blob: 7ab78be26737eec0a0a25deeae067e0dc874bc0e [file] [log] [blame]
// Copyright 2017 The TensorFlow Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Revision History
// Version 0: Initial version.
// Version 1: Add subgraphs to schema.
// Version 2: Rename operators to conform to NN API.
// Version 3: Move buffer data from Model.Subgraph.Tensors to Model.Buffers.
// Version 3a: Add new builtin op code field. Has backward compatibility with
// version 3.
// Version 3b: Rename fields in SignatureDef. Has backward compatibility with
// version 3 and 3a.
// Version 3c: Move constant tensor buffers & custom op buffers outside from
// Flatbuffers. Has backward compatibility with version 3, 3a and
// 3b.
namespace tflite;
// This corresponds to the version.
file_identifier "TFL3";
// File extension of any written files.
file_extension "tflite";
// IMPORTANT: All new members of tables, enums and unions must be added at the
// end to ensure backwards compatibility.
// The type of data stored in a tensor.
enum TensorType : byte {
FLOAT32 = 0,
FLOAT16 = 1,
INT32 = 2,
UINT8 = 3,
INT64 = 4,
STRING = 5,
BOOL = 6,
INT16 = 7,
COMPLEX64 = 8,
INT8 = 9,
FLOAT64 = 10,
COMPLEX128 = 11,
UINT64 = 12,
// Experimental: Resource and variant types are experimental, that are subject
// to change. Do not implement custom kernels using resource & variant types
// now.
RESOURCE = 13,
VARIANT = 14,
UINT32 = 15,
UINT16 = 16,
INT4 = 17,
BFLOAT16 = 18,
}
// Custom quantization parameters for experimenting with new quantization
// techniques.
table CustomQuantization {
custom:[ubyte] (force_align: 16);
}
// Represents a specific quantization technique's parameters.
union QuantizationDetails {
CustomQuantization,
}
// Parameters for converting a quantized tensor back to float.
table QuantizationParameters {
// These four parameters are the asymmetric linear quantization parameters.
// Given a quantized value q, the corresponding float value f should be:
// f = scale * (q - zero_point)
// For other quantization types, the QuantizationDetails below is used.
min:[float]; // For importing back into tensorflow.
max:[float]; // For importing back into tensorflow.
scale:[float]; // For dequantizing the tensor's values.
zero_point:[long];
// If this is not none, the other quantization parameters (i.e. min, max,
// scale, zero_point fields above) are ignored and the value of the
// QuantizationDetails union should be used.
details:QuantizationDetails;
// Specifies the dimension of the Tensor's shape that the scales and
// zero_points correspond to. For example, a tensor t, with dims=[4, 3, 2, 1]
// with quantization params:
// scale=[1.0, 2.0, 3.0], zero_point=[1, 2, 3], quantization_dimension=1
// will be quantized across the second dimension of t.
// t[:, 0, :, :] will have scale[0]=1.0, zero_point[0]=1
// t[:, 1, :, :] will have scale[1]=2.0, zero_point[0]=2
// t[:, 2, :, :] will have scale[2]=3.0, zero_point[0]=3
quantized_dimension:int;
}
// Sparse tensors.
// We use a modification of the TACO format.
// Reference: http://tensor-compiler.org/kjolstad-oopsla17-tensor-compiler.pdf
//
// To encode a conceptual n-dimensional dense tensor with dims (d0, ..., dn-1),
// potentially with a k-dimensional block (0 <= k <= n) with dims
// (dn, ..., dn+k-1), the format needs to specify:
// 1. In what order to traverse these dimensions. For example, to store a 2-D
// matrix in row major order, the traversal order would be (d0, d1),
// whereas to store it in column major order, the traversal order would be
// (d1, d0). If the 2-D matrix has a 2-D inner block, the traversal order
// could be (d0, d1, d2, d3).
// 2. How each block dimension in (dn, ..., dn+k-1) maps to the original
// tensor dimension in (d0, ..., dn-1).
// 3. In the traversal order defined above, the format (dense vs. sparse) and
// index metadata for each dimension. For a dense dimension, this is just
// the size of that dimension. For a sparse dimension, it's the same as
// the compressed index defined in the Compressed Sparse Row (CSR) format.
// (http://scipy-lectures.org/advanced/scipy_sparse/csr_matrix.html)
// The storage type for a dimension. Currently we support:
// 1. DENSE: each coordinate in this dimension is stored implicitly.
// 2. SPARSE_CSR: only the coordinates with non-zero elements are stored. The
// compression technique is the same what CSR uses.
// More types like a sparse dimension with a different compression technique
// could be added to the list in the future.
enum DimensionType : byte {
DENSE = 0,
SPARSE_CSR = 1,
}
table Int32Vector {
values:[int];
}
table Uint16Vector {
values:[ushort] (force_align: 4);
}
table Uint8Vector {
values:[ubyte] (force_align: 4);
}
// Variable-typed buffer to store the index metadata for a sparse dimension.
// The widest type is Int32 instead of UInt32 because tensor's shape is a int32
// vector. We don't want the per-dimensional index to overflow that range.
union SparseIndexVector {
Int32Vector,
Uint16Vector,
Uint8Vector
}
table DimensionMetadata {
// Whether a dimension is dense or sparse.
format:DimensionType;
// Index metadata used for a dimension.
// - If format is DimensionType.DENSE then we use the dense_size field to
// store the size of that dimension. Each index in that dimension is
// stored implicitly.
