| /* Copyright 2021 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| |
| #include "tensorflow/lite/c/builtin_op_data.h" |
| #include "tensorflow/lite/micro/kernels/kernel_runner.h" |
| #include "tensorflow/lite/micro/test_helpers.h" |
| #include "tensorflow/lite/micro/testing/micro_test.h" |
| |
| namespace tflite { |
| namespace testing { |
| namespace { |
| |
| TfLiteTensor TestCreateTensor(const float* data, TfLiteIntArray* dims) { |
| return CreateTensor(data, dims); |
| } |
| |
| TfLiteTensor TestCreateTensor(const int8_t* data, TfLiteIntArray* dims) { |
| return CreateQuantizedTensor(data, dims, -128, 127); |
| } |
| |
| template <typename T> |
| TfLiteStatus ValidateGoldens(TfLiteTensor* tensors, int tensors_size, |
| const T* expected_output_data, T* output_data, |
| int output_length, |
| TfLiteResizeBilinearParams* params, |
| float tolerance = 1e-5) { |
| int inputs_array_data[] = {2, 0, 1}; |
| TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data); |
| int outputs_array_data[] = {1, 2}; |
| TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data); |
| |
| const TFLMRegistration registration = Register_RESIZE_BILINEAR(); |
| micro::KernelRunner runner(registration, tensors, tensors_size, inputs_array, |
| outputs_array, params); |
| |
| TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.InitAndPrepare()); |
| TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.Invoke()); |
| |
| for (int i = 0; i < output_length; ++i) { |
| TF_LITE_MICRO_EXPECT_NEAR(expected_output_data[i], output_data[i], |
| tolerance); |
| } |
| |
| return kTfLiteOk; |
| } |
| |
| template <typename T> |
| void TestResizeBilinear(int* input_dims_data, const T* input_data, |
| const int32_t* expected_size_data, |
| const T* expected_output_data, int* output_dims_data, |
| T* output_data, TfLiteResizeBilinearParams* params, |
| float tolerance = 1e-5) { |
| int expected_size_dims_data[] = {1, 2}; |
| TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data); |
| TfLiteIntArray* expected_size_dims = |
| IntArrayFromInts(expected_size_dims_data); |
| TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data); |
| |
| const int output_dims_count = ElementCount(*output_dims); |
| |
| // Hack to pass ConstantTensor check in prepare |
| TfLiteTensor t = CreateTensor(expected_size_data, expected_size_dims); |
| t.allocation_type = kTfLiteMmapRo; |
| |
| constexpr int tensors_size = 3; |
| TfLiteTensor tensors[tensors_size]{ |
| TestCreateTensor(input_data, input_dims), |
| t, |
| TestCreateTensor(output_data, output_dims), |
| }; |
| |
| TF_LITE_MICRO_EXPECT_EQ( |
| kTfLiteOk, |
| ValidateGoldens(tensors, tensors_size, expected_output_data, output_data, |
| output_dims_count, params, tolerance)); |
| } |
| |
| } // namespace |
| } // namespace testing |
| } // namespace tflite |
| |
| TF_LITE_MICRO_TESTS_BEGIN |
| |
| TF_LITE_MICRO_TEST(HorizontalResize) { |
| int input_dims[] = {4, 1, 1, 2, 1}; |
| const float input_data[] = {3, 6}; |
| const int32_t expected_size_data[] = {1, 3}; |
| const float expected_output_data[] = {3, 5, 6}; |
| int output_dims[] = {4, 1, 1, 3, 1}; |
| float output_data[3]; |
