| /* Copyright 2023 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| |
| #include <cstdint> |
| |
| #include "tensorflow/lite/c/builtin_op_data.h" |
| #include "tensorflow/lite/c/common.h" |
| #include "tensorflow/lite/micro/kernels/kernel_runner.h" |
| #include "tensorflow/lite/micro/test_helpers.h" |
| #include "tensorflow/lite/micro/testing/micro_test.h" |
| |
| namespace tflite { |
| namespace testing { |
| namespace { |
| |
| template <typename T> |
| void ValidatePoolingGoldens(TfLiteTensor* tensors, int tensors_size, |
| const TFLMRegistration registration, |
| const int filter_height, const int filter_width, |
| const int stride_height, const int stride_width, |
| const T* golden, const int output_length, |
| TfLitePadding padding, |
| TfLiteFusedActivation activation, T* output_data) { |
| int inputs_array_data[] = {1, 0}; |
| TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data); |
| int outputs_array_data[] = {1, 1}; |
| TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data); |
| |
| TfLitePoolParams builtin_data = {padding, |
| stride_width, |
| stride_height, |
| filter_width, |
| filter_height, |
| activation, |
| {}}; |
| |
| micro::KernelRunner runner(registration, tensors, tensors_size, inputs_array, |
| outputs_array, |
| reinterpret_cast<void*>(&builtin_data)); |
| |
| TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.InitAndPrepare()); |
| TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.Invoke()); |
| |
| for (int i = 0; i < output_length; ++i) { |
| TF_LITE_MICRO_EXPECT_NEAR(golden[i], output_data[i], 1e-5f); |
| } |
| } |
| |
| void TestAveragePoolFloat(int* input_dims_data, const float* input_data, |
| const int filter_height, const int filter_width, |
| const int stride_height, const int stride_width, |
| const float* expected_output_data, |
| int* output_dims_data, TfLitePadding padding, |
| TfLiteFusedActivation activation, |
| float* output_data) { |
| TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data); |
| TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data); |
| const int output_dims_count = ElementCount(*output_dims); |
| |
| constexpr int inputs_size = 1; |
| constexpr int outputs_size = 1; |
| constexpr int tensors_size = inputs_size + outputs_size; |
| TfLiteTensor tensors[tensors_size] = { |
| CreateTensor(input_data, input_dims), |
| CreateTensor(output_data, output_dims), |
| }; |
| |
| const TFLMRegistration registration = Register_AVERAGE_POOL_2D(); |
| |
| ValidatePoolingGoldens(tensors, tensors_size, registration, filter_height, |
| filter_width, stride_height, stride_width, |
| expected_output_data, output_dims_count, padding, |
| activation, output_data); |
| } |
| |
| template <typename T> |
| void TestAveragePoolQuantized( |
| int* input_dims_data, const T* input_data, const float input_scale, |
| const int input_zero_point, const int filter_height, const int filter_width, |
| const int stride_height, const int stride_width, |
| const T* expected_output_data, int* output_dims_data, |
| const float output_scale, const int output_zero_point, |
| TfLitePadding padding, TfLiteFusedActivation activation, T* output_data) { |
| static_assert(sizeof(T) == 1 || sizeof(T) == 2, |
| "Only int8_t/int16_t data types allowed."); |
| |
| TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data); |
| TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data); |
| const int output_dims_count = ElementCount(*output_dims); |
| |
| constexpr int inputs_size = 1; |
| constexpr int outputs_size = 1; |
| constexpr int tensors_size = inputs_size + outputs_size; |
| TfLiteTensor tensors[tensors_size] = { |
| CreateQuantizedTensor(input_data, input_dims, input_scale, |
| input_zero_point), |
| CreateQuantizedTensor(output_data, output_dims, output_scale, |
| output_zero_point), |
| }; |
| |
| const TFLMRegistration registration = Register_AVERAGE_POOL_2D(); |