// - If format is DimensionType.SPARSE_CSR then we use array_segments and
// array_indices to encode that dimension. array_segments represents how
// to segment the indices array, each segment corresponds to one element
// in the previous dimension. array_indices represents the index of the
// non-zero elements within this dimension (as those in the CSR matrix
// format, where the first array is row pointers and the second array is
// column indices).
dense_size:int;
array_segments:SparseIndexVector;
array_indices:SparseIndexVector;
}
// Parameters to encode a sparse TfLite tensor.
table SparsityParameters {
// The traversal order of the dimensions defined in the `shape` field of the
// conceptual dense tensor. For a n-dimensional tensors with dims (d0, d1,
// ..., dn-1),
// - if not block sparse, the traversal_order is just a permutation of (d0,
// ..., dn-1). For example, a 2-D matrix stored in row-major order would
// have traversal_order = (d0, d1).
// - if block sparse with a k-dimensional block (0 <= k <= n), the
// traversal_order has n + k elements. The first n elements are still a
// permutation of (d0, ..., dn-1). The lask k elements are a permutation
// of (dn, ..., dn+k-1), defining how to traverse a block internally. For
// example, a 2-D matrix with 2-D blocks, both stored in row-major order
// would have traversal_order = (d0, d1, d2, d3).
traversal_order:[int];
// For an n-dimensional tensor with a k-dimensional block (0 <= k <= n),
// stores how a block dimension in (dn, ..., dn+k-1) maps to the original
// tensor dimension in (d0, ..., dn).
// It's stored in the order of (dn, ..., dn+k-1).
// If not block-sparse, this field is NULL.
block_map:[int];
// In the traversal order defined above, the metadata needed for
// each dimension to locate the non-zero values in the original dense tensor.
// The size of the dim_metadata array = the size of the traversal_order array
// = n + k.
dim_metadata:[DimensionMetadata];
}
// The nested tensor type for VARIANT type.
table VariantSubType {
// The tensor shape.
shape:[int];
type:TensorType;
// If false, the rank or the number of tensor dimensions is unknown.
// If false, "shape" must be [].
has_rank: bool = false;
}
table Tensor {
// The tensor shape. The meaning of each entry is operator-specific but
// builtin ops use: [batch size, height, width, number of channels] (That's
// Tensorflow's NHWC).
shape:[int];
type:TensorType;
// An index that refers to the buffers table at the root of the model. Or,
// if there is no data buffer associated (i.e. intermediate results), then
// this is 0 (which refers to an always existent empty buffer).
//
// The data_buffer itself is an opaque container, with the assumption that the
// target device is little-endian. In addition, all builtin operators assume
// the memory is ordered such that if `shape` is [4, 3, 2], then index
// [i, j, k] maps to data_buffer[i*3*2 + j*2 + k].
buffer:uint;
name:string; // For debugging and importing back into tensorflow.
quantization:QuantizationParameters; // Optional.
is_variable:bool = false;
// Parameters to encode a sparse tensor. See the example in
// tensorflow/lite/testdata/sparse_tensor.json.
sparsity:SparsityParameters; // Optional.
// Encodes `shape` with unknown dimensions. Unknown dimensions are
// represented with -1.
shape_signature:[int]; // Optional.
// This field is added to distinguish between scalars and tensors of unknown
// ranks (both of which shape is []).
// For scalars (rank = 0), shape = [] and has_rank = true.
// For tensors with known rank (rank > 0) and shape, shape = [...] and
// has_rank = true.
// For tensors with unknown rank and shape, shape = [] and has_rank = false.
has_rank: bool = false;
// The nested Tensor types for VARIANT type. This is always empty for
// non-VARIANT types. This is optional because the nested type can be omitted.
// Currently only 1 subtype is supported. The field is defined as an array for
// flexibility of supporting multiple subtypes in the future.
variant_tensors:[VariantSubType];
}
// A list of builtin operators. Builtin operators are slightly faster than custom
// ones, but not by much. Moreover, while custom operators accept an opaque
// object containing configuration parameters, builtins have a predetermined
// set of acceptable options.
// LINT.IfChange
enum BuiltinOperator : int32 {
ADD = 0,
AVERAGE_POOL_2D = 1,
CONCATENATION = 2,
CONV_2D = 3,
DEPTHWISE_CONV_2D = 4,
DEPTH_TO_SPACE = 5,
DEQUANTIZE = 6,
EMBEDDING_LOOKUP = 7,
FLOOR = 8,
FULLY_CONNECTED = 9,
HASHTABLE_LOOKUP = 10,
L2_NORMALIZATION = 11,
L2_POOL_2D = 12,
LOCAL_RESPONSE_NORMALIZATION = 13,
LOGISTIC = 14,
LSH_PROJECTION = 15,
LSTM = 16,
MAX_POOL_2D = 17,
MUL = 18,
RELU = 19,
// NOTE(aselle): RELU_N1_TO_1 used to be called RELU1, but it was renamed
// since different model developers use RELU1 in different ways. Never
// create another op called RELU1.
RELU_N1_TO_1 = 20,
RELU6 = 21,
RESHAPE = 22,
RESIZE_BILINEAR = 23,
RNN = 24,
SOFTMAX = 25,
SPACE_TO_DEPTH = 26,
SVDF = 27,
TANH = 28,
CONCAT_EMBEDDINGS = 29,
SKIP_GRAM = 30,
CALL = 31,
CUSTOM = 32,
EMBEDDING_LOOKUP_SPARSE = 33,
PAD = 34,
UNIDIRECTIONAL_SEQUENCE_RNN = 35,
GATHER = 36,
BATCH_TO_SPACE_ND = 37,
SPACE_TO_BATCH_ND = 38,
TRANSPOSE = 39,
MEAN = 40,
SUB = 41,
DIV = 42,
SQUEEZE = 43,
UNIDIRECTIONAL_SEQUENCE_LSTM = 44,
STRIDED_SLICE = 45,
BIDIRECTIONAL_SEQUENCE_RNN = 46,
EXP = 47,
TOPK_V2 = 48,
SPLIT = 49,
LOG_SOFTMAX = 50,
// DELEGATE is a special op type for the operations which are delegated to
// other backends.
