| /* Copyright 2023 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| |
| #include "tensorflow/lite/c/builtin_op_data.h" |
| #include "tensorflow/lite/c/common.h" |
| #include "tensorflow/lite/micro/debug_log.h" |
| #include "tensorflow/lite/micro/kernels/kernel_runner.h" |
| #include "tensorflow/lite/micro/test_helpers.h" |
| #include "tensorflow/lite/micro/testing/micro_test.h" |
| |
| namespace tflite { |
| namespace testing { |
| |
| void TestUnpackThreeOutputsFloat( |
| int* input_dims_data, const float* input_data, int axis, |
| int* output1_dims_data, const float* expected_output1_data, |
| int* output2_dims_data, const float* expected_output2_data, |
| int* output3_dims_data, const float* expected_output3_data, |
| float* output1_data, float* output2_data, float* output3_data) { |
| TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data); |
| TfLiteIntArray* output1_dims = IntArrayFromInts(output1_dims_data); |
| TfLiteIntArray* output2_dims = IntArrayFromInts(output2_dims_data); |
| TfLiteIntArray* output3_dims = IntArrayFromInts(output3_dims_data); |
| const int output1_dims_count = ElementCount(*output1_dims); |
| const int output2_dims_count = ElementCount(*output2_dims); |
| const int output3_dims_count = ElementCount(*output3_dims); |
| |
| constexpr int input_size = 1; |
| constexpr int output_size = 3; |
| constexpr int tensors_size = input_size + output_size; |
| TfLiteTensor tensors[tensors_size] = { |
| CreateTensor(input_data, input_dims), |
| CreateTensor(output1_data, output1_dims), |
| CreateTensor(output2_data, output2_dims), |
| CreateTensor(output3_data, output3_dims)}; |
| |
| // Place a unique value in the uninitialized output buffer. |
| for (int i = 0; i < output1_dims_count; ++i) { |
| output1_data[i] = 23; |
| } |
| |
| for (int i = 0; i < output2_dims_count; ++i) { |
| output2_data[i] = 23; |
| } |
| |
| for (int i = 0; i < output3_dims_count; ++i) { |
| output3_data[i] = 23; |
| } |
| |
| TfLiteUnpackParams builtin_data = { |
| .num = 3, |
| .axis = axis, |
| }; |
| |
| int inputs_array_data[] = {1, 0}; |
| TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data); |
| int outputs_array_data[] = {3, 1, 2, 3}; |
| TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data); |
| |
| const TFLMRegistration registration = tflite::Register_UNPACK(); |
| micro::KernelRunner runner(registration, tensors, tensors_size, inputs_array, |
| outputs_array, |
| reinterpret_cast<void*>(&builtin_data)); |
| |
| TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.InitAndPrepare()); |
| TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.Invoke()); |
| |
| for (int i = 0; i < output1_dims_count; ++i) { |
| TF_LITE_MICRO_EXPECT_NEAR(expected_output1_data[i], output1_data[i], 1e-5f); |
| } |
| |
| for (int i = 0; i < output2_dims_count; ++i) { |
| TF_LITE_MICRO_EXPECT_NEAR(expected_output2_data[i], output2_data[i], 1e-5f); |
| } |
| |
| for (int i = 0; i < output3_dims_count; ++i) { |
| TF_LITE_MICRO_EXPECT_NEAR(expected_output3_data[i], output3_data[i], 1e-5f); |
| } |
| } |
| |
| void TestUnpackOneOutputFloat(int* input_dims_data, const float* input_data, |
| int axis, int* output_dims_data, |
| const float* expected_output_data, |
| float* output_data) { |
| TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data); |
| TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data); |
| const int output_dims_count = ElementCount(*output_dims); |
| |
| constexpr int input_size = 1; |
