DIMENSION_COUNT];
+  int64_t edge_padding_high[TFLITE_STABLEHLO_PAD_PARAMS_MAX_DIMENSION_COUNT];
+  int64_t interior_padding[TFLITE_STABLEHLO_PAD_PARAMS_MAX_DIMENSION_COUNT];
+} TfLiteStablehloPadParams;
+
+typedef struct {
+  const char* name;
+  int32_t subgraph_index;
+  int32_t version;
+  const uint8_t* attributes;
+  size_t attributes_size;
+} TfLiteStablehloCompositeParams;
+
 #ifdef __cplusplus
 }  // extern "C"
 #endif  // __cplusplus
diff --git a/tensorflow/lite/core/c/c_api_types.h b/tensorflow/lite/core/c/c_api_types.h
index 3a6594d..32cefa8 100644
--- a/tensorflow/lite/core/c/c_api_types.h
+++ b/tensorflow/lite/core/c/c_api_types.h
@@ -12,16 +12,24 @@
 See the License for the specific language governing permissions and
 limitations under the License.
 ==============================================================================*/
+// WARNING: Users of TensorFlow Lite should not include this file directly, but
+// should instead include "third_party/tensorflow/lite/c/c_api_types.h".
+// Only the TensorFlow Lite implementation itself should include this file
+// directly.
 
 /// This file declares types used by the pure C inference API defined in
 /// c_api.h, some of which are also used in the C++ and C kernel and interpreter
 /// APIs.
-
-// WARNING: Users of TensorFlow Lite should not include this file directly,
-// but should instead include
-// "third_party/tensorflow/lite/c/c_api_types.h".
-// Only the TensorFlow Lite implementation itself should include this
-// file directly.
+///
+// clang-format off
+// NOLINTBEGIN(whitespace/line_length)
+/// \note Users of TensorFlow Lite should use
+/// \code
+/// #include "tensorflow/lite/c/c_api_types.h"
+/// \endcode
+/// to access the APIs documented on this page.
+// NOLINTEND(whitespace/line_length)
+// clang-format on
 
 // IWYU pragma: private, include "third_party/tensorflow/lite/c/c_api_types.h"
 
@@ -34,9 +42,13 @@
 extern "C" {
 #endif
 
-/** \addtogroup c_api_types tensorflow/lite/c/c_api_types.h
+// clang-format off
+// NOLINTBEGIN(whitespace/line_length)
+/** \defgroup c_api_types lite/c/c_api_types.h
  *  @{
  */
+// NOLINTEND(whitespace/line_length)
+// clang-format on
 
 // Define TFL_CAPI_EXPORT macro to export a function properly with a shared
 // library.
@@ -121,14 +133,14 @@
   kTfLiteUInt32 = 16,
   kTfLiteUInt16 = 17,
   kTfLiteInt4 = 18,
+  kTfLiteBFloat16 = 19,
 } TfLiteType;
 
-/// Legacy. Will be deprecated in favor of TfLiteAffineQuantization.
+/// Legacy. Will be deprecated in favor of `TfLiteAffineQuantization`.
 /// If per-layer quantization is specified this field will still be populated in
-/// addition to TfLiteAffineQuantization.
+/// addition to `TfLiteAffineQuantization`.
 /// Parameters for asymmetric quantization. Quantized values can be converted
-/// back to float using:
-///     real_value = scale * (quantized_value - zero_point)
+/// back to float using: `real_value = scale * (quantized_value - zero_point)`
 typedef struct TfLiteQuantizationParams {
   float scale;
   int32_t zero_point;
@@ -156,6 +168,7 @@
 /// This is an abstract type that is intended to have the same
 /// role as TfLiteDelegate, but without exposing the implementation
 /// details of how delegates are implemented.
+///
 /// WARNING: This is an experimental type and subject to change.
 typedef struct TfLiteOpaqueDelegateStruct TfLiteOpaqueDelegateStruct;
 