// WARNING: Experimental interface, subject to change
DELEGATE = 51,
BIDIRECTIONAL_SEQUENCE_LSTM = 52,
CAST = 53,
PRELU = 54,
MAXIMUM = 55,
ARG_MAX = 56,
MINIMUM = 57,
LESS = 58,
NEG = 59,
PADV2 = 60,
GREATER = 61,
GREATER_EQUAL = 62,
LESS_EQUAL = 63,
SELECT = 64,
SLICE = 65,
SIN = 66,
TRANSPOSE_CONV = 67,
SPARSE_TO_DENSE = 68,
TILE = 69,
EXPAND_DIMS = 70,
EQUAL = 71,
NOT_EQUAL = 72,
LOG = 73,
SUM = 74,
SQRT = 75,
RSQRT = 76,
SHAPE = 77,
POW = 78,
ARG_MIN = 79,
FAKE_QUANT = 80,
REDUCE_PROD = 81,
REDUCE_MAX = 82,
PACK = 83,
LOGICAL_OR = 84,
ONE_HOT = 85,
LOGICAL_AND = 86,
LOGICAL_NOT = 87,
UNPACK = 88,
REDUCE_MIN = 89,
FLOOR_DIV = 90,
REDUCE_ANY = 91,
SQUARE = 92,
ZEROS_LIKE = 93,
FILL = 94,
FLOOR_MOD = 95,
RANGE = 96,
RESIZE_NEAREST_NEIGHBOR = 97,
LEAKY_RELU = 98,
SQUARED_DIFFERENCE = 99,
MIRROR_PAD = 100,
ABS = 101,
SPLIT_V = 102,
UNIQUE = 103,
CEIL = 104,
REVERSE_V2 = 105,
ADD_N = 106,
GATHER_ND = 107,
COS = 108,
WHERE = 109,
RANK = 110,
ELU = 111,
REVERSE_SEQUENCE = 112,
MATRIX_DIAG = 113,
QUANTIZE = 114,
MATRIX_SET_DIAG = 115,
ROUND = 116,
HARD_SWISH = 117,
IF = 118,
WHILE = 119,
NON_MAX_SUPPRESSION_V4 = 120,
NON_MAX_SUPPRESSION_V5 = 121,
SCATTER_ND = 122,
SELECT_V2 = 123,
DENSIFY = 124,
SEGMENT_SUM = 125,
BATCH_MATMUL = 126,
PLACEHOLDER_FOR_GREATER_OP_CODES = 127,
CUMSUM = 128,
CALL_ONCE = 129,
BROADCAST_TO = 130,
RFFT2D = 131,
CONV_3D = 132,
IMAG=133,
REAL=134,
COMPLEX_ABS=135,
HASHTABLE = 136,
HASHTABLE_FIND = 137,
HASHTABLE_IMPORT = 138,
HASHTABLE_SIZE = 139,
REDUCE_ALL = 140,
CONV_3D_TRANSPOSE = 141,
VAR_HANDLE = 142,
READ_VARIABLE = 143,
ASSIGN_VARIABLE = 144,
BROADCAST_ARGS = 145,
RANDOM_STANDARD_NORMAL = 146,
BUCKETIZE = 147,
RANDOM_UNIFORM = 148,
MULTINOMIAL = 149,
GELU = 150,
DYNAMIC_UPDATE_SLICE = 151,
RELU_0_TO_1 = 152,
UNSORTED_SEGMENT_PROD = 153,
UNSORTED_SEGMENT_MAX = 154,
UNSORTED_SEGMENT_SUM = 155,
ATAN2 = 156,
UNSORTED_SEGMENT_MIN = 157,
SIGN = 158,
BITCAST = 159,
BITWISE_XOR = 160,
RIGHT_SHIFT = 161,
// All Operators start with STABLEHLO_ prefixes are subject to change
// Many of the ops below can not be executed by TFlite runtime
STABLEHLO_LOGISTIC = 162, // WARNING: Do not have runtime support
STABLEHLO_ADD = 163,
STABLEHLO_DIVIDE = 164, // WARNING: No runtime support yet
STABLEHLO_MULTIPLY = 165,
STABLEHLO_MAXIMUM = 166,
STABLEHLO_RESHAPE = 167, // WARNING: No runtime support yet
STABLEHLO_CLAMP = 168, // WARNING: No runtime support
STABLEHLO_CONCATENATE = 169, // WARNING: No runtime support
STABLEHLO_BROADCAST_IN_DIM = 170, // WARNING: No runtime support
STABLEHLO_CONVOLUTION = 171, // WARNING: No runtime support
STABLEHLO_SLICE = 172, // WARNING: No runtime support
STABLEHLO_CUSTOM_CALL = 173, // WARNING: No runtime support
STABLEHLO_REDUCE = 174, // WARNING: No runtime support
STABLEHLO_ABS = 175, // WARNING: No runtime support
STABLEHLO_AND = 176, // WARNING: No runtime support
STABLEHLO_COSINE = 177, // WARNING: No runtime support
STABLEHLO_EXPONENTIAL = 178, // WARNING: No runtime support
STABLEHLO_FLOOR = 179, // WARNING: No runtime support
STABLEHLO_LOG = 180, // WARNING: No runtime support
STABLEHLO_MINIMUM = 181,
STABLEHLO_NEGATE = 182, // WARNING: No runtime support
STABLEHLO_OR = 183, // WARNING: No runtime support
STABLEHLO_POWER = 184, // WARNING: No runtime support
STABLEHLO_REMAINDER = 185, // WARNING: No runtime support
STABLEHLO_RSQRT = 186, // WARNING: No runtime support
STABLEHLO_SELECT = 187, // WARNING: No runtime support
STABLEHLO_SUBTRACT = 188, // WARNING: No runtime support
STABLEHLO_TANH = 189, // WARNING: No runtime support
STABLEHLO_SCATTER = 190,
STABLEHLO_COMPARE = 191, // WARNING: No runtime support
STABLEHLO_CONVERT = 192, // WARNING: No runtime support
STABLEHLO_DYNAMIC_SLICE = 193, // WARNING: No runtime support
STABLEHLO_DYNAMIC_UPDATE_SLICE = 194, // WARNING: No runtime support
STABLEHLO_PAD = 195,
STABLEHLO_IOTA = 196, // WARNING: No runtime support
STABLEHLO_DOT_GENERAL = 197, // WARNING: No runtime support
STABLEHLO_REDUCE_WINDOW = 198,
STABLEHLO_SORT = 199, // WARNING: No runtime support
STABLEHLO_WHILE = 200, // WARNING: No runtime support
STABLEHLO_GATHER = 201,
STABLEHLO_TRANSPOSE = 202, // WARNING: No runtime support
DILATE = 203,
STABLEHLO_RNG_BIT_GENERATOR = 204,
REDUCE_WINDOW = 205 (deprecated),
STABLEHLO_COMPOSITE = 206, // WARNING: No runtime support
}
// LINT.ThenChange(nnapi_linter/linter.proto)
// Options for the builtin operators.
