| /* Copyright 2017 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| |
| #include "tensorflow/lite/c/builtin_op_data.h" |
| #include "tensorflow/lite/c/common.h" |
| #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" |
| #include "tensorflow/lite/kernels/kernel_util.h" |
| #include "tensorflow/lite/kernels/op_macros.h" |
| #include "tensorflow/lite/micro/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/memory_helpers.h" |
| #include "tensorflow/lite/micro/micro_log.h" |
| #include "tensorflow/lite/micro/micro_utils.h" |
| |
| namespace tflite { |
| |
| namespace { |
| constexpr int kInputTensor = 0; |
| constexpr int kOutputTensor = 0; |
| |
| void ExtractShape(const TfLiteEvalTensor* input, int32_t* output_data) { |
| for (int i = 0; i < input->dims->size; ++i) { |
| output_data[i] = input->dims->data[i]; |
| } |
| } |
| |
| TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { |
| TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); |
| TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); |
| |
| return kTfLiteOk; |
| } |
| |
| TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { |
| const TfLiteEvalTensor* input = |
| tflite::micro::GetEvalInput(context, node, kInputTensor); |
| TfLiteEvalTensor* output = |
| tflite::micro::GetEvalOutput(context, node, kOutputTensor); |
| if (output->type != kTfLiteInt32) { |
| MicroPrintf("Output type %s (%d) not supported.", |
| TfLiteTypeGetName(output->type), output->type); |
| return kTfLiteError; |
| } else { |
| ExtractShape(input, tflite::micro::GetTensorData<int32_t>(output)); |
| } |
| |
| return kTfLiteOk; |
| } |
| |
| } // namespace |
| |
| TFLMRegistration Register_SHAPE() { |
| return tflite::micro::RegisterOp(nullptr, Prepare, Eval); |
| } |
| |
| } // namespace tflite |