| ValidatePoolingGoldens(tensors, tensors_size, registration, filter_height, |
| filter_width, stride_height, stride_width, |
| expected_output_data, output_dims_count, padding, |
| activation, output_data); |
| } |
| |
| void TestMaxPoolFloat(int* input_dims_data, const float* input_data, |
| int filter_width, int filter_height, int stride_width, |
| int stride_height, const float* expected_output_data, |
| int* output_dims_data, TfLitePadding padding, |
| TfLiteFusedActivation activation, float* output_data) { |
| TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data); |
| TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data); |
| const int output_dims_count = ElementCount(*output_dims); |
| |
| constexpr int inputs_size = 1; |
| constexpr int outputs_size = 1; |
| constexpr int tensors_size = inputs_size + outputs_size; |
| TfLiteTensor tensors[tensors_size] = { |
| CreateTensor(input_data, input_dims), |
| CreateTensor(output_data, output_dims), |
| }; |
| |
| const TFLMRegistration registration = Register_MAX_POOL_2D(); |
| ValidatePoolingGoldens(tensors, tensors_size, registration, filter_height, |
| filter_width, stride_height, stride_width, |
| expected_output_data, output_dims_count, padding, |
| activation, output_data); |
| } |
| |
| template <typename T> |
| void TestMaxPoolQuantized(int* input_dims_data, const T* input_data, |
| const float input_scale, const int input_zero_point, |
| const int filter_height, const int filter_width, |
| const int stride_height, const int stride_width, |
| const T* expected_output_data, int* output_dims_data, |
| const float output_scale, const int output_zero_point, |
| TfLitePadding padding, |
| TfLiteFusedActivation activation, T* output_data) { |
| TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data); |
| TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data); |
| const int output_dims_count = ElementCount(*output_dims); |
| |
| constexpr int inputs_size = 1; |
| constexpr int outputs_size = 1; |
| constexpr int tensors_size = inputs_size + outputs_size; |
| TfLiteTensor tensors[tensors_size] = { |
| CreateQuantizedTensor(input_data, input_dims, input_scale, |
| input_zero_point), |
| CreateQuantizedTensor(output_data, output_dims, output_scale, |
| output_zero_point), |
| }; |
| |
| const TFLMRegistration registration = Register_MAX_POOL_2D(); |
| ValidatePoolingGoldens(tensors, tensors_size, registration, filter_height, |
| filter_width, stride_height, stride_width, |
| expected_output_data, output_dims_count, padding, |
| activation, output_data); |
| } |
| |
| } // namespace |
| |
| } // namespace testing |
| } // namespace tflite |
| |
| TF_LITE_MICRO_TESTS_BEGIN |
| |
| TF_LITE_MICRO_TEST(SimpleAveragePoolTestFloat) { |
| int input_shape[] = {4, 1, 2, 4, 1}; |
| const float input_values[] = {0, 6, 2, 4, 3, 2, 10, 7}; |
| const int filter_width = 2; |
| const int filter_height = 2; |
| const int stride_width = 2; |
| const int stride_height = 2; |
| const float golden[] = {2.75, 5.75}; |
| int output_shape[] = {4, 1, 1, 2, 1}; |
| float output_data[2]; |
| tflite::testing::TestAveragePoolFloat( |
| input_shape, input_values, filter_height, filter_width, stride_height, |
| stride_width, golden, output_shape, kTfLitePaddingValid, kTfLiteActNone, |
| output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(SimpleAveragePoolTestInt8PaddingValidStride2ActNone) { |
| int input_shape[] = {4, 1, 2, 4, 1}; |
| const int8_t input_values[] = {0, -24, 8, 16, 12, 8, -40, 28}; |
| const int filter_width = 2; |
| const int filter_height = 2; |
| const int stride_width = 2; |
| const int stride_height = 2; |
| const int8_t golden[] = {-1, 3}; |
| int output_shape[] = {4, 1, 1, 2, 1}; |
| int8_t output_data[2]; |
| |
| const float input_scale = .25; |
| const int input_zero_point = 0; |
| const float output_scale = .25; |
| const int output_zero_point = 0; |
| tflite::testing::TestAveragePoolQuantized( |