union BuiltinOptions {
Conv2DOptions,
DepthwiseConv2DOptions,
ConcatEmbeddingsOptions,
LSHProjectionOptions,
Pool2DOptions,
SVDFOptions,
RNNOptions,
FullyConnectedOptions,
SoftmaxOptions,
ConcatenationOptions,
AddOptions,
L2NormOptions,
LocalResponseNormalizationOptions,
LSTMOptions,
ResizeBilinearOptions,
CallOptions,
ReshapeOptions,
SkipGramOptions,
SpaceToDepthOptions,
EmbeddingLookupSparseOptions,
MulOptions,
PadOptions,
GatherOptions,
BatchToSpaceNDOptions,
SpaceToBatchNDOptions,
TransposeOptions,
ReducerOptions,
SubOptions,
DivOptions,
SqueezeOptions,
SequenceRNNOptions,
StridedSliceOptions,
ExpOptions,
TopKV2Options,
SplitOptions,
LogSoftmaxOptions,
CastOptions,
DequantizeOptions,
MaximumMinimumOptions,
ArgMaxOptions,
LessOptions,
NegOptions,
PadV2Options,
GreaterOptions,
GreaterEqualOptions,
LessEqualOptions,
SelectOptions,
SliceOptions,
TransposeConvOptions,
SparseToDenseOptions,
TileOptions,
ExpandDimsOptions,
EqualOptions,
NotEqualOptions,
ShapeOptions,
PowOptions,
ArgMinOptions,
FakeQuantOptions,
PackOptions,
LogicalOrOptions,
OneHotOptions,
LogicalAndOptions,
LogicalNotOptions,
UnpackOptions,
FloorDivOptions,
SquareOptions,
ZerosLikeOptions,
FillOptions,
BidirectionalSequenceLSTMOptions,
BidirectionalSequenceRNNOptions,
UnidirectionalSequenceLSTMOptions,
FloorModOptions,
RangeOptions,
ResizeNearestNeighborOptions,
LeakyReluOptions,
SquaredDifferenceOptions,
MirrorPadOptions,
AbsOptions,
SplitVOptions,
UniqueOptions,
ReverseV2Options,
AddNOptions,
GatherNdOptions,
CosOptions,
WhereOptions,
RankOptions,
ReverseSequenceOptions,
MatrixDiagOptions,
QuantizeOptions,
MatrixSetDiagOptions,
HardSwishOptions,
IfOptions,
WhileOptions,
DepthToSpaceOptions,
NonMaxSuppressionV4Options,
NonMaxSuppressionV5Options,
ScatterNdOptions,
SelectV2Options,
DensifyOptions,
SegmentSumOptions,
BatchMatMulOptions,
CumsumOptions,
CallOnceOptions,
BroadcastToOptions,
Rfft2dOptions,
Conv3DOptions,
HashtableOptions,
HashtableFindOptions,
HashtableImportOptions,
HashtableSizeOptions,
VarHandleOptions,
ReadVariableOptions,
AssignVariableOptions,
RandomOptions,
BucketizeOptions,
GeluOptions,
DynamicUpdateSliceOptions,
UnsortedSegmentProdOptions,
UnsortedSegmentMaxOptions,
UnsortedSegmentMinOptions,
UnsortedSegmentSumOptions,
ATan2Options,
SignOptions,
BitcastOptions,
BitwiseXorOptions,
RightShiftOptions,
// DO NOT add new options this union, will cause failure in Java api
// generation otherwise
// Add new builtin options into builtin options 2 instead
}
union BuiltinOptions2{
StablehloConcatenateOptions,
StablehloBroadcastInDimOptions,
StablehloSliceOptions,
StablehloConvolutionOptions,
StablehloCustomCallOptions,
StablehloReduceOptions,
StablehloScatterOptions,
StablehloCompareOptions,
StablehloDynamicSliceOptions,
StablehloPadOptions,
StablehloIotaOptions,
StablehloDotGeneralOptions,
StablehloReduceWindowOptions,
StablehloSortOptions,
StablehloWhileOptions,
StablehloGatherOptions,
StablehloTransposeOptions,
DilateOptions,
StablehloRngBitGeneratorOptions,
ReduceWindowOptions (deprecated),
StableHLOCompositeOptions,
}
table StablehloGatherOptions{
offset_dims : [long];
collapsed_slice_dims : [long];
start_index_map : [long];
index_vector_dim : long;
slice_sizes : [long];
indices_are_sorted : bool;
}
table StablehloTransposeOptions{
permutation : [long];
}
enum StablehloPrecisionConfig : uint {
DEFAULT,
HIGH,
HIGHEST,
}
table StablehloDotGeneralOptions{
lhs_batching_dimensions : [long];
rhs_batching_dimensions : [long];
lhs_contracting_dimensions : [long];
rhs_contracting_dimensions : [long];
precision_config : [StablehloPrecisionConfig];
}
table StablehloReduceWindowOptions{
window_dimensions : [long];
window_strides : [long];
base_dilations : [long];
window_dilations : [long];
padding : [long];
body_subgraph_index : int;
}
table StablehloWhileOptions{
cond_subgraph_index : int;
body_subgraph_index : int;
}
table StablehloSortOptions{
dimension : long;
is_stable : bool;
comparator_subgraph_index : int;
}
table StablehloConcatenateOptions {
dimension : long;
}
table StablehloBroadcastInDimOptions{
broadcast_dimensions : [long];
}
enum StablehloComparisonDirection : uint {
STABLEHLO_COMPARISON_DIRECTION_EQ,
STABLEHLO_COMPARISON_DIRECTION_NE,