| constexpr int output_size = 1; |
| constexpr int tensors_size = input_size + output_size; |
| TfLiteTensor tensors[tensors_size] = {CreateTensor(input_data, input_dims), |
| CreateTensor(output_data, output_dims)}; |
| |
| // Place a unique value in the uninitialized output buffer. |
| for (int i = 0; i < output_dims_count; ++i) { |
| output_data[i] = 23; |
| } |
| |
| TfLiteUnpackParams builtin_data = { |
| .num = 1, |
| .axis = axis, |
| }; |
| |
| int inputs_array_data[] = {1, 0}; |
| TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data); |
| int outputs_array_data[] = {1, 1}; |
| TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data); |
| |
| const TFLMRegistration registration = tflite::Register_UNPACK(); |
| micro::KernelRunner runner(registration, tensors, tensors_size, inputs_array, |
| outputs_array, |
| reinterpret_cast<void*>(&builtin_data)); |
| |
| TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.InitAndPrepare()); |
| TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.Invoke()); |
| |
| for (int i = 0; i < output_dims_count; ++i) { |
| TF_LITE_MICRO_EXPECT_NEAR(expected_output_data[i], output_data[i], 1e-5f); |
| } |
| } |
| |
| void TestUnpackThreeOutputsQuantized32( |
| int* input_dims_data, const int32_t* input_data, int axis, |
| int* output1_dims_data, const int32_t* expected_output1_data, |
| int* output2_dims_data, const int32_t* expected_output2_data, |
| int* output3_dims_data, const int32_t* expected_output3_data, |
| int32_t* output1_data, int32_t* output2_data, int32_t* output3_data) { |
| TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data); |
| TfLiteIntArray* output1_dims = IntArrayFromInts(output1_dims_data); |
| TfLiteIntArray* output2_dims = IntArrayFromInts(output2_dims_data); |
| TfLiteIntArray* output3_dims = IntArrayFromInts(output3_dims_data); |
| const int output1_dims_count = ElementCount(*output1_dims); |
| const int output2_dims_count = ElementCount(*output2_dims); |
| const int output3_dims_count = ElementCount(*output3_dims); |
| |
| constexpr int input_size = 1; |
| constexpr int output_size = 3; |
| constexpr int tensors_size = input_size + output_size; |
| TfLiteTensor tensors[tensors_size] = { |
| CreateTensor(input_data, input_dims), |
| CreateTensor(output1_data, output1_dims), |
| CreateTensor(output2_data, output2_dims), |
| CreateTensor(output3_data, output3_dims)}; |
| |
| // Place a unique value in the uninitialized output buffer. |
| for (int i = 0; i < output1_dims_count; ++i) { |
| output1_data[i] = 23; |
| } |
| |
| for (int i = 0; i < output2_dims_count; ++i) { |
| output2_data[i] = 23; |
| } |
| |
| for (int i = 0; i < output3_dims_count; ++i) { |
| output3_data[i] = 23; |
| } |
| |
| TfLiteUnpackParams builtin_data = { |
| .num = 3, |
| .axis = axis, |
| }; |
| |
| int inputs_array_data[] = {1, 0}; |
| TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data); |
| int outputs_array_data[] = {3, 1, 2, 3}; |
| TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data); |
| |
| const TFLMRegistration registration = tflite::Register_UNPACK(); |
| micro::KernelRunner runner(registration, tensors, tensors_size, inputs_array, |
| outputs_array, |
| reinterpret_cast<void*>(&builtin_data)); |
| |
| TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.InitAndPrepare()); |
| TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.Invoke()); |
| |
| for (int i = 0; i < output1_dims_count; ++i) { |
| TF_LITE_MICRO_EXPECT_EQ(expected_output1_data[i], output1_data[i]); |
