| /* Copyright 2023 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| #include "tensorflow/lite/kernels/internal/reference/select.h" |
| |
| #include <stddef.h> |
| #include <stdint.h> |
| |
| #include "tensorflow/lite/c/common.h" |
| #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" |
| #include "tensorflow/lite/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/micro_log.h" |
| |
| namespace tflite { |
| namespace { |
| |
| constexpr int kInputTensorCondition = 0; |
| constexpr int kInputTensorX = 1; |
| constexpr int kInputTensorY = 2; |
| constexpr int kOutputTensor = 0; |
| |
| struct OpData { |
| bool requires_broadcast; |
| }; |
| |
| void* SelectInit(TfLiteContext* context, const char* buffer, size_t length) { |
| TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); |
| auto* data = static_cast<OpData*>( |
| context->AllocatePersistentBuffer(context, sizeof(OpData))); |
| data->requires_broadcast = false; |
| return data; |
| } |
| |
| TfLiteStatus CheckBroadcastShape(TfLiteContext* context, |
| const TfLiteTensor* input1, |
| const TfLiteTensor* input2, |
| const TfLiteTensor* input3, |
| const TfLiteIntArray* output_shape) { |
| const int dims1 = NumDimensions(input1); |
| const int dims2 = NumDimensions(input2); |
| const int dims3 = NumDimensions(input3); |
| const int out_dims = std::max(std::max(dims1, dims2), dims3); |
| TF_LITE_ENSURE_EQ(context, out_dims, output_shape->size); |
| |
| for (int i = 0; i < out_dims; ++i) { |
| const int d1 = i >= dims1 ? 1 : SizeOfDimension(input1, dims1 - i - 1); |
| const int d2 = i >= dims2 ? 1 : SizeOfDimension(input2, dims2 - i - 1); |
| const int d3 = i >= dims3 ? 1 : SizeOfDimension(input3, dims3 - i - 1); |
| const int min_value = std::min(std::min(d1, d2), d3); |
| int max_value = std::max(std::max(d1, d2), d3); |
| // If one dimension is 0, others must be 0 or 1. |
| if (min_value == 0) max_value = 0; |
| if (!(d1 == 1 || d1 == max_value) || !(d2 == 1 || d2 == max_value) || |
| !(d3 == 1 || d3 == max_value)) { |
| MicroPrintf("Given shapes are not broadcastable."); |
| return kTfLiteError; |
| } |
| TF_LITE_ENSURE_EQ(context, output_shape->data[out_dims - i - 1], max_value); |
| } |
| return kTfLiteOk; |
| } |
| |
| TfLiteStatus SelectPrepare(TfLiteContext* context, TfLiteNode* node) { |
| OpData* data = reinterpret_cast<OpData*>(node->user_data); |
| |
| TF_LITE_ENSURE_EQ(context, NumInputs(node), 3); |
| TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); |
| |
| MicroContext* micro_context = GetMicroContext(context); |
| TfLiteTensor* input_condition = |
| micro_context->AllocateTempInputTensor(node, kInputTensorCondition); |
| |
| TfLiteTensor* input_x = |
| micro_context->AllocateTempInputTensor(node, kInputTensorX); |
| |
| TfLiteTensor* input_y = |
| micro_context->AllocateTempInputTensor(node, kInputTensorY); |
| |
| TfLiteTensor* output = |
| micro_context->AllocateTempOutputTensor(node, kOutputTensor); |
| |
| // Input must be bool. |
| TF_LITE_ENSURE_TYPES_EQ(context, input_condition->type, kTfLiteBool); |
| TF_LITE_ENSURE_TYPES_EQ(context, input_x->type, input_y->type); |
| output->type = input_x->type; |
| |
| // Respect the original output shape when there are mixed shapes to represent |
| // a scalar data. |
| bool possible_mixed_scaler = |
