| /* Copyright 2022 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| |
| #include "tensorflow/lite/c/builtin_op_data.h" |
| #include "tensorflow/lite/kernels/internal/reference/integer_ops/pooling.h" |
| #include "tensorflow/lite/kernels/internal/reference/pooling.h" |
| #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" |
| #include "tensorflow/lite/kernels/kernel_util.h" |
| #include "tensorflow/lite/kernels/padding.h" |
| #include "tensorflow/lite/micro/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/kernels/pooling.h" |
| |
| namespace tflite { |
| |
| const int kPoolingInputTensor = 0; |
| const int kPoolingOutputTensor = 0; |
| |
| TfLiteStatus CalculateOpDataPooling(const TfLiteContext* context, |
| const TfLitePoolParams* params, |
| const TfLiteTensor* input, |
| const TfLiteTensor* output, |
| OpDataPooling* data) { |
| // input: batch, height, width, channel |
| int height = SizeOfDimension(input, 1); |
| int width = SizeOfDimension(input, 2); |
| |
| int out_height, out_width; |
| |
| data->padding = ComputePaddingHeightWidth( |
| params->stride_height, params->stride_width, |
| /*dilation_rate_height=*/1, |
| /*dilation_rate_width=*/1, height, width, params->filter_height, |
| params->filter_width, params->padding, &out_height, &out_width); |
| |
| return kTfLiteOk; |
| } |
| |
| TfLiteStatus PoolingPrepare(TfLiteContext* context, TfLiteNode* node) { |
| TFLITE_DCHECK(node->builtin_data != nullptr); |
| auto* params = reinterpret_cast<TfLitePoolParams*>(node->builtin_data); |
| |
| TFLITE_DCHECK(node->user_data != nullptr); |
| OpDataPooling* data = static_cast<OpDataPooling*>(node->user_data); |
| |
| MicroContext* micro_context = GetMicroContext(context); |
| |
| TfLiteTensor* input = |
| micro_context->AllocateTempInputTensor(node, kPoolingInputTensor); |
| TF_LITE_ENSURE(context, input != nullptr); |
| TfLiteTensor* output = |
| micro_context->AllocateTempOutputTensor(node, kPoolingOutputTensor); |
| TF_LITE_ENSURE(context, output != nullptr); |
| |
| TF_LITE_ENSURE_STATUS( |
| CalculateOpDataPooling(context, params, input, output, data)); |
| |
| if (input->type == kTfLiteFloat32) { |
| CalculateActivationRange(params->activation, &data->activation_min_f32, |
| &data->activation_max_f32); |
| } else if (input->type == kTfLiteInt8 || input->type == kTfLiteInt16) { |
| CalculateActivationRangeQuantized(context, params->activation, output, |
| &data->activation_min, |
| &data->activation_max); |
| } else { |
| MicroPrintf("Type %s (%d) not supported.", TfLiteTypeGetName(input->type), |
| input->type); |
| return kTfLiteError; |
| } |
| |
| micro_context->DeallocateTempTfLiteTensor(input); |
| micro_context->DeallocateTempTfLiteTensor(output); |
| |
| return kTfLiteOk; |
| } |
| |
| void AveragePoolingEvalFloat(const TfLiteContext* context, |
| const TfLiteNode* node, |
| const TfLitePoolParams* params, |
| const OpDataPooling* data, |
| const TfLiteEvalTensor* input, |
| TfLiteEvalTensor* output) { |
| PoolParams op_params; |
| op_params.stride_height = params->stride_height; |
| op_params.stride_width = params->stride_width; |
| op_params.filter_height = params->filter_height; |
| op_params.filter_width = params->filter_width; |
| op_params.padding_values.height = data->padding.height; |
| op_params.padding_values.width = data->padding.width; |
| op_params.float_activation_min = data->activation_min_f32; |
| op_params.float_activation_max = data->activation_max_f32; |
| reference_ops::AveragePool(op_params, tflite::micro::GetTensorShape(input), |
| tflite::micro::GetTensorData<float>(input), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<float>(output)); |
| } |
| |
| void MaxPoolingEvalFloat(TfLiteContext* context, TfLiteNode* node, |
| TfLitePoolParams* params, const OpDataPooling* data, |
| const TfLiteEvalTensor* input, |
| TfLiteEvalTensor* output) { |
| tflite::PoolParams op_params; |
| op_params.stride_height = params->stride_height; |
| op_params.stride_width = params->stride_width; |
| op_params.filter_height = params->filter_height; |
| op_params.filter_width = params->filter_width; |
| op_params.padding_values.height = data->padding.height; |
| op_params.padding_values.width = data->padding.width; |
| op_params.float_activation_min = data->activation_min_f32; |
| op_params.float_activation_max = data->activation_max_f32; |
| reference_ops::MaxPool(op_params, tflite::micro::GetTensorShape(input), |
| tflite::micro::GetTensorData<float>(input), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<float>(output)); |
| } |
| |
| } // namespace tflite |