@@ -163,6 +176,7 @@
 /// TfLiteDelegate; allows delegation of nodes to alternative backends.
 /// For TF Lite in Play Services, this is an opaque type,
 /// but for regular TF Lite, this is just a typedef for TfLiteDelegate.
+///
 /// WARNING: This is an experimental type and subject to change.
 #if TFLITE_WITH_STABLE_ABI || TFLITE_USE_OPAQUE_DELEGATE
 typedef TfLiteOpaqueDelegateStruct TfLiteOpaqueDelegate;
diff --git a/tensorflow/lite/core/c/common.cc b/tensorflow/lite/core/c/common.cc
index 367f175..7afecdb 100644
--- a/tensorflow/lite/core/c/common.cc
+++ b/tensorflow/lite/core/c/common.cc
@@ -370,6 +370,8 @@
       return "STRING";
     case kTfLiteFloat16:
       return "FLOAT16";
+    case kTfLiteBFloat16:
+      return "BFLOAT16";
     case kTfLiteFloat64:
       return "FLOAT64";
     case kTfLiteResource:
@@ -384,40 +386,128 @@
 
 TfLiteDelegate TfLiteDelegateCreate() { return TfLiteDelegate{}; }
 
-#ifndef TF_LITE_STATIC_MEMORY
-TfLiteOpaqueDelegate* TfLiteOpaqueDelegateCreate(
-    const TfLiteOpaqueDelegateBuilder* opaque_delegate_builder) {
-  if (!opaque_delegate_builder) return nullptr;
-
-  TfLiteDelegate* result = new TfLiteDelegate{};
-  result->opaque_delegate_builder = new TfLiteOpaqueDelegateBuilder{};
-  *(result->opaque_delegate_builder) = *opaque_delegate_builder;
-
-  return reinterpret_cast<TfLiteOpaqueDelegate*>(result);
+// Returns a tensor data allocation strategy.
+TfLiteAllocationStrategy TfLiteTensorGetAllocationStrategy(
+    const TfLiteTensor* const t) {
+  switch (t->allocation_type) {
+    case kTfLiteMemNone:
+      return kTfLiteAllocationStrategyNone;
+    case kTfLiteMmapRo:
+      return kTfLiteAllocationStrategyMMap;
+    case kTfLiteArenaRw:
+      return kTfLiteAllocationStrategyArena;
+    case kTfLiteArenaRwPersistent:
+      return kTfLiteAllocationStrategyArena;
+    case kTfLiteDynamic:
+      return kTfLiteAllocationStrategyMalloc;
+    case kTfLitePersistentRo:
+      return kTfLiteAllocationStrategyUnknown;
+    case kTfLiteCustom:
+      return kTfLiteAllocationStrategyUnknown;
+    case kTfLiteVariantObject:
+      return kTfLiteAllocationStrategyNew;
+  }
+  return kTfLiteAllocationStrategyUnknown;
 }
 
-void TfLiteOpaqueDelegateDelete(TfLiteOpaqueDelegate* opaque_delegate) {
-  if (!opaque_delegate) return;
-
-  const TfLiteDelegate* tflite_delegate =
-      reinterpret_cast<const TfLiteDelegate*>(opaque_delegate);
-  delete tflite_delegate->opaque_delegate_builder;
-  delete tflite_delegate;
+// Returns how stable a tensor data buffer address is across runs.
+TfLiteRunStability TfLiteTensorGetBufferAddressStability(
+    const TfLiteTensor* const t) {
+  switch (t->allocation_type) {
+    case kTfLiteMemNone:
+      return kTfLiteRunStabilityAcrossRuns;
+    case kTfLiteMmapRo:
+      return kTfLiteRunStabilityAcrossRuns;
+    case kTfLiteArenaRw:
+      return kTfLiteRunStabilityUnstable;
+    case kTfLiteArenaRwPersistent:
+      return kTfLiteRunStabilityUnstable;
+    case kTfLiteDynamic:
+      return kTfLiteRunStabilitySingleRun;
+    case kTfLitePersistentRo:
+      return kTfLiteRunStabilitySingleRun;
+    case kTfLiteCustom:
+      return kTfLiteRunStabilityUnknown;
+    case kTfLiteVariantObject:
+      return kTfLiteRunStabilityAcrossRuns;
+  }
+  return kTfLiteRunStabilityUnknown;
 }
-#endif  // TF_LITE_STATIC_MEMORY
 