| input_shape, input_values, input_scale, input_zero_point, filter_height, |
| filter_width, stride_height, stride_width, golden, output_shape, |
| output_scale, output_zero_point, kTfLitePaddingValid, kTfLiteActNone, |
| output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(SimpleAveragePoolTestInt8PaddingValidStride1Stride2Relu) { |
| int input_shape[] = {4, 1, 2, 4, 1}; |
| const int8_t input_values[] = {0, -24, 8, 16, 12, 8, -40, 28}; |
| const int filter_width = 2; |
| const int filter_height = 2; |
| const int stride_width = 1; |
| const int stride_height = 2; |
| const int8_t golden[] = {0, 0, 3}; |
| int output_shape[] = {4, 1, 1, 3, 1}; |
| int8_t output_data[3]; |
| |
| const float input_scale = .25; |
| const int input_zero_point = 0; |
| const float output_scale = .25; |
| const int output_zero_point = 0; |
| tflite::testing::TestAveragePoolQuantized( |
| input_shape, input_values, input_scale, input_zero_point, filter_height, |
| filter_width, stride_height, stride_width, golden, output_shape, |
| output_scale, output_zero_point, kTfLitePaddingValid, kTfLiteActRelu, |
| output_data); |
| } |
| |
| TF_LITE_MICRO_TEST( |
| SimpleAveragePoolTestInt8PaddingValidStride2Stride1ReluN1To1) { |
| int input_shape[] = {4, 1, 2, 4, 1}; |
| const int8_t input_values[] = {0, -24, 8, 16, 12, 8, -40, 28}; |
| const int filter_width = 2; |
| const int filter_height = 2; |
| const int stride_width = 2; |
| const int stride_height = 1; |
| const int8_t golden[] = {-1, 3}; |
| int output_shape[] = {4, 1, 1, 2, 1}; |
| int8_t output_data[2]; |
| |
| const float input_scale = .25; |
| const int input_zero_point = 0; |
| const float output_scale = .25; |
| const int output_zero_point = 0; |
| tflite::testing::TestAveragePoolQuantized( |
| input_shape, input_values, input_scale, input_zero_point, filter_height, |
| filter_width, stride_height, stride_width, golden, output_shape, |
| output_scale, output_zero_point, kTfLitePaddingValid, kTfLiteActReluN1To1, |
| output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(SimpleAveragePoolTestInt8PaddingValidStride2Relu6) { |
| int input_shape[] = {4, 1, 2, 4, 1}; |
| const int8_t input_values[] = {12, -24, 32, 16, 12, 8, 40, 28}; |
| const int filter_width = 2; |
| const int filter_height = 2; |
| const int stride_width = 2; |
| const int stride_height = 2; |
| const int8_t golden[] = {2, 24}; |
| int output_shape[] = {4, 1, 1, 2, 1}; |
| int8_t output_data[2]; |
| |
| const float input_scale = .25; |
| const int input_zero_point = 0; |
| const float output_scale = .25; |
| const int output_zero_point = 0; |
| tflite::testing::TestAveragePoolQuantized( |
| input_shape, input_values, input_scale, input_zero_point, filter_height, |
| filter_width, stride_height, stride_width, golden, output_shape, |
| output_scale, output_zero_point, kTfLitePaddingValid, kTfLiteActRelu6, |
| output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(SimpleAveragePoolTestInt8PaddingSameStride1ActNone) { |
| int input_shape[] = {4, 1, 2, 4, 1}; |
| const int8_t input_values[] = {12, -24, 32, 16, 12, 8, 40, 28}; |
| const int filter_width = 2; |
| const int filter_height = 2; |
| const int stride_width = 1; |
| const int stride_height = 1; |
| const int8_t golden[] = {2, 14, 29, 22, 10, 24, 34, 28}; |
| int output_shape[] = {4, 1, 2, 4, 1}; |
| int8_t output_data[8]; |
| |
| const float input_scale = .25; |
| const int input_zero_point = 0; |
| const float output_scale = .25; |
| const int output_zero_point = 0; |
| tflite::testing::TestAveragePoolQuantized( |
| input_shape, input_values, input_scale, input_zero_point, filter_height, |
| filter_width, stride_height, stride_width, golden, output_shape, |
| output_scale, output_zero_point, kTfLitePaddingValid, kTfLiteActNone, |
| output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(SimpleAveragePoolTestInt16PaddingValidStride2ActNone) { |