| } |
| |
| for (int i = 0; i < output2_dims_count; ++i) { |
| TF_LITE_MICRO_EXPECT_EQ(expected_output2_data[i], output2_data[i]); |
| } |
| |
| for (int i = 0; i < output3_dims_count; ++i) { |
| TF_LITE_MICRO_EXPECT_EQ(expected_output3_data[i], output3_data[i]); |
| } |
| } |
| |
| } // namespace testing |
| } // namespace tflite |
| |
| TF_LITE_MICRO_TESTS_BEGIN |
| |
| TF_LITE_MICRO_TEST(UnpackFloatThreeOutputs) { |
| int input_shape[] = {2, 3, 2}; |
| const float input_values[] = {1, 2, 3, 4, 5, 6}; |
| int output1_shape[] = {1, 2}; |
| const float output1_golden[] = {1, 2}; |
| int output2_shape[] = {1, 2}; |
| const float output2_golden[] = {3, 4}; |
| int output3_shape[] = {1, 2}; |
| const float output3_golden[] = {5, 6}; |
| constexpr int output1_dims_count = 2; |
| constexpr int output2_dims_count = 2; |
| constexpr int output3_dims_count = 2; |
| float output1_data[output1_dims_count]; |
| float output2_data[output2_dims_count]; |
| float output3_data[output3_dims_count]; |
| tflite::testing::TestUnpackThreeOutputsFloat( |
| input_shape, input_values, 0, output1_shape, output1_golden, |
| output2_shape, output2_golden, output3_shape, output3_golden, |
| output1_data, output2_data, output3_data); |
| } |
| |
| TF_LITE_MICRO_TEST(UnpackFloatThreeOutputsNegativeAxisTwo) { |
| int input_shape[] = {2, 3, 2}; |
| const float input_values[] = {1, 2, 3, 4, 5, 6}; |
| int output1_shape[] = {1, 2}; |
| const float output1_golden[] = {1, 2}; |
| int output2_shape[] = {1, 2}; |
| const float output2_golden[] = {3, 4}; |
| int output3_shape[] = {1, 2}; |
| const float output3_golden[] = {5, 6}; |
| constexpr int output1_dims_count = 2; |
| constexpr int output2_dims_count = 2; |
| constexpr int output3_dims_count = 2; |
| float output1_data[output1_dims_count]; |
| float output2_data[output2_dims_count]; |
| float output3_data[output3_dims_count]; |
| tflite::testing::TestUnpackThreeOutputsFloat( |
| input_shape, input_values, -2, output1_shape, output1_golden, |
| output2_shape, output2_golden, output3_shape, output3_golden, |
| output1_data, output2_data, output3_data); |
| } |
| |
| TF_LITE_MICRO_TEST(UnpackFloatOneOutput) { |
| int input_shape[] = {2, 1, 6}; |
| const float input_values[] = {1, 2, 3, 4, 5, 6}; |
| int output_shape[] = {1, 6}; |
| const float golden[] = {1, 2, 3, 4, 5, 6}; |
| constexpr int output_dims_count = 6; |
| float output_data[output_dims_count]; |
| tflite::testing::TestUnpackOneOutputFloat(input_shape, input_values, 0, |
| output_shape, golden, output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(UnpackQuantized32ThreeOutputs) { |
| int input_shape[] = {2, 3, 2}; |
| const int32_t input_values[] = {1, 2, 3, 4, 5, 6}; |
| int output1_shape[] = {1, 2}; |
| const int32_t output1_golden[] = {1, 2}; |
| int output2_shape[] = {1, 2}; |
| const int32_t output2_golden[] = {3, 4}; |
| int output3_shape[] = {1, 2}; |
| const int32_t output3_golden[] = {5, 6}; |
| constexpr int output1_dims_count = 2; |
| constexpr int output2_dims_count = 2; |
| constexpr int output3_dims_count = 2; |
| int32_t output1_data[output1_dims_count]; |
| int32_t output2_data[output2_dims_count]; |
| int32_t output3_data[output3_dims_count]; |
| tflite::testing::TestUnpackThreeOutputsQuantized32( |
| input_shape, input_values, 0, output1_shape, output1_golden, |
| output2_shape, output2_golden, output3_shape, output3_golden, |
| output1_data, output2_data, output3_data); |
| } |
| |
| TF_LITE_MICRO_TESTS_END |