STABLEHLO_COMPARISON_DIRECTION_GE,
STABLEHLO_COMPARISON_DIRECTION_GT,
STABLEHLO_COMPARISON_DIRECTION_LE,
STABLEHLO_COMPARISON_DIRECTION_LT,
}
enum StablehloComparisonType : uint {
STABLEHLO_COMPARISON_TYPE_NOTYPE,
STABLEHLO_COMPARISON_TYPE_FLOAT,
STABLEHLO_COMPARISON_TYPE_FLOAT_TOTAL_ORDER,
STABLEHLO_COMPARISON_TYPE_SIGNED,
STABLEHLO_COMPARISON_TYPE_UNSIGNED,
}
table StablehloCompareOptions{
comparison_direction : StablehloComparisonDirection;
compare_type : StablehloComparisonType;
}
table StablehloDynamicSliceOptions{
slice_sizes : [long];
}
table StablehloPadOptions{
edge_padding_low : [long];
edge_padding_high : [long];
interior_padding : [long];
}
table StablehloIotaOptions{
iota_dimension : long;
}
table StablehloCustomCallOptions {
call_target_name : string;
has_side_effect : bool;
backend_config: string;
api_version : int; // will be decprecated
called_computations: [int]; // should point to subgraphs of the computations
custom_attributes : [ubyte];
}
table StablehloReduceOptions {
dimensions : [long];
body_subgraph_index : int;
}
table StablehloSliceOptions{
start_indices : [long];
limit_indices : [long];
strides : [long];
}
table StablehloConvolutionOptions{
window_strides : [long];
padding : [long];
lhs_dilation : [long];
rhs_dilation : [long];
window_reversal : [bool];
input_batch_dimension : long;
input_feature_dimension : long;
input_spatial_dimensions : [long];
kernel_input_feature_dimension : long;
kernel_output_feature_dimension : long;
kernel_spatial_dimensions : [long];
output_batch_dimension : long;
output_feature_dimension : long;
output_spatial_dimensions : [long];
feature_group_count : long;
batch_group_count : long;
precision_config : [StablehloPrecisionConfig];
}
table StablehloScatterOptions {
indices_are_sorted: bool;
update_window_dims: [long];
inserted_window_dims: [long];
scatter_dims_to_operand_dims: [long];
index_vector_dim: long;
unique_indices: bool;
update_computation_subgraph_index: int;
}
enum RngAlgorithm : byte {
// An algorithm auto-selected by the system according to device type.
DEFAULT = 0,
// The Philox algorithm, as described in paper
// ['Parallel Random Numbers: As Easy as 1, 2, 3']
// (https://www.thesalmons.org/john/random123/papers/random123sc11.pdf)
PHILOX = 1,
// The ThreeFry algorithm, as described in paper
// ['Parallel Random Numbers: As Easy as 1, 2, 3']
// (https://www.thesalmons.org/john/random123/papers/random123sc11.pdf)
THREEFRY = 2,
}
table StablehloRngBitGeneratorOptions {
algorithm:RngAlgorithm;
}
// LINT.IfChange
enum Padding : byte { SAME, VALID }
// LINT.ThenChange(//tensorflow/compiler/mlir/lite/ir/tfl_op_enums.td)
// LINT.IfChange
enum ActivationFunctionType : byte {
NONE = 0,
RELU = 1,
RELU_N1_TO_1 = 2,
RELU6 = 3,
TANH = 4,
SIGN_BIT = 5,
}
// LINT.ThenChange(//tensorflow/compiler/mlir/lite/ir/tfl_op_enums.td)
table Conv2DOptions {
padding:Padding;
stride_w:int;
stride_h:int;
fused_activation_function:ActivationFunctionType;
dilation_w_factor:int = 1;
dilation_h_factor:int = 1;
// Parameters for Conv2D version 8 or above.
// When set, quantized_bias_type defines the dtype for both bias and accumulator.
quantized_bias_type: TensorType;
}
// Options for both Conv3D and Conv3DTranspose.
table Conv3DOptions {
padding:Padding;
stride_d:int;
stride_w:int;
stride_h:int;
fused_activation_function:ActivationFunctionType;
dilation_d_factor:int = 1;
dilation_w_factor:int = 1;
dilation_h_factor:int = 1;
}
table Pool2DOptions {
padding:Padding;
stride_w:int;
stride_h:int;
filter_width:int;
filter_height:int;
fused_activation_function:ActivationFunctionType;
}
table DepthwiseConv2DOptions {
// Parameters for DepthwiseConv version 1 or above.
padding:Padding;
stride_w:int;
stride_h:int;
// `depth_multiplier` is redundant. It's used by CPU kernels in
// TensorFlow 2.0 or below, but ignored in versions above.
// See comments in lite/c/builtin_op_data.h for more details.
depth_multiplier:int;
fused_activation_function:ActivationFunctionType;
// Parameters for DepthwiseConv version 2 or above.
dilation_w_factor:int = 1;
dilation_h_factor:int = 1;
}
table ConcatEmbeddingsOptions {
num_channels:int;
num_columns_per_channel:[int];
embedding_dim_per_channel:[int]; // This could be inferred from parameters.