| int input_shape[] = {4, 1, 2, 4, 1}; |
| const int16_t input_values[] = {0, -24, 8, 16, 12, 8, -40, 28}; |
| const int filter_width = 2; |
| const int filter_height = 2; |
| const int stride_width = 2; |
| const int stride_height = 2; |
| const int16_t golden[] = {-1, 3}; |
| int output_shape[] = {4, 1, 1, 2, 1}; |
| int16_t output_data[2]; |
| |
| const float input_scale = .25; |
| const int input_zero_point = 0; |
| const float output_scale = .25; |
| const int output_zero_point = 0; |
| tflite::testing::TestAveragePoolQuantized( |
| input_shape, input_values, input_scale, input_zero_point, filter_height, |
| filter_width, stride_height, stride_width, golden, output_shape, |
| output_scale, output_zero_point, kTfLitePaddingValid, kTfLiteActNone, |
| output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(SimpleAveragePoolTestInt16PaddingValidStride1Stride2Relu) { |
| int input_shape[] = {4, 1, 2, 4, 1}; |
| const int16_t input_values[] = {0, -24, 8, 16, 12, 8, -40, 28}; |
| const int filter_width = 2; |
| const int filter_height = 2; |
| const int stride_width = 1; |
| const int stride_height = 2; |
| const int16_t golden[] = {0, 0, 3}; |
| int output_shape[] = {4, 1, 1, 3, 1}; |
| int16_t output_data[3]; |
| |
| const float input_scale = .25; |
| const int input_zero_point = 0; |
| const float output_scale = .25; |
| const int output_zero_point = 0; |
| tflite::testing::TestAveragePoolQuantized( |
| input_shape, input_values, input_scale, input_zero_point, filter_height, |
| filter_width, stride_height, stride_width, golden, output_shape, |
| output_scale, output_zero_point, kTfLitePaddingValid, kTfLiteActRelu, |
| output_data); |
| } |
| |
| TF_LITE_MICRO_TEST( |
| SimpleAveragePoolTestInt16PaddingValidStride2Stride1ReluN1To1) { |
| int input_shape[] = {4, 1, 2, 4, 1}; |
| const int16_t input_values[] = {0, -24, 8, 16, 12, 8, -40, 28}; |
| const int filter_width = 2; |
| const int filter_height = 2; |
| const int stride_width = 2; |
| const int stride_height = 1; |
| const int16_t golden[] = {-1, 3}; |
| int output_shape[] = {4, 1, 1, 2, 1}; |
| int16_t output_data[2]; |
| |
| const float input_scale = .25; |
| const int input_zero_point = 0; |
| const float output_scale = .25; |
| const int output_zero_point = 0; |
| tflite::testing::TestAveragePoolQuantized( |
| input_shape, input_values, input_scale, input_zero_point, filter_height, |
| filter_width, stride_height, stride_width, golden, output_shape, |
| output_scale, output_zero_point, kTfLitePaddingValid, kTfLiteActReluN1To1, |
| output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(SimpleAveragePoolTestInt16PaddingValidStride2Relu6) { |
| int input_shape[] = {4, 1, 2, 4, 1}; |
| const int16_t input_values[] = {12, -24, 32, 16, 12, 8, 40, 28}; |
| const int filter_width = 2; |
| const int filter_height = 2; |
| const int stride_width = 2; |
| const int stride_height = 2; |
| const int16_t golden[] = {2, 24}; |
| int output_shape[] = {4, 1, 1, 2, 1}; |
| int16_t output_data[2]; |
| |
| const float input_scale = .25; |
| const int input_zero_point = 0; |
| const float output_scale = .25; |
| const int output_zero_point = 0; |
| tflite::testing::TestAveragePoolQuantized( |
| input_shape, input_values, input_scale, input_zero_point, filter_height, |
| filter_width, stride_height, stride_width, golden, output_shape, |
| output_scale, output_zero_point, kTfLitePaddingValid, kTfLiteActRelu6, |
| output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(SimpleAveragePoolTestInt16PaddingSameStride1ActNone) { |
| int input_shape[] = {4, 1, 2, 4, 1}; |
| const int16_t input_values[] = {12, -24, 32, 16, 12, 8, 40, 28}; |
| const int filter_width = 2; |
| const int filter_height = 2; |
| const int stride_width = 1; |
| const int stride_height = 1; |
| const int16_t golden[] = {2, 14, 29, 22, 10, 24, 34, 28}; |
| int output_shape[] = {4, 1, 2, 4, 1}; |
| int16_t output_data[8]; |
| |
