| /* Copyright 2019 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| |
| #include "tensorflow/lite/c/builtin_op_data.h" |
| #include "tensorflow/lite/c/common.h" |
| #include "tensorflow/lite/micro/debug_log.h" |
| #include "tensorflow/lite/micro/kernels/kernel_runner.h" |
| #include "tensorflow/lite/micro/test_helpers.h" |
| #include "tensorflow/lite/micro/testing/micro_test.h" |
| |
| namespace tflite { |
| namespace testing { |
| |
| template <typename T> |
| void ValidatePackGoldens(TfLiteTensor* tensors, int tensors_size, |
| TfLitePackParams params, TfLiteIntArray* inputs_array, |
| TfLiteIntArray* outputs_array, const T* golden, |
| int output_len, float tolerance, T* output) { |
| // Place a unique value in the uninitialized output buffer. |
| for (int i = 0; i < output_len; ++i) { |
| output[i] = 23; |
| } |
| |
| const TFLMRegistration registration = Register_PACK(); |
| micro::KernelRunner runner(registration, tensors, tensors_size, inputs_array, |
| outputs_array, reinterpret_cast<void*>(¶ms)); |
| |
| TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.InitAndPrepare()); |
| TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.Invoke()); |
| |
| for (int i = 0; i < output_len; ++i) { |
| TF_LITE_MICRO_EXPECT_NEAR(golden[i], output[i], tolerance); |
| } |
| } |
| |
| void TestPackTwoInputsFloat(int* input1_dims_data, const float* input1_data, |
| int* input2_dims_data, const float* input2_data, |
| int axis, int* output_dims_data, |
| const float* expected_output_data, |
| float* output_data) { |
| TfLiteIntArray* input1_dims = IntArrayFromInts(input1_dims_data); |
| TfLiteIntArray* input2_dims = IntArrayFromInts(input2_dims_data); |
| TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data); |
| const int output_dims_count = ElementCount(*output_dims); |
| |
| constexpr int input_size = 2; |
| constexpr int output_size = 1; |
| constexpr int tensors_size = input_size + output_size; |
| TfLiteTensor tensors[tensors_size] = {CreateTensor(input1_data, input1_dims), |
| CreateTensor(input2_data, input2_dims), |
| CreateTensor(output_data, output_dims)}; |
| |
| TfLitePackParams builtin_data = { |
| .values_count = 2, |
| .axis = axis, |
| }; |
| int inputs_array_data[] = {2, 0, 1}; |
| TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data); |
| int outputs_array_data[] = {1, 2}; |
| TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data); |
| |
| ValidatePackGoldens(tensors, tensors_size, builtin_data, inputs_array, |
| outputs_array, expected_output_data, output_dims_count, |
| 1e-5f, output_data); |
| } |
| |
| void TestPackThreeInputsFloat(int* input1_dims_data, const float* input1_data, |
| int* input2_dims_data, const float* input2_data, |
| int* input3_dims_data, const float* input3_data, |
| int axis, int* output_dims_data, |
| const float* expected_output_data, |
| float* output_data) { |
| TfLiteIntArray* input1_dims = IntArrayFromInts(input1_dims_data); |
| TfLiteIntArray* input2_dims = IntArrayFromInts(input2_dims_data); |
| TfLiteIntArray* input3_dims = IntArrayFromInts(input3_dims_data); |
| TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data); |
| const int output_dims_count = ElementCount(*output_dims); |
| |
| constexpr int input_size = 3; |
| constexpr int output_size = 1; |
| constexpr int tensors_size = input_size + output_size; |
| TfLiteTensor tensors[tensors_size] = {CreateTensor(input1_data, input1_dims), |
| CreateTensor(input2_data, input2_dims), |
| CreateTensor(input3_data, input3_dims), |
