| /* Copyright 2021 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| |
| #include "tensorflow/lite/micro/kernels/softmax.h" |
| |
| #include "tensorflow/lite/c/builtin_op_data.h" |
| #include "tensorflow/lite/c/common.h" |
| #include "tensorflow/lite/kernels/internal/common.h" |
| #include "tensorflow/lite/kernels/internal/quantization_util.h" |
| #include "tensorflow/lite/kernels/internal/reference/softmax.h" |
| #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" |
| #include "tensorflow/lite/kernels/kernel_util.h" |
| #include "tensorflow/lite/kernels/op_macros.h" |
| #include "tensorflow/lite/micro/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/micro_log.h" |
| |
| namespace tflite { |
| namespace { |
| |
| void SoftmaxQuantized(const TfLiteEvalTensor* input, TfLiteEvalTensor* output, |
| const SoftmaxParams& op_data) { |
| if (input->type == kTfLiteInt8) { |
| if (output->type == kTfLiteInt16) { |
| tflite::reference_ops::Softmax( |
| op_data, tflite::micro::GetTensorShape(input), |
| tflite::micro::GetTensorData<int8_t>(input), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<int16_t>(output)); |
| } else { |
| tflite::reference_ops::Softmax( |
| op_data, tflite::micro::GetTensorShape(input), |
| tflite::micro::GetTensorData<int8_t>(input), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<int8_t>(output)); |
| } |
| } else { |
| tflite::reference_ops::SoftmaxInt16( |
| op_data, tflite::micro::GetTensorShape(input), |
| tflite::micro::GetTensorData<int16_t>(input), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<int16_t>(output)); |
| } |
| } |
| |
| TfLiteStatus SoftmaxEval(TfLiteContext* context, TfLiteNode* node) { |
| const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0); |
| TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0); |
| |
| TFLITE_DCHECK(node->user_data != nullptr); |
| SoftmaxParams op_data = *static_cast<SoftmaxParams*>(node->user_data); |
| |
| switch (input->type) { |
| case kTfLiteFloat32: { |
| tflite::reference_ops::Softmax( |
| op_data, tflite::micro::GetTensorShape(input), |
| tflite::micro::GetTensorData<float>(input), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<float>(output)); |
| return kTfLiteOk; |
| } |
| case kTfLiteInt8: |
| case kTfLiteInt16: { |
| SoftmaxQuantized(input, output, op_data); |
| return kTfLiteOk; |
| } |
| default: |
| MicroPrintf("Type %s (%d) not supported.", TfLiteTypeGetName(input->type), |
| input->type); |
| return kTfLiteError; |
| } |
| } |
| } // namespace |
| |
| TFLMRegistration Register_SOFTMAX() { |
| return tflite::micro::RegisterOp(SoftmaxInit, SoftmaxPrepare, SoftmaxEval); |
| } |
| |
| } // namespace tflite |