| const float input_scale = .25; |
| const int input_zero_point = 0; |
| const float output_scale = .25; |
| const int output_zero_point = 0; |
| tflite::testing::TestAveragePoolQuantized( |
| input_shape, input_values, input_scale, input_zero_point, filter_height, |
| filter_width, stride_height, stride_width, golden, output_shape, |
| output_scale, output_zero_point, kTfLitePaddingValid, kTfLiteActNone, |
| output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(SimpleMaxPoolTestFloat) { |
| int input_shape[] = {4, 1, 2, 4, 1}; |
| const float input_values[] = {0, 6, 2, 4, 3, 2, 10, 7}; |
| const int filter_width = 2; |
| const int filter_height = 2; |
| const int stride_width = 2; |
| const int stride_height = 2; |
| const float golden[] = {6, 10}; |
| int output_shape[] = {4, 1, 1, 2, 1}; |
| float output_data[2]; |
| tflite::testing::TestMaxPoolFloat(input_shape, input_values, filter_height, |
| filter_width, stride_height, stride_width, |
| golden, output_shape, kTfLitePaddingValid, |
| kTfLiteActNone, output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(SimpleMaxPoolTestFloatRelu) { |
| int input_shape[] = {4, 1, 2, 4, 1}; |
| const float input_values[] = {-1, -6, 2, 4, -3, -2, 10.5, 7}; |
| const int filter_width = 2; |
| const int filter_height = 2; |
| const int stride_width = 2; |
| const int stride_height = 2; |
| const float golden[] = {0, 10.5}; |
| int output_shape[] = {4, 1, 1, 2, 1}; |
| float output_data[2]; |
| tflite::testing::TestMaxPoolFloat(input_shape, input_values, filter_height, |
| filter_width, stride_height, stride_width, |
| golden, output_shape, kTfLitePaddingValid, |
| kTfLiteActRelu, output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(SimpleMaxPoolTestFloatReluN1To1) { |
| int input_shape[] = {4, 1, 2, 4, 1}; |
| const float input_values1[] = {-2.75, -6, 0.2, 0.4, -3, -2, -0.3, 0.7}; |
| const int filter_width = 2; |
| const int filter_height = 2; |
| const int stride_width = 2; |
| const int stride_height = 2; |
| const float golden1[] = {-1.0, 0.7}; |
| int output_shape[] = {4, 1, 1, 2, 1}; |
| float output_data[2]; |
| tflite::testing::TestMaxPoolFloat(input_shape, input_values1, filter_height, |
| filter_width, stride_height, stride_width, |
| golden1, output_shape, kTfLitePaddingValid, |
| kTfLiteActReluN1To1, output_data); |
| |
| const float input_values2[] = {-2.75, -6, -2, -4, -3, -2, 10, -7}; |
| const float golden2[] = {-1.0, 1.0}; |
| tflite::testing::TestMaxPoolFloat(input_shape, input_values2, filter_height, |
| filter_width, stride_height, stride_width, |
| golden2, output_shape, kTfLitePaddingValid, |
| kTfLiteActReluN1To1, output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(SimpleMaxPoolTestFloatRelu6) { |
| int input_shape[] = {4, 1, 2, 4, 1}; |
| const float input_values1[] = {-1.5, -6, 12, 4, -3, -2, 10, 7}; |
| const int filter_width = 2; |
| const int filter_height = 2; |
| const int stride_width = 2; |
| const int stride_height = 2; |
| const float golden1[] = {0, 6}; |
| int output_shape[] = {4, 1, 1, 2, 1}; |
| float output_data[2]; |
| tflite::testing::TestMaxPoolFloat(input_shape, input_values1, filter_height, |
| filter_width, stride_height, stride_width, |
| golden1, output_shape, kTfLitePaddingValid, |
| kTfLiteActRelu6, output_data); |
| |
| const float input_values2[] = {0, 4.5, 12, 4, 3, 2, 10, 7}; |
| const float golden2[] = {4.5, 6}; |
| tflite::testing::TestMaxPoolFloat(input_shape, input_values2, filter_height, |
| filter_width, stride_height, stride_width, |
| golden2, output_shape, kTfLitePaddingValid, |
| kTfLiteActRelu6, output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(SimpleMaxPoolTestPaddingSameStride1) { |
| int input_shape[] = {4, 1, 2, 4, 1}; |
| const float input_values[] = {0, 6, 2, 4, 3, 2, 10, 7}; |
| const int filter_width = 2; |
| const int filter_height = 2; |
| const int stride_width = 1; |
| const int stride_height = 1; |