| |
| TfLiteResizeBilinearParams params = { |
| false, /*align_corners*/ |
| false /*half pixel centers*/ |
| }; |
| |
| tflite::testing::TestResizeBilinear(input_dims, input_data, |
| expected_size_data, expected_output_data, |
| output_dims, output_data, ¶ms); |
| } |
| |
| TF_LITE_MICRO_TEST(HorizontalResizeInt8) { |
| int input_dims[] = {4, 1, 1, 2, 1}; |
| const int8_t input_data[] = {3, 6}; |
| const int32_t expected_size_data[] = {1, 3}; |
| const int8_t expected_output_data[] = {3, 5, 6}; |
| int output_dims[] = {4, 1, 1, 3, 1}; |
| int8_t output_data[3]; |
| |
| TfLiteResizeBilinearParams params = { |
| false, /*align_corners*/ |
| false /*half pixel centers*/ |
| }; |
| |
| tflite::testing::TestResizeBilinear<int8_t>( |
| input_dims, input_data, expected_size_data, expected_output_data, |
| output_dims, output_data, ¶ms); |
| } |
| |
| TF_LITE_MICRO_TEST(VerticalResize) { |
| int input_dims[] = {4, 1, 2, 1, 1}; |
| const float input_data[] = {3, 9}; |
| const int32_t expected_size_data[] = {3, 1}; |
| const float expected_output_data[] = {3, 7, 9}; |
| int output_dims[] = {4, 1, 3, 1, 1}; |
| float output_data[3]; |
| |
| TfLiteResizeBilinearParams params = { |
| false, /*align_corners*/ |
| false /*half pixel centers*/ |
| }; |
| |
| tflite::testing::TestResizeBilinear(input_dims, input_data, |
| expected_size_data, expected_output_data, |
| output_dims, output_data, ¶ms); |
| } |
| |
| TF_LITE_MICRO_TEST(VerticalResizeInt8) { |
| int input_dims[] = {4, 1, 2, 1, 1}; |
| const int8_t input_data[] = {3, 9}; |
| const int32_t expected_size_data[] = {3, 1}; |
| const int8_t expected_output_data[] = {3, 7, 9}; |
| int output_dims[] = {4, 1, 3, 1, 1}; |
| int8_t output_data[3]; |
| |
| TfLiteResizeBilinearParams params = { |
| false, /*align_corners*/ |
| false /*half pixel centers*/ |
| }; |
| |
| tflite::testing::TestResizeBilinear<int8_t>( |
| input_dims, input_data, expected_size_data, expected_output_data, |
| output_dims, output_data, ¶ms); |
| } |
| |
| TF_LITE_MICRO_TEST(TwoDimensionalResize) { |
| int input_dims[] = {4, 1, 2, 2, 1}; |
| const float input_data[] = { |
| 3, 6, // |
| 9, 12, // |
| }; |
| const int32_t expected_size_data[] = {3, 3}; |
| const float expected_output_data[] = { |
| 3, 5, 6, // |
| 7, 9, 10, // |
| 9, 11, 12 // |
| }; |
| |
| int output_dims[] = {4, 1, 3, 3, 1}; |
| float output_data[9]; |
| |
| TfLiteResizeBilinearParams params = { |
| false, /*align_corners*/ |
| false /*half pixel centers*/ |
| }; |
| |
| tflite::testing::TestResizeBilinear(input_dims, input_data, |
| expected_size_data, expected_output_data, |
| output_dims, output_data, ¶ms); |
| } |
| |
| TF_LITE_MICRO_TEST(TwoDimensionalResizeInt8) { |
| int input_dims[] = {4, 1, 2, 2, 1}; |
| const int8_t input_data[] = { |
| 3, 6, // |
| 9, 12, // |
| }; |
| const int32_t expected_size_data[] = {3, 3}; |
| const int8_t expected_output_data[] = { |
| 3, 5, 6, // |
| 7, 9, 10, // |
| 9, 11, 12, // |
| }; |
| int output_dims[] = {4, 1, 3, 3, 1}; |
| int8_t output_data[9]; |
| |
| TfLiteResizeBilinearParams params = { |
| false, /*align_corners*/ |
| false /*half pixel centers*/ |
| }; |