-void* TfLiteOpaqueDelegateGetData(const TfLiteOpaqueDelegate* delegate) {
-  if (!delegate) return nullptr;
+// Returns how stable a tensor data values are across runs.
+TfLiteRunStability TfLiteTensorGetDataStability(const TfLiteTensor* const t) {
+  switch (t->allocation_type) {
+    case kTfLiteMemNone:
+      return kTfLiteRunStabilityAcrossRuns;
+    case kTfLiteMmapRo:
+      return kTfLiteRunStabilityAcrossRuns;
+    case kTfLiteArenaRw:
+      return kTfLiteRunStabilitySingleRun;
+    case kTfLiteArenaRwPersistent:
+      return kTfLiteRunStabilityAcrossRuns;
+    case kTfLiteDynamic:
+      return kTfLiteRunStabilitySingleRun;
+    case kTfLitePersistentRo:
+      return kTfLiteRunStabilitySingleRun;
+    case kTfLiteCustom:
+      return kTfLiteRunStabilityUnknown;
+    case kTfLiteVariantObject:
+      return kTfLiteRunStabilitySingleRun;
+  }
+  return kTfLiteRunStabilityUnknown;
+}
 
-  // The following cast is safe only because this code is part of the
-  // TF Lite runtime implementation.  Apps using TF Lite should not rely on
-  // 'TfLiteOpaqueDelegate' and 'TfLiteDelegate' being equivalent.
-  const auto* tflite_delegate =
-      reinterpret_cast<const TfLiteDelegate*>(delegate);
+// Returns the operation step when the data of a tensor is populated.
+//
+// Some operations can precompute their results before the evaluation step. This
+// makes the data available earlier for subsequent operations.
+TfLiteRunStep TfLiteTensorGetDataKnownStep(const TfLiteTensor* t) {
+  switch (t->allocation_type) {
+    case kTfLiteMemNone:
+      return kTfLiteRunStepInit;
+    case kTfLiteMmapRo:
+      return kTfLiteRunStepInit;
+    case kTfLiteArenaRw:
+      return kTfLiteRunStepEval;
+    case kTfLiteArenaRwPersistent:
+      return kTfLiteRunStepEval;
+    case kTfLiteDynamic:
+      return kTfLiteRunStepEval;
+    case kTfLitePersistentRo:
+      return kTfLiteRunStepPrepare;
+    case kTfLiteCustom:
+      return kTfLiteRunStepUnknown;
+    case kTfLiteVariantObject:
+      return kTfLiteRunStepEval;
+  }
+  return kTfLiteRunStepUnknown;
+}
 
-  if (!tflite_delegate->opaque_delegate_builder) return tflite_delegate->data_;
-
-  return tflite_delegate->opaque_delegate_builder->data;
+// Returns the operation steop when the shape of a tensor is computed.
+//
+// Some operations can precompute the shape of their results before the
+// evaluation step. This makes the shape available earlier for subsequent
+// operations.
+TfLiteRunStep TfLiteTensorGetShapeKnownStep(const TfLiteTensor* t) {
+  switch (t->allocation_type) {
+    case kTfLiteMemNone:
+      return kTfLiteRunStepInit;
+    case kTfLiteMmapRo:
+      return kTfLiteRunStepInit;
+    case kTfLiteArenaRw:
+      return kTfLiteRunStepPrepare;
+    case kTfLiteArenaRwPersistent:
+      return kTfLiteRunStepPrepare;
+    case kTfLiteDynamic:
+      return kTfLiteRunStepEval;
+    case kTfLitePersistentRo:
+      return kTfLiteRunStepPrepare;
+    case kTfLiteCustom:
+      return kTfLiteRunStepUnknown;
+    case kTfLiteVariantObject:
+      return kTfLiteRunStepEval;
+  }
+  return kTfLiteRunStepUnknown;
 }
 