}
enum LSHProjectionType: byte {
UNKNOWN = 0,
SPARSE = 1,
DENSE = 2,
}
table LSHProjectionOptions {
type: LSHProjectionType;
}
table SVDFOptions {
rank:int;
fused_activation_function:ActivationFunctionType;
// For weights-only quantization, use asymmetric quantization for non
// constant inputs at evaluation time.
asymmetric_quantize_inputs:bool;
}
// An implementation of TensorFlow RNNCell.
table RNNOptions {
fused_activation_function:ActivationFunctionType;
asymmetric_quantize_inputs:bool;
}
// An implementation of TensorFlow dynamic_rnn with RNNCell.
table SequenceRNNOptions {
time_major:bool;
fused_activation_function:ActivationFunctionType;
asymmetric_quantize_inputs:bool;
}
// An implementation of TensorFlow bidrectional_dynamic_rnn with RNNCell.
table BidirectionalSequenceRNNOptions {
time_major:bool;
fused_activation_function:ActivationFunctionType;
merge_outputs: bool;
asymmetric_quantize_inputs:bool;
}
// LINT.IfChange
enum FullyConnectedOptionsWeightsFormat: byte {
DEFAULT = 0,
SHUFFLED4x16INT8 = 1,
}
// LINT.ThenChange(//tensorflow/compiler/mlir/lite/ir/tfl_op_enums.td)
// An implementation of TensorFlow fully_connected (a.k.a Dense) layer.
table FullyConnectedOptions {
// Parameters for FullyConnected version 1 or above.
fused_activation_function:ActivationFunctionType;
// Parameters for FullyConnected version 2 or above.
weights_format:FullyConnectedOptionsWeightsFormat = DEFAULT;
// Parameters for FullyConnected version 5 or above.
// If set to true, then the number of dimension is preserved. Furthermore,
// all but the last dimension of the input and output shapes will be equal.
keep_num_dims: bool;
// Parameters for FullyConnected version 7 or above.
// If set to true, then weights-only op will use asymmetric quantization for
// inputs.
asymmetric_quantize_inputs: bool;
// Parameters for FullyConnected version 11 or above.
// When set, quantized_bias_type defines the dtype for both bias and accumulator.
quantized_bias_type: TensorType;
}
table SoftmaxOptions {
beta: float;
}
// An implementation of TensorFlow concat.
table ConcatenationOptions {
axis:int;
fused_activation_function:ActivationFunctionType;
}
table AddOptions {
fused_activation_function:ActivationFunctionType;
// Parameters supported by version 3.
pot_scale_int16:bool = true;
}
table MulOptions {
fused_activation_function:ActivationFunctionType;
}
table L2NormOptions {
// This field is currently ignored in the L2 Norm Op.
fused_activation_function:ActivationFunctionType;
}
table LocalResponseNormalizationOptions {
radius:int;
bias:float;
alpha:float;
beta:float;
}
// LINT.IfChange
enum LSTMKernelType : byte {
// Full LSTM kernel which supports peephole and projection.
FULL = 0,
// Basic LSTM kernels. Equivalent to TensorFlow BasicLSTMCell.
BASIC = 1,
}
// LINT.ThenChange(//tensorflow/compiler/mlir/lite/ir/tfl_op_enums.td)
// An implementation of TensorFlow LSTMCell and CoupledInputForgetGateLSTMCell
table LSTMOptions {
// Parameters for LSTM version 1 or above.
fused_activation_function:ActivationFunctionType;
cell_clip: float; // Optional, 0.0 means no clipping
proj_clip: float; // Optional, 0.0 means no clipping
// Parameters for LSTM version 2 or above.
// Basic kernel is only supported in version 2 or above.
kernel_type: LSTMKernelType = FULL;
// Parameters for LSTM version 4 or above.
asymmetric_quantize_inputs: bool;
}
// An implementation of TensorFlow dynamic_rnn with LSTMCell.
table UnidirectionalSequenceLSTMOptions {
fused_activation_function:ActivationFunctionType;
cell_clip: float; // Optional, 0.0 means no clipping
proj_clip: float; // Optional, 0.0 means no clipping
// If true then first dimension is sequence, otherwise batch.
time_major:bool;
// Parameter for Unidirectional Sequence LSTM version 3.
asymmetric_quantize_inputs:bool;
// Parameter for unidirectional sequence RNN version 4.
diagonal_recurrent_tensors:bool;
}
table BidirectionalSequenceLSTMOptions {
// Parameters supported by version 1:
fused_activation_function:ActivationFunctionType;
cell_clip: float; // Optional, 0.0 means no clipping
proj_clip: float; // Optional, 0.0 means no clipping
// If true, store the outputs of both directions into the first output.
merge_outputs: bool;
// Parameters supported by version 2:
// If true then first dimension is sequence, otherwise batch.
// Version 1 implementations assumed time_major to be true, so this default
// value should never change.
time_major: bool = true;
// Parameters for version 3 or above.
asymmetric_quantize_inputs:bool;
}
table ResizeBilinearOptions {
new_height: int (deprecated);
new_width: int (deprecated);
align_corners: bool;
half_pixel_centers: bool;
}
table ResizeNearestNeighborOptions {
align_corners: bool;
half_pixel_centers: bool;
}
// A call operation options
table CallOptions {
// The subgraph index that needs to be called.