| GetTensorShape(input_condition).FlatSize() == 1 && |
| GetTensorShape(input_x).FlatSize() == 1 && |
| GetTensorShape(input_y).FlatSize() == 1 && |
| GetTensorShape(output).FlatSize() == 1; |
| |
| bool same_shape = HaveSameShapes(input_condition, input_x) && |
| HaveSameShapes(input_x, input_y); |
| if (!same_shape && !possible_mixed_scaler) { |
| TF_LITE_ENSURE_OK( |
| context, CheckBroadcastShape(context, input_condition, input_x, input_y, |
| output->dims)); |
| data->requires_broadcast = true; |
| } |
| |
| micro_context->DeallocateTempTfLiteTensor(input_condition); |
| micro_context->DeallocateTempTfLiteTensor(input_x); |
| micro_context->DeallocateTempTfLiteTensor(input_y); |
| micro_context->DeallocateTempTfLiteTensor(output); |
| |
| return kTfLiteOk; |
| } |
| |
| template <typename T> |
| void CallSelect(const TfLiteEvalTensor* input_condition, |
| const TfLiteEvalTensor* input_x, |
| const TfLiteEvalTensor* input_y, TfLiteEvalTensor* output, |
| bool need_broadcast) { |
| using Func = decltype(reference_ops::Select<bool, T>)*; |
| Func select_func; |
| if (need_broadcast) { |
| select_func = reference_ops::BroadcastSelect5DSlow<bool, T>; |
| } else { |
| select_func = reference_ops::Select<bool, T>; |
| } |
| |
| select_func(tflite::micro::GetTensorShape(input_condition), |
| tflite::micro::GetTensorData<bool>(input_condition), |
| tflite::micro::GetTensorShape(input_x), |
| tflite::micro::GetTensorData<T>(input_x), |
| tflite::micro::GetTensorShape(input_y), |
| tflite::micro::GetTensorData<T>(input_y), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<T>(output)); |
| } |
| |
| TfLiteStatus SelectEval(TfLiteContext* context, TfLiteNode* node) { |
| OpData* data = static_cast<OpData*>(node->user_data); |
| |
| const TfLiteEvalTensor* input_condition = |
| tflite::micro::GetEvalInput(context, node, kInputTensorCondition); |
| |
| const TfLiteEvalTensor* input_x = |
| tflite::micro::GetEvalInput(context, node, kInputTensorX); |
| |
| const TfLiteEvalTensor* input_y = |
| tflite::micro::GetEvalInput(context, node, kInputTensorY); |
| |
| TfLiteEvalTensor* output = |
| tflite::micro::GetEvalOutput(context, node, kOutputTensor); |
| |
| switch (input_x->type) { |
| case kTfLiteFloat32: |
| CallSelect<float>(input_condition, input_x, input_y, output, |
| data->requires_broadcast); |
| break; |
| case kTfLiteInt8: |
| CallSelect<int8_t>(input_condition, input_x, input_y, output, |
| data->requires_broadcast); |
| break; |
| case kTfLiteInt16: |
| CallSelect<int16_t>(input_condition, input_x, input_y, output, |
| data->requires_broadcast); |
| break; |
| default: |
| MicroPrintf("Does not support type other than %s, but got %s", |
| "int8|int16|float32", TfLiteTypeGetName(input_x->type)); |
| return kTfLiteError; |
| } |
| |
| return kTfLiteOk; |
| } |
| |
| } // namespace |
| |
| // SelectV2 op selects values of 'x' if the corresponding value of 'condition' |
| // is true or the value of 'y' if false. There are valid condition input sizes: |
| // |
| // 1. Either the same shape (in which case the select is elementwise), or |
| // 2. Broadcastable shapes between 'condition', 'x' and 'y'. |
| TFLMRegistration Register_SELECT_V2() { |
| return tflite::micro::RegisterOp(tflite::SelectInit, tflite::SelectPrepare, |
| tflite::SelectEval); |
| } |
| |
| } // namespace tflite |