| /* Copyright 2020 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| #include "tensorflow/lite/kernels/internal/reference/transpose.h" |
| |
| #include "tensorflow/lite/c/common.h" |
| #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" |
| #include "tensorflow/lite/kernels/internal/types.h" |
| #include "tensorflow/lite/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/micro_log.h" |
| |
| namespace tflite { |
| namespace { |
| |
| constexpr int kInputTensor = 0; |
| constexpr int kPermTensor = 1; |
| constexpr int kOutputTensor = 0; |
| |
| struct TransposeContext { |
| TransposeContext(TfLiteContext* context, TfLiteNode* node) { |
| micro_context = GetMicroContext(context); |
| input = micro_context->AllocateTempInputTensor(node, kInputTensor); |
| perm = micro_context->AllocateTempInputTensor(node, kPermTensor); |
| output = micro_context->AllocateTempOutputTensor(node, kOutputTensor); |
| } |
| ~TransposeContext() { |
| micro_context->DeallocateTempTfLiteTensor(input); |
| micro_context->DeallocateTempTfLiteTensor(perm); |
| micro_context->DeallocateTempTfLiteTensor(output); |
| } |
| MicroContext* micro_context; |
| TfLiteTensor* input; |
| TfLiteTensor* perm; |
| TfLiteTensor* output; |
| }; |
| |
| TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { |
| TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); |
| TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); |
| |
| TransposeContext op_context(context, node); |
| |
| // Ensure validity of input tensor. |
| TF_LITE_ENSURE_MSG(context, NumDimensions(op_context.input) <= 5, |
| "Transpose op only supports 1D-5D input arrays."); |
| TF_LITE_ENSURE_TYPES_EQ(context, op_context.input->type, |
| op_context.output->type); |
| |
| int dims = NumDimensions(op_context.input); |
| const int32_t* perm_data = GetTensorData<int32_t>(op_context.perm); |
| |
| // Ensure validity of the permutations tensor as a 1D tensor. |
| TF_LITE_ENSURE_EQ(context, NumDimensions(op_context.perm), 1); |
| TF_LITE_ENSURE_EQ(context, op_context.perm->dims->data[0], dims); |
| for (int idx = 0; idx < dims; ++idx) { |
| TF_LITE_ENSURE_MSG(context, (perm_data[idx] >= 0 && perm_data[idx] < dims), |
| "Transpose op permutations array is out of bounds."); |
| } |
| |
| return kTfLiteOk; |
| } |
| |
| TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { |
| const TfLiteEvalTensor* perm_tensor = |
| tflite::micro::GetEvalInput(context, node, kPermTensor); |
| const int32_t* perm_data = perm_tensor->data.i32; |
| const int size = perm_tensor->dims->data[0]; |
| TransposeParams params; |
| params.perm_count = size; |
| for (int i = 0; i < size; ++i) { |
| params.perm[i] = perm_data[i]; |
| } |
| |
| // Transpose kernel only does rearranging values not numeric evaluations |
| // on each cell. It's safe to implement per size of scalar type and this |
| // trick keeps the total code size in a reasonable range. |
| const TfLiteEvalTensor* input = |
| tflite::micro::GetEvalInput(context, node, kInputTensor); |
| TfLiteEvalTensor* output = |
| tflite::micro::GetEvalOutput(context, node, kOutputTensor); |
| switch (input->type) { |
| case kTfLiteFloat32: |
| reference_ops::Transpose(params, tflite::micro::GetTensorShape(input), |
| tflite::micro::GetTensorData<float>(input), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<float>(output)); |
| break; |
| case kTfLiteInt8: |
| reference_ops::Transpose(params, tflite::micro::GetTensorShape(input), |
| tflite::micro::GetTensorData<int8_t>(input), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<int8_t>(output)); |
| break; |
| default: |
| MicroPrintf( |
| "Type %s is currently not supported by Transpose. " |
| "Only float32 and int8 is supported", |
| TfLiteTypeGetName(input->type)); |
| return kTfLiteError; |
| } |
| |
| return kTfLiteOk; |
| } |
| |
| } // namespace |
| |
| TFLMRegistration Register_TRANSPOSE() { |
| return tflite::micro::RegisterOp(nullptr, Prepare, Eval); |
| } |
| } // namespace tflite |