| /* Copyright 2023 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| |
| #include <cstring> |
| |
| #include "tensorflow/lite/c/builtin_op_data.h" |
| #include "tensorflow/lite/c/common.h" |
| #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" |
| #include "tensorflow/lite/kernels/kernel_util.h" |
| #include "tensorflow/lite/kernels/op_macros.h" |
| #include "tensorflow/lite/micro/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/kernels/reshape.h" |
| #include "tensorflow/lite/micro/memory_helpers.h" |
| #include "tensorflow/lite/micro/micro_utils.h" |
| |
| namespace tflite { |
| |
| namespace { |
| |
| TfLiteStatus ReshapeOutput(TfLiteContext* context, TfLiteNode* node) { |
| MicroContext* micro_context = GetMicroContext(context); |
| |
| TfLiteTensor* input = |
| micro_context->AllocateTempInputTensor(node, kReshapeInputTensor); |
| TF_LITE_ENSURE(context, input != nullptr); |
| TfLiteTensor* output = |
| micro_context->AllocateTempOutputTensor(node, kReshapeOutputTensor); |
| TF_LITE_ENSURE(context, output != nullptr); |
| // Tensorflow's Reshape allows one of the shape components to have the |
| // special -1 value, meaning it will be calculated automatically based on the |
| // input. Here we calculate what that dimension should be so that the number |
| // of output elements in the same as the number of input elements. |
| int num_input_elements = NumElements(input); |
| TfLiteIntArray* output_shape = output->dims; |
| |
| if (NumInputs(node) == 1 && // Legacy scalar supported with params. |
| output_shape->size == 1 && output_shape->data[0] == 0) { |
| // Legacy tflite models use a shape parameter of [0] to indicate scalars, |
| // so adjust accordingly. TODO(b/111614235): Allow zero-sized buffers during |
| // toco conversion. |
| output_shape->size = 0; |
| } |
| |
| int num_output_elements = 1; |
| int stretch_dim = -1; |
| for (int i = 0; i < output_shape->size; ++i) { |
| int value = output_shape->data[i]; |
| if (value == -1) { |
| TF_LITE_ENSURE_EQ(context, stretch_dim, -1); |
| stretch_dim = i; |
| } else { |
| num_output_elements *= value; |
| } |
| } |
| if (stretch_dim != -1) { |
| TfLiteEvalTensor* output_eval = |
| tflite::micro::GetEvalOutput(context, node, kReshapeOutputTensor); |
| TF_LITE_ENSURE_STATUS(tflite::micro::CreateWritableTensorDimsWithCopy( |
| context, output, output_eval)); |
| output_shape = output->dims; // output tensor dims were moved |
| output_shape->data[stretch_dim] = num_input_elements / num_output_elements; |
| num_output_elements *= output_shape->data[stretch_dim]; |
| } |
| |
| TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type); |
| TF_LITE_ENSURE_EQ(context, num_input_elements, num_output_elements); |
| |
| micro_context->DeallocateTempTfLiteTensor(input); |
| micro_context->DeallocateTempTfLiteTensor(output); |
| return kTfLiteOk; |
| } |
| |
| } // namespace |
| |
| TfLiteStatus PrepareReshapeReference(TfLiteContext* context, TfLiteNode* node) { |
| TF_LITE_ENSURE(context, NumInputs(node) == 1 || NumInputs(node) == 2); |
| TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); |
| TF_LITE_ENSURE_EQ(context, ReshapeOutput(context, node), kTfLiteOk); |
| return kTfLiteOk; |
| } |
| |
| } // namespace tflite |