| const float golden[] = {6, 10, 10, 7, 3, 10, 10, 7}; |
| int output_shape[] = {4, 1, 2, 4, 1}; |
| float output_data[8]; |
| tflite::testing::TestMaxPoolFloat(input_shape, input_values, filter_height, |
| filter_width, stride_height, stride_width, |
| golden, output_shape, kTfLitePaddingSame, |
| kTfLiteActNone, output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(SimpleMaxPoolTestPaddingValidStride1) { |
| int input_shape[] = {4, 1, 2, 4, 1}; |
| const float input_values[] = {0, 6, 2, 4, 3, 2, 10, 7}; |
| const int filter_width = 2; |
| const int filter_height = 2; |
| const int stride_width = 1; |
| const int stride_height = 1; |
| const float golden[] = {6, 10, 10}; |
| int output_shape[] = {4, 1, 1, 3, 1}; |
| float output_data[8]; |
| tflite::testing::TestMaxPoolFloat(input_shape, input_values, filter_height, |
| filter_width, stride_height, stride_width, |
| golden, output_shape, kTfLitePaddingValid, |
| kTfLiteActNone, output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(SimpleMaxPoolTestInt8ActNone) { |
| int input_shape[] = {4, 1, 2, 4, 1}; |
| const int8_t input_values1[] = {0, 6, 2, 4, 3, 2, 10, 7}; |
| const int filter_width = 2; |
| const int filter_height = 2; |
| const int stride_width = 2; |
| const int stride_height = 2; |
| const int8_t golden1[] = {6, 10}; |
| int output_shape[] = {4, 1, 1, 2, 1}; |
| int8_t output_data[2]; |
| |
| const float input_scale = 1.0; |
| const int input_zero_point = 0; |
| const float output_scale = 1.0; |
| const int output_zero_point = 0; |
| tflite::testing::TestMaxPoolQuantized( |
| input_shape, input_values1, input_scale, input_zero_point, filter_height, |
| filter_width, stride_height, stride_width, golden1, output_shape, |
| output_scale, output_zero_point, kTfLitePaddingValid, kTfLiteActNone, |
| output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(MaxPoolTestInt8ActRelu) { |
| int input_shape[] = {4, 1, 2, 4, 1}; |
| const int8_t input_values1[] = {-3, -12, 4, 8, -6, -4, 20, 14}; |
| const int filter_width = 2; |
| const int filter_height = 2; |
| const int stride_width = 2; |
| const int stride_height = 2; |
| const int8_t golden1[] = {0, 20}; |
| int output_shape[] = {4, 1, 1, 2, 1}; |
| int8_t output_data[2]; |
| |
| const float input_scale = 0.5; |
| const int input_zero_point = 0; |
| const float output_scale = 0.5; |
| const int output_zero_point = 0; |
| tflite::testing::TestMaxPoolQuantized( |
| input_shape, input_values1, input_scale, input_zero_point, filter_height, |
| filter_width, stride_height, stride_width, golden1, output_shape, |
| output_scale, output_zero_point, kTfLitePaddingValid, kTfLiteActRelu, |
| output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(MaxPoolTestInt8ActReluN1To1) { |
| int input_shape[] = {4, 1, 2, 4, 1}; |
| const int8_t input_values1[] = {-2, -6, -2, -4, -3, -2, 10, 7}; |
| const int filter_width = 2; |
| const int filter_height = 2; |
| const int stride_width = 2; |
| const int stride_height = 2; |
| const int8_t golden1[] = {-1, 1}; |
| int output_shape[] = {4, 1, 1, 2, 1}; |
| int8_t output_data[2]; |
| |
| const float input_scale = 1.0; |
| const int input_zero_point = 0; |
| const float output_scale = 1.0; |
| const int output_zero_point = 0; |
| tflite::testing::TestMaxPoolQuantized( |
| input_shape, input_values1, input_scale, input_zero_point, filter_height, |
| filter_width, stride_height, stride_width, golden1, output_shape, |
| output_scale, output_zero_point, kTfLitePaddingValid, kTfLiteActReluN1To1, |
| output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(MaxPoolTestInt8ActRelu6) { |
| int input_shape[] = {4, 1, 2, 4, 1}; |
| const int8_t input_values1[] = {0, -6, 12, 4, -3, -2, 10, 7}; |
| const int filter_width = 2; |
| const int filter_height = 2; |
| const int stride_width = 2; |
| const int stride_height = 2; |
| const int8_t golden1[] = {0, 6}; |
| int output_shape[] = {4, 1, 1, 2, 1}; |