| CreateTensor(output_data, output_dims)}; |
| |
| TfLitePackParams builtin_data = { |
| .values_count = 3, |
| .axis = axis, |
| }; |
| int inputs_array_data[] = {3, 0, 1, 2}; |
| TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data); |
| int outputs_array_data[] = {1, 3}; |
| TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data); |
| |
| ValidatePackGoldens(tensors, tensors_size, builtin_data, inputs_array, |
| outputs_array, expected_output_data, output_dims_count, |
| 1e-5f, output_data); |
| } |
| |
| void TestPackTwoInputsQuantized( |
| int* input1_dims_data, const int8_t* input1_data, int* input2_dims_data, |
| const int8_t* input2_data, int axis, int* output_dims_data, |
| const int8_t* expected_output_data, int8_t* output_data) { |
| TfLiteIntArray* input1_dims = IntArrayFromInts(input1_dims_data); |
| TfLiteIntArray* input2_dims = IntArrayFromInts(input2_dims_data); |
| TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data); |
| const int output_dims_count = ElementCount(*output_dims); |
| |
| constexpr int input_size = 2; |
| constexpr int output_size = 1; |
| constexpr int tensors_size = input_size + output_size; |
| TfLiteTensor tensors[tensors_size] = { |
| // CreateQuantizedTensor needs scale/zero_point values as input, but these |
| // values don't matter as to the functionality of PACK, so just set as 1.0 |
| // and 128. |
| CreateQuantizedTensor(input1_data, input1_dims, 1.0, 128), |
| CreateQuantizedTensor(input2_data, input2_dims, 1.0, 128), |
| CreateQuantizedTensor(output_data, output_dims, 1.0, 128)}; |
| |
| TfLitePackParams builtin_data = { |
| .values_count = 2, |
| .axis = axis, |
| }; |
| int inputs_array_data[] = {2, 0, 1}; |
| TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data); |
| int outputs_array_data[] = {1, 2}; |
| TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data); |
| |
| ValidatePackGoldens(tensors, tensors_size, builtin_data, inputs_array, |
| outputs_array, expected_output_data, output_dims_count, |
| 1e-5f, output_data); |
| } |
| |
| void TestPackTwoInputsQuantized32( |
| int* input1_dims_data, const int32_t* input1_data, int* input2_dims_data, |
| const int32_t* input2_data, int axis, int* output_dims_data, |
| const int32_t* expected_output_data, int32_t* output_data) { |
| TfLiteIntArray* input1_dims = IntArrayFromInts(input1_dims_data); |
| TfLiteIntArray* input2_dims = IntArrayFromInts(input2_dims_data); |
| TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data); |
| const int output_dims_count = ElementCount(*output_dims); |
| |
| constexpr int input_size = 2; |
| constexpr int output_size = 1; |
| constexpr int tensors_size = input_size + output_size; |
| TfLiteTensor tensors[tensors_size] = {CreateTensor(input1_data, input1_dims), |
| CreateTensor(input2_data, input2_dims), |
| CreateTensor(output_data, output_dims)}; |
| |
| TfLitePackParams builtin_data = { |
| .values_count = 2, |
| .axis = axis, |
| }; |
| int inputs_array_data[] = {2, 0, 1}; |
| TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data); |
| int outputs_array_data[] = {1, 2}; |
| TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data); |
| |
| ValidatePackGoldens(tensors, tensors_size, builtin_data, inputs_array, |
| outputs_array, expected_output_data, output_dims_count, |
| 1e-5f, output_data); |
| } |
| |
| } // namespace testing |
| } // namespace tflite |
| |
| TF_LITE_MICRO_TESTS_BEGIN |
| |
| TF_LITE_MICRO_TEST(PackFloatThreeInputs) { |
| int input_shape[] = {1, 2}; |
| int output_shape[] = {2, 3, 2}; |