 }  // extern "C"
diff --git a/tensorflow/lite/core/c/common.h b/tensorflow/lite/core/c/common.h
index 19a74a7..648b862 100644
--- a/tensorflow/lite/core/c/common.h
+++ b/tensorflow/lite/core/c/common.h
@@ -12,32 +12,41 @@
 See the License for the specific language governing permissions and
 limitations under the License.
 ==============================================================================*/
+// WARNING: Users of TensorFlow Lite should not include this file directly, but
+// should instead include "third_party/tensorflow/lite/c/common.h".
+// Only the TensorFlow Lite implementation itself should include this file
+// directly.
 
-// This file defines common C types and APIs for implementing operations,
-// delegates and other constructs in TensorFlow Lite. The actual operations and
-// delegates can be defined using C++, but the interface between the interpreter
-// and the operations are C.
-//
-// Summary of abstractions
-// TF_LITE_ENSURE - Self-sufficient error checking
-// TfLiteStatus - Status reporting
-// TfLiteIntArray - stores tensor shapes (dims),
-// TfLiteContext - allows an op to access the tensors
-// TfLiteTensor - tensor (a multidimensional array)
-// TfLiteNode - a single node or operation
-// TfLiteRegistration - the implementation of a conceptual operation.
-// TfLiteDelegate - allows delegation of nodes to alternative backends.
-//
-// Some abstractions in this file are created and managed by Interpreter.
-//
-// NOTE: The order of values in these structs are "semi-ABI stable". New values
-// should be added only to the end of structs and never reordered.
+/// This file defines common C types and APIs for implementing operations,
+/// delegates and other constructs in TensorFlow Lite. The actual operations and
+/// delegates can be defined using C++, but the interface between the
+/// interpreter and the operations are C.
+///
+/// Summary of abstractions:
+/// * `TF_LITE_ENSURE` - self-sufficient error checking
+/// * `TfLiteStatus` - status reporting
+/// * `TfLiteIntArray` - stores tensor shapes (dims),
+/// * `TfLiteContext` - allows an op to access the tensors
+/// * `TfLiteTensor` - tensor (a multidimensional array)
+/// * `TfLiteNode` - a single node or operation
+/// * `TfLiteRegistration` - the implementation of a conceptual operation.
+/// * `TfLiteDelegate` - allows delegation of nodes to alternative backends.
+///
+/// Some abstractions in this file are created and managed by Interpreter.
+///
+/// NOTE: The order of values in these structs are "semi-ABI stable". New values
+/// should be added only to the end of structs and never reordered.
+///
+// clang-format off
+// NOLINTBEGIN(whitespace/line_length)
+/// \note Users of TensorFlow Lite should use
+/// \code
+/// #include "tensorflow/lite/c/common.h"
+/// \endcode
+/// to access the APIs documented on this page.
+// NOLINTEND(whitespace/line_length)
+// clang-format on
 
-/// WARNING: Users of TensorFlow Lite should not include this file directly,
-/// but should instead include
-/// "third_party/tensorflow/lite/c/common.h".
-/// Only the TensorFlow Lite implementation itself should include this
-/// file directly.
 // IWYU pragma: private, include "third_party/tensorflow/lite/c/common.h"
 
 #ifndef TENSORFLOW_LITE_CORE_C_COMMON_H_
@@ -54,15 +63,23 @@
 extern "C" {
 #endif  // __cplusplus
 