subgraph:uint;
}
table PadOptions {
}
table PadV2Options {
}
table ReshapeOptions {
new_shape:[int];
}
table SpaceToBatchNDOptions {
}
table BatchToSpaceNDOptions {
}
table SkipGramOptions {
ngram_size: int;
max_skip_size: int;
include_all_ngrams: bool;
}
table SpaceToDepthOptions {
block_size: int;
}
table DepthToSpaceOptions {
block_size: int;
}
table SubOptions {
fused_activation_function:ActivationFunctionType;
// Parameters supported by version 5
pot_scale_int16:bool = true;
}
table DivOptions {
fused_activation_function:ActivationFunctionType;
}
table TopKV2Options {
}
enum CombinerType : byte {
SUM = 0,
MEAN = 1,
SQRTN = 2,
}
table EmbeddingLookupSparseOptions {
combiner:CombinerType;
}
table GatherOptions {
axis: int;
// Parameters for Gather version 5 or above.
batch_dims: int = 0;
}
table TransposeOptions {
}
table ExpOptions {
}
table CosOptions {
}
table ReducerOptions {
keep_dims: bool;
}
table SqueezeOptions {
squeeze_dims:[int];
}
table SplitOptions {
num_splits: int;
}
table SplitVOptions {
num_splits: int;
}
table StridedSliceOptions {
begin_mask: int;
end_mask: int;
ellipsis_mask: int;
new_axis_mask: int;
shrink_axis_mask: int;
// If true, then the end tensor is an offset of the begin tensor.
offset: bool;
}
table LogSoftmaxOptions {
}
table CastOptions {
in_data_type: TensorType;
out_data_type: TensorType;
}
table DequantizeOptions {
}
table MaximumMinimumOptions {
}
table TileOptions {
}
table ArgMaxOptions {
output_type : TensorType;
}
table ArgMinOptions {
output_type : TensorType;
}
table GreaterOptions {
}
table GreaterEqualOptions {
}
table LessOptions {
}
table LessEqualOptions {
}
table NegOptions {
}
table SelectOptions {
}
table SliceOptions {
}
table TransposeConvOptions {
// Parameters supported by version 1, 2, 3:
padding:Padding;
stride_w:int;
stride_h:int;
// Parameters supported by version 4:
fused_activation_function:ActivationFunctionType = NONE;
// Parameters for TransposeConv version 5 or above.
// If set, use this for bias and accumulator.
// When set, quantized_bias_type defines the dtype for both bias and accumulator.
quantized_bias_type: TensorType;
}
table ExpandDimsOptions {
}
table SparseToDenseOptions {
validate_indices:bool;
}
table EqualOptions {
}
table NotEqualOptions {
}
table ShapeOptions {
// Optional output type of the operation (int32 or int64). Defaults to int32.
out_type : TensorType;
}
table RankOptions {
}
table PowOptions {
}
table FakeQuantOptions {
// Parameters supported by version 1:
min:float;
max:float;
num_bits:int;
// Parameters supported by version 2:
narrow_range:bool;
}
table PackOptions {
values_count:int;
axis:int;
}
table LogicalOrOptions {
}
table OneHotOptions {
axis:int;
}
table AbsOptions {
}
table HardSwishOptions {
}
table LogicalAndOptions {
}
table LogicalNotOptions {
}
table UnpackOptions {
num:int;
axis:int;
}
table FloorDivOptions {
}
table SquareOptions {
}
table ZerosLikeOptions {
}
table FillOptions {
}
table FloorModOptions {
}
table RangeOptions {
}
table LeakyReluOptions {
alpha:float;
}
table SquaredDifferenceOptions {
}
// LINT.IfChange
enum MirrorPadMode : byte {
// Doesn't include borders.
REFLECT = 0,
// Includes borders.
SYMMETRIC = 1,
}
// LINT.ThenChange(//tensorflow/compiler/mlir/lite/ir/tfl_op_enums.td)
table MirrorPadOptions {
mode:MirrorPadMode;
}
table UniqueOptions {
idx_out_type:TensorType = INT32;
}
table ReverseV2Options {
}
table AddNOptions {
}
table GatherNdOptions {
}
table WhereOptions {
}
table ReverseSequenceOptions {
seq_dim:int;
batch_dim:int = 0;
}
table MatrixDiagOptions {
}
table QuantizeOptions {
}
table MatrixSetDiagOptions {
}
table IfOptions {
then_subgraph_index:int;
else_subgraph_index:int;
}
table CallOnceOptions {
init_subgraph_index:int;
}
table WhileOptions {
cond_subgraph_index:int;
body_subgraph_index:int;
}
table NonMaxSuppressionV4Options {
}
table NonMaxSuppressionV5Options {
}
table ScatterNdOptions {
}
table SelectV2Options {
}
table DensifyOptions {
}
table SegmentSumOptions {
}
table BatchMatMulOptions {
adj_x:bool;
adj_y:bool;
// Parameters for BatchMatMul version 4 or above.
// If set to true, then weights-only op will use asymmetric quantization for
// inputs.
asymmetric_quantize_inputs: bool;
}
table CumsumOptions {
exclusive:bool;
reverse:bool;
}
table BroadcastToOptions {
}
table Rfft2dOptions {
}
table HashtableOptions {
// The identity of hash tables. This identity will be used across different
// subgraphs in the same interpreter instance.
table_id:int;
key_dtype:TensorType;
value_dtype:TensorType;
}
table HashtableFindOptions {
}
table HashtableImportOptions {
}
table HashtableSizeOptions {
}
table VarHandleOptions {
container:string;
shared_name:string;
}
table ReadVariableOptions {
}
table AssignVariableOptions {
}
table RandomOptions {
seed: long;
seed2: long;
}
table BucketizeOptions {
boundaries: [float]; // The bucket boundaries.