| const float input1_values[] = {1, 4}; |
| const float input2_values[] = {2, 5}; |
| const float input3_values[] = {3, 6}; |
| const float golden[] = {1, 4, 2, 5, 3, 6}; |
| const int axis = 0; |
| constexpr int output_dims_count = 6; |
| float output_data[output_dims_count]; |
| |
| tflite::testing::TestPackThreeInputsFloat( |
| input_shape, input1_values, input_shape, input2_values, input_shape, |
| input3_values, axis, output_shape, golden, output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(PackFloatThreeInputsDifferentAxis) { |
| int input_shape[] = {1, 2}; |
| int output_shape[] = {2, 2, 3}; |
| const float input1_values[] = {1, 4}; |
| const float input2_values[] = {2, 5}; |
| const float input3_values[] = {3, 6}; |
| const float golden[] = {1, 2, 3, 4, 5, 6}; |
| const int axis = 1; |
| constexpr int output_dims_count = 6; |
| float output_data[output_dims_count]; |
| |
| tflite::testing::TestPackThreeInputsFloat( |
| input_shape, input1_values, input_shape, input2_values, input_shape, |
| input3_values, axis, output_shape, golden, output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(PackFloatThreeInputsNegativeAxis) { |
| int input_shape[] = {1, 2}; |
| int output_shape[] = {2, 2, 3}; |
| const float input1_values[] = {1, 4}; |
| const float input2_values[] = {2, 5}; |
| const float input3_values[] = {3, 6}; |
| const float golden[] = {1, 2, 3, 4, 5, 6}; |
| const int axis = -1; |
| constexpr int output_dims_count = 6; |
| float output_data[output_dims_count]; |
| |
| tflite::testing::TestPackThreeInputsFloat( |
| input_shape, input1_values, input_shape, input2_values, input_shape, |
| input3_values, axis, output_shape, golden, output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(PackFloatMultilDimensions) { |
| int input_shape[] = {2, 2, 3}; |
| int output_shape[] = {3, 2, 2, 3}; |
| const float input1_values[] = {1, 2, 3, 4, 5, 6}; |
| const float input2_values[] = {7, 8, 9, 10, 11, 12}; |
| const float golden[] = {1, 2, 3, 7, 8, 9, 4, 5, 6, 10, 11, 12}; |
| const int axis = 1; |
| constexpr int output_dims_count = 12; |
| float output_data[output_dims_count]; |
| |
| tflite::testing::TestPackTwoInputsFloat(input_shape, input1_values, |
| input_shape, input2_values, axis, |
| output_shape, golden, output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(PackQuantizedMultilDimensions) { |
| int input_shape[] = {2, 2, 3}; |
| int output_shape[] = {3, 2, 2, 3}; |
| const int8_t input1_values[] = {1, 2, 3, 4, 5, 6}; |
| const int8_t input2_values[] = {7, 8, 9, 10, 11, 12}; |
| const int8_t golden[] = {1, 2, 3, 7, 8, 9, 4, 5, 6, 10, 11, 12}; |
| const int axis = 1; |
| constexpr int output_dims_count = 12; |
| int8_t output_data[output_dims_count]; |
| |
| tflite::testing::TestPackTwoInputsQuantized( |
| input_shape, input1_values, input_shape, input2_values, axis, |
| output_shape, golden, output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(PackQuantized32MultilDimensions) { |
| int input_shape[] = {2, 2, 3}; |
| int output_shape[] = {3, 2, 2, 3}; |
| const int32_t input1_values[] = {1, 2, 3, 4, 5, 6}; |
| const int32_t input2_values[] = {7, 8, 9, 10, 11, 12}; |
| const int32_t golden[] = {1, 2, 3, 7, 8, 9, 4, 5, 6, 10, 11, 12}; |
| const int axis = 1; |
| constexpr int output_dims_count = 12; |
| int32_t output_data[output_dims_count]; |
| |
| tflite::testing::TestPackTwoInputsQuantized32( |
| input_shape, input1_values, input_shape, input2_values, axis, |
| output_shape, golden, output_data); |
| } |
| |
| TF_LITE_MICRO_TESTS_END |