| int8_t output_data[2]; |
| |
| const float input_scale = 1.0; |
| const int input_zero_point = 0; |
| const float output_scale = 1.0; |
| const int output_zero_point = 0; |
| tflite::testing::TestMaxPoolQuantized( |
| input_shape, input_values1, input_scale, input_zero_point, filter_height, |
| filter_width, stride_height, stride_width, golden1, output_shape, |
| output_scale, output_zero_point, kTfLitePaddingValid, kTfLiteActRelu6, |
| output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(SimpleMaxPoolTestInt16ActNone) { |
| int input_shape[] = {4, 1, 2, 4, 1}; |
| const int16_t input_values1[] = {0, 6, 2, 4, 3, 2, 10, 7}; |
| const int filter_width = 2; |
| const int filter_height = 2; |
| const int stride_width = 2; |
| const int stride_height = 2; |
| const int16_t golden1[] = {6, 10}; |
| int output_shape[] = {4, 1, 1, 2, 1}; |
| int16_t output_data[2]; |
| |
| const float input_scale = 1.0; |
| const int input_zero_point = 0; |
| const float output_scale = 1.0; |
| const int output_zero_point = 0; |
| tflite::testing::TestMaxPoolQuantized( |
| input_shape, input_values1, input_scale, input_zero_point, filter_height, |
| filter_width, stride_height, stride_width, golden1, output_shape, |
| output_scale, output_zero_point, kTfLitePaddingValid, kTfLiteActNone, |
| output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(MaxPoolTestInt16ActRelu) { |
| int input_shape[] = {4, 1, 2, 4, 1}; |
| const int16_t input_values1[] = {-3, -12, 4, 8, -6, -4, 20, 14}; |
| const int filter_width = 2; |
| const int filter_height = 2; |
| const int stride_width = 2; |
| const int stride_height = 2; |
| const int16_t golden1[] = {0, 20}; |
| int output_shape[] = {4, 1, 1, 2, 1}; |
| int16_t output_data[2]; |
| |
| const float input_scale = 0.5; |
| const int input_zero_point = 0; |
| const float output_scale = 0.5; |
| const int output_zero_point = 0; |
| tflite::testing::TestMaxPoolQuantized( |
| input_shape, input_values1, input_scale, input_zero_point, filter_height, |
| filter_width, stride_height, stride_width, golden1, output_shape, |
| output_scale, output_zero_point, kTfLitePaddingValid, kTfLiteActRelu, |
| output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(MaxPoolTestInt16ActReluN1To1) { |
| int input_shape[] = {4, 1, 2, 4, 1}; |
| const int16_t input_values1[] = {-2, -6, -2, -4, -3, -2, 10, 7}; |
| const int filter_width = 2; |
| const int filter_height = 2; |
| const int stride_width = 2; |
| const int stride_height = 2; |
| const int16_t golden1[] = {-1, 1}; |
| int output_shape[] = {4, 1, 1, 2, 1}; |
| int16_t output_data[2]; |
| |
| const float input_scale = 1.0; |
| const int input_zero_point = 0; |
| const float output_scale = 1.0; |
| const int output_zero_point = 0; |
| tflite::testing::TestMaxPoolQuantized( |
| input_shape, input_values1, input_scale, input_zero_point, filter_height, |
| filter_width, stride_height, stride_width, golden1, output_shape, |
| output_scale, output_zero_point, kTfLitePaddingValid, kTfLiteActReluN1To1, |
| output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(MaxPoolTestInt16ActRelu6) { |
| int input_shape[] = {4, 1, 2, 4, 1}; |
| const int16_t input_values1[] = {0, -6, 12, 4, -3, -2, 10, 7}; |
| const int filter_width = 2; |
| const int filter_height = 2; |
| const int stride_width = 2; |
| const int stride_height = 2; |
| const int16_t golden1[] = {0, 6}; |
| int output_shape[] = {4, 1, 1, 2, 1}; |
| int16_t output_data[2]; |
| |
| const float input_scale = 1.0; |
| const int input_zero_point = 0; |
| const float output_scale = 1.0; |
| const int output_zero_point = 0; |
| tflite::testing::TestMaxPoolQuantized( |
| input_shape, input_values1, input_scale, input_zero_point, filter_height, |
| filter_width, stride_height, stride_width, golden1, output_shape, |
| output_scale, output_zero_point, kTfLitePaddingValid, kTfLiteActRelu6, |
| output_data); |
| } |
| |
| TF_LITE_MICRO_TESTS_END |