| |
| tflite::testing::TestResizeBilinear<int8_t>( |
| input_dims, input_data, expected_size_data, expected_output_data, |
| output_dims, output_data, ¶ms); |
| } |
| |
| TF_LITE_MICRO_TEST(TwoDimensionalResizeWithTwoBatches) { |
| int input_dims[] = {4, 2, 2, 2, 1}; |
| const float input_data[] = { |
| 3, 6, // |
| 9, 12, // |
| 4, 10, // |
| 10, 16 // |
| }; |
| const int32_t expected_size_data[] = {3, 3}; |
| const float expected_output_data[] = { |
| 3, 5, 6, // |
| 7, 9, 10, // |
| 9, 11, 12, // |
| 4, 8, 10, // |
| 8, 12, 14, // |
| 10, 14, 16, // |
| }; |
| int output_dims[] = {4, 2, 3, 3, 1}; |
| float output_data[18]; |
| |
| TfLiteResizeBilinearParams params = { |
| false, /*align_corners*/ |
| false /*half pixel centers*/ |
| }; |
| |
| tflite::testing::TestResizeBilinear(input_dims, input_data, |
| expected_size_data, expected_output_data, |
| output_dims, output_data, ¶ms); |
| } |
| |
| TF_LITE_MICRO_TEST(TwoDimensionalResizeWithTwoBatchesInt8) { |
| int input_dims[] = {4, 2, 2, 2, 1}; |
| const int8_t input_data[] = { |
| 3, 6, // |
| 9, 12, // |
| 4, 10, // |
| 12, 16 // |
| }; |
| const int32_t expected_size_data[] = {3, 3}; |
| const int8_t expected_output_data[] = { |
| 3, 5, 6, // |
| 7, 9, 10, // |
| 9, 11, 12, // |
| 4, 8, 10, // |
| 9, 12, 13, // |
| 12, 14, 16, // |
| }; |
| int output_dims[] = {4, 2, 3, 3, 1}; |
| int8_t output_data[18]; |
| |
| TfLiteResizeBilinearParams params = { |
| false, /*align_corners*/ |
| false /*half pixel centers*/ |
| }; |
| |
| tflite::testing::TestResizeBilinear<int8_t>( |
| input_dims, input_data, expected_size_data, expected_output_data, |
| output_dims, output_data, ¶ms, /*tolerance=*/1); |
| } |
| |
| TF_LITE_MICRO_TEST(ThreeDimensionalResize) { |
| int input_dims[] = {4, 1, 2, 2, 2}; |
| const float input_data[] = { |
| 3, 4, 6, 10, // |
| 9, 10, 12, 16, // |
| }; |
| const int32_t expected_size_data[] = {3, 3}; |
| const float expected_output_data[] = { |
| 3, 4, 5, 8, 6, 10, // |
| 7, 8, 9, 12, 10, 14, // |
| 9, 10, 11, 14, 12, 16, // |
| }; |
| int output_dims[] = {4, 1, 3, 3, 2}; |
| float output_data[18]; |
| |
| TfLiteResizeBilinearParams params = { |
| false, /*align_corners*/ |
| false /*half pixel centers*/ |
| }; |
| |
| tflite::testing::TestResizeBilinear(input_dims, input_data, |
| expected_size_data, expected_output_data, |
| output_dims, output_data, ¶ms); |
| } |
| |
| TF_LITE_MICRO_TEST(ThreeDimensionalResizeInt8) { |
| int input_dims[] = {4, 1, 2, 2, 2}; |
| const int8_t input_data[] = { |
| 3, 4, 6, 10, // |
| 10, 12, 14, 16, // |
| }; |
| const int32_t expected_size_data[] = {3, 3}; |
| const int8_t expected_output_data[] = { |
| 3, 4, 5, 8, 6, 10, // |
| 7, 9, 10, 12, 11, 13, // |
| 10, 12, 12, 14, 14, 16, // |
| }; |
| int output_dims[] = {4, 1, 3, 3, 2}; |
| int8_t output_data[18]; |
| |
| TfLiteResizeBilinearParams params = { |
| false, /*align_corners*/ |
| false /*half pixel centers*/ |
| }; |
| |
| tflite::testing::TestResizeBilinear<int8_t>( |
| input_dims, input_data, expected_size_data, expected_output_data, |
| output_dims, output_data, ¶ms, /*tolerance=*/1); |
| } |
| |
| TF_LITE_MICRO_TESTS_END |