-// The list of external context types known to TF Lite. This list exists solely
-// to avoid conflicts and to ensure ops can share the external contexts they
-// need. Access to the external contexts is controlled by one of the
-// corresponding support files.
+// clang-format off
+// NOLINTBEGIN(whitespace/line_length)
+/** \defgroup common lite/c/common.h
+ *  @{
+ */
+// NOLINTEND(whitespace/line_length)
+// clang-format on
+
+/// The list of external context types known to TF Lite. This list exists solely
+/// to avoid conflicts and to ensure ops can share the external contexts they
+/// need. Access to the external contexts is controlled by one of the
+/// corresponding support files.
 typedef enum TfLiteExternalContextType {
-  kTfLiteEigenContext = 0,       // include eigen_support.h to use.
-  kTfLiteGemmLowpContext = 1,    // include gemm_support.h to use.
-  kTfLiteEdgeTpuContext = 2,     // Placeholder for Edge TPU support.
-  kTfLiteCpuBackendContext = 3,  // include cpu_backend_context.h to use.
+  kTfLiteEigenContext = 0,       /// include eigen_support.h to use.
+  kTfLiteGemmLowpContext = 1,    /// include gemm_support.h to use.
+  kTfLiteEdgeTpuContext = 2,     /// Placeholder for Edge TPU support.
+  kTfLiteCpuBackendContext = 3,  /// include cpu_backend_context.h to use.
   kTfLiteMaxExternalContexts = 4
 } TfLiteExternalContextType;
 
@@ -73,20 +90,22 @@
 struct TfLiteRegistration;
 struct TfLiteOpaqueDelegateBuilder;
 
-// An external context is a collection of information unrelated to the TF Lite
-// framework, but useful to a subset of the ops. TF Lite knows very little
-// about the actual contexts, but it keeps a list of them, and is able to
-// refresh them if configurations like the number of recommended threads
-// change.
+/// An external context is a collection of information unrelated to the TF Lite
+/// framework, but useful to a subset of the ops. TF Lite knows very little
+/// about the actual contexts, but it keeps a list of them, and is able to
+/// refresh them if configurations like the number of recommended threads
+/// change.
 typedef struct TfLiteExternalContext {
   TfLiteExternalContextType type;
   TfLiteStatus (*Refresh)(struct TfLiteContext* context);
 } TfLiteExternalContext;
 
+// LINT.IfChange(optional_tensor)
 #define kTfLiteOptionalTensor (-1)
+// LINT.ThenChange(//tensorflow/compiler/mlir/lite/flatbuffer_export.cc:optional_tensor)
 
-// Fixed size list of integers. Used for dimensions and inputs/outputs tensor
-// indices
+/// Fixed size list of integers. Used for dimensions and inputs/outputs tensor
+/// indices
 typedef struct TfLiteIntArray {
   int size;
 
@@ -105,33 +124,33 @@
 #endif
 } TfLiteIntArray;
 
-// Given the size (number of elements) in a TfLiteIntArray, calculate its size
-// in bytes.
+/// Given the size (number of elements) in a TfLiteIntArray, calculate its size
+/// in bytes.
 size_t TfLiteIntArrayGetSizeInBytes(int size);
 
 #ifndef TF_LITE_STATIC_MEMORY
-// Create a array of a given `size` (uninitialized entries).
-// This returns a pointer, that you must free using TfLiteIntArrayFree().
+/// Create a array of a given `size` (uninitialized entries).
+/// This returns a pointer, that you must free using TfLiteIntArrayFree().
 TfLiteIntArray* TfLiteIntArrayCreate(int size);
 #endif
 
-// Check if two intarrays are equal. Returns 1 if they are equal, 0 otherwise.
+/// Check if two intarrays are equal. Returns 1 if they are equal, 0 otherwise.
 int TfLiteIntArrayEqual(const TfLiteIntArray* a, const TfLiteIntArray* b);
 
-// Check if an intarray equals an array. Returns 1 if equals, 0 otherwise.
+/// Check if an intarray equals an array. Returns 1 if equals, 0 otherwise.
 int TfLiteIntArrayEqualsArray(const TfLiteIntArray* a, int b_size,
                               const int b_data[]);
 
 #ifndef TF_LITE_STATIC_MEMORY
-// Create a copy of an array passed as `src`.
-// You are expected to free memory with TfLiteIntArrayFree
+/// Create a copy of an array passed as `src`.
+/// You are expected to free memory with TfLiteIntArrayFree
 TfLiteIntArray* TfLiteIntArrayCopy(const TfLiteIntArray* src);
 
-// Free memory of array `a`.
+/// Free memory of array `a`.
 void TfLiteIntArrayFree(TfLiteIntArray* a);