}
table GeluOptions {
approximate: bool;
}
table DynamicUpdateSliceOptions {
}
table UnsortedSegmentProdOptions {
}
table UnsortedSegmentMaxOptions {
}
table UnsortedSegmentSumOptions {
}
table ATan2Options {
}
table UnsortedSegmentMinOptions{
}
table SignOptions {
}
table BitcastOptions {
}
table BitwiseXorOptions {
}
table RightShiftOptions {
}
table DilateOptions {
}
enum ReduceWindowFunction : int {
UNSUPPORTED,
ADD,
MUL,
MINIMUM,
MAXIMUM,
ALL,
ANY,
}
table ReduceWindowOptions (deprecated) {
reduce_function: ReduceWindowFunction;
}
// An OperatorCode can be an enum value (BuiltinOperator) if the operator is a
// builtin, or a string if the operator is custom.
table OperatorCode {
// This field is for backward compatibility. This field will be used when
// the value of the extended builtin_code field has less than
// BulitinOperator_PLACEHOLDER_FOR_GREATER_OP_CODES.
deprecated_builtin_code:byte;
custom_code:string;
// The version of the operator. The version need to be bumped whenever new
// parameters are introduced into an op.
version:int = 1;
// This field is introduced for resolving op builtin code shortage problem
// (the original BuiltinOperator enum field was represented as a byte).
// This field will be used when the value of the extended builtin_code field
// has greater than BulitinOperator_PLACEHOLDER_FOR_GREATER_OP_CODES.
builtin_code:BuiltinOperator;
}
enum CustomOptionsFormat : byte {
FLEXBUFFERS = 0,
}
table StableHLOCompositeOptions {
name:string;
decomposition_subgraph_index:int32;
composite_attributes:[ubyte];
composite_attributes_format:CustomOptionsFormat;
version:int32;
}
// An operator takes tensors as inputs and outputs. The type of operation being
// performed is determined by an index into the list of valid OperatorCodes,
// while the specifics of each operations is configured using builtin_options
// or custom_options.
table Operator {
// Index into the operator_codes array. Using an integer here avoids
// complicate map lookups.
opcode_index:uint;
// Optional input are indicated by -1.
inputs:[int];
outputs:[int];
builtin_options:BuiltinOptions;
custom_options:[ubyte];
custom_options_format:CustomOptionsFormat;
// A list of booleans indicating the input tensors which are being mutated by
// this operator.(e.g. used by RNN and LSTM).
// For example, if the "inputs" array refers to 5 tensors and the second and
// fifth are mutable variables, then this list will contain
// [false, true, false, false, true].
//
// If the list is empty, no variable is mutated in this operator.
// The list either has the same length as `inputs`, or is empty.
mutating_variable_inputs:[bool];
// A list of indices to the subgraph's "tensors" that are internal to an Op.
// Internal tensors are those that do not flow in or out of the operation,
// but instead are part of internal computation. As such, the operation's
// implementation may manage its memory more efficiently. They are needed
// however (i.e. not just an implementation detail) since they are part of the
// computation, which may require relevant metadata such as quantization
// parameters.
intermediates:[int];
// When an op is using custom_options in a model that is larger than 2GB, then
// we instead use the following attributes to find the buffer location which
// is stored outside of flatbuffers, the offset is calculated relative to the
// beginning of the file and is only valid if > 1
large_custom_options_offset: ulong;
large_custom_options_size: ulong;
// Flatbuffers union struct has a 128 elements limit in JAVA, so a second
// union is added, in the case of where BuitlinOptions2 runs out, a third
// one can be added
builtin_options_2 : BuiltinOptions2;
}
// The root type, defining a subgraph, which typically represents an entire
// model.
table SubGraph {
// A list of all tensors used in this subgraph.
tensors:[Tensor];
// Indices of the tensors that are inputs into this subgraph. Note this is
// the list of non-static tensors that feed into the subgraph for inference.
inputs:[int];
// Indices of the tensors that are outputs out of this subgraph. Note this is
// the list of output tensors that are considered the product of the
// subgraph's inference.
outputs:[int];
// All operators, in execution order.
operators:[Operator];
// Name of this subgraph (used for debugging).
name:string;
}
// Table of raw data buffers (used for constant tensors). Referenced by tensors
// by index. The generous alignment accommodates mmap-friendly data structures.
table Buffer {
data:[ubyte] (force_align: 16);
// In a model that is larger than 2GB, then buffers instead uses the following
// attributes to find stored data, which is outside of flatbuffers
// the offset is calculated relative to the beginning of the file and is only
// valid if > 1.
offset: ulong;
size: ulong;
}
table Metadata {
// A human readable string to uniquely identify a Metadata.
name:string;
// An index to the buffers table.
buffer:uint;
}
// Map from an alias name of tensor to tensor index in the graph.
// This is used in Signature def.
table TensorMap {
// Represents the alias to use for this tensor.
name:string;
// The actual tensor index in the primary graph, that 'name' corresponds to.
tensor_index:uint;
}
// This corresponds to SignatureDef in Tensorflow SavedModel.
// The SignatureDef will be part of the SavedModel provided for conversion.
table SignatureDef {
// Named inputs for this signature.
inputs:[TensorMap];
// Named outputs for this signature.
outputs:[TensorMap];
// Key value which was in the Tensorflow SavedModel SignatureDef map.
signature_key:string;
// Model tag, deprecated.
deprecated_tag:string (deprecated);
// Index of subgraphs that corresponds to the exported method.
subgraph_index:uint;
}
table Model {
// Version of the schema.
version:uint;
// A list of all operator codes used in this model. This is
// kept in order because operators carry an index into this
// vector.
operator_codes:[OperatorCode];
// All the subgraphs of the model. The 0th is assumed to be the main
// model.
subgraphs:[SubGraph];
// A description of the model.
description:string;
// Buffers of the model.
// Note the 0th entry of this array must be an empty buffer (sentinel).
// This is a convention so that tensors without a buffer can provide 0 as
// their buffer.
buffers:[Buffer];
// Metadata about the model. Indirects into the existings buffers list.
// Deprecated, prefer to use metadata field.
metadata_buffer:[int];
// Metadata about the model.
metadata:[Metadata];
// Optional SignatureDefs for the model.
signature_defs:[SignatureDef];
}
root_type Model;