| /* Copyright 2021 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| |
| #include <stddef.h> |
| |
| #include <cstring> |
| |
| #include "tensorflow/lite/c/builtin_op_data.h" |
| #include "tensorflow/lite/c/common.h" |
| #include "tensorflow/lite/kernels/internal/compatibility.h" |
| #include "tensorflow/lite/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/memory_helpers.h" |
| #include "tensorflow/lite/micro/micro_graph.h" |
| #include "tensorflow/lite/micro/micro_log.h" |
| #include "tensorflow/lite/micro/micro_resource_variable.h" |
| #include "tensorflow/lite/schema/schema_generated.h" |
| |
| namespace tflite { |
| |
| namespace { |
| |
| struct OpData { |
| int32_t resource_id; |
| }; |
| |
| void* Init(TfLiteContext* context, const char* buffer, size_t length) { |
| TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); |
| return context->AllocatePersistentBuffer(context, sizeof(OpData)); |
| } |
| |
| TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { |
| OpData* op_data = reinterpret_cast<OpData*>(node->user_data); |
| const auto* params = |
| reinterpret_cast<const TfLiteVarHandleParams*>(node->builtin_data); |
| |
| tflite::MicroContext* micro_context = tflite::GetMicroContext(context); |
| MicroGraph& graph_info = micro_context->graph(); |
| |
| MicroResourceVariables* resources = graph_info.GetResourceVariables(); |
| if (resources == nullptr) { |
| MicroPrintf( |
| "VAR_HANDLE requires resource variables. Please create " |
| "ResourceVariables and pass it to the interpreter."); |
| return kTfLiteError; |
| } |
| op_data->resource_id = |
| resources->CreateIdIfNoneFound(params->container, params->shared_name); |
| if (op_data->resource_id < 0) { |
| return kTfLiteError; |
| } |
| |
| TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0); |
| TFLITE_DCHECK(output != nullptr); |
| |
| // Assign saved resource_id so this output tensor will always return the |
| // correct resource id. |
| output->data.i32 = &op_data->resource_id; |
| |
| return kTfLiteOk; |
| } |
| |
| TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { |
| OpData* op_data = reinterpret_cast<OpData*>(node->user_data); |
| |
| TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0); |
| TFLITE_DCHECK(output != nullptr); |
| |
| // Assign saved resource_id so this output tensor will always return the |
| // correct resource id. |
| output->data.i32 = &op_data->resource_id; |
| return kTfLiteOk; |
| } |
| |
| } // namespace. |
| |
| TFLMRegistration Register_VAR_HANDLE() { |
| return tflite::micro::RegisterOp(Init, Prepare, Eval); |
| } |
| |
| } // namespace tflite |