| /* Copyright 2022 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| |
| #include "tensorflow/lite/c/builtin_op_data.h" |
| #include "tensorflow/lite/c/common.h" |
| #include "tensorflow/lite/micro/kernels/kernel_runner.h" |
| #include "tensorflow/lite/micro/test_helpers.h" |
| #include "tensorflow/lite/micro/testing/micro_test.h" |
| |
| namespace tflite { |
| namespace testing { |
| namespace { |
| |
| const int flat_size_simple = 4; |
| const float scale_simple = 0.01; |
| int dims_simple[] = {4, 1, 2, 2, 1}; |
| const float input1_simple[] = {-0.8, 0.2, 0.9, 0.7}; |
| const float input2_simple[] = {0.6, 0.4, 0.9, 0.8}; |
| const float golden_simple[] = {-0.48, 0.08, 0.81, 0.56}; |
| const float golden_simple_relu[] = {0.0, 0.08, 0.81, 0.56}; |
| |
| const int flat_size_broadcast = 6; |
| const float input_scale_broadcast = 0.05f; |
| const float output_scale_broadcast = 0.01f; |
| int dims_broadcast[] = {4, 1, 3, 1, 2}; |
| int dims_scalar_broadcast[] = {1, 1}; |
| const float input1_broadcast[] = {-2.0, 0.2, 0.7, 0.8, 1.1, 2.0}; |
| const float input2_broadcast[] = {0.1}; |
| const float golden_broadcast[] = {-0.2, 0.02, 0.07, 0.08, 0.11, 0.2}; |
| const float golden_broadcast_relu[] = {0, 0.02, 0.07, 0.08, 0.11, 0.2}; |
| |
| template <typename T> |
| void ValidateMulGoldens(TfLiteTensor* tensors, int tensors_size, |
| TfLiteFusedActivation activation, const T* golden, |
| int output_len, float tolerance, T* output) { |
| TfLiteMulParams builtin_data = { |
| .activation = activation, |
| }; |
| |
| int inputs_array_data[] = {2, 0, 1}; |
| TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data); |
| int outputs_array_data[] = {1, 2}; |
| TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data); |
| |
| const TFLMRegistration registration = tflite::Register_MUL(); |
| micro::KernelRunner runner(registration, tensors, tensors_size, inputs_array, |
| outputs_array, |
| reinterpret_cast<void*>(&builtin_data)); |
| |
| TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.InitAndPrepare()); |
| TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.Invoke()); |
| |
| for (int i = 0; i < output_len; i++) { |
| TF_LITE_MICRO_EXPECT_NEAR(golden[i], output[i], tolerance); |
| } |
| } |
| |
| void TestMulFloat(int* input1_dims_data, const float* input1_data, |
| int* input2_dims_data, const float* input2_data, |
| int* output_dims_data, const float* golden, |
| float* output_data, TfLiteFusedActivation activation) { |
| TfLiteIntArray* input1_dims = IntArrayFromInts(input1_dims_data); |
| TfLiteIntArray* input2_dims = IntArrayFromInts(input2_dims_data); |
| TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data); |
| const int output_dims_count = ElementCount(*output_dims); |
| |
| constexpr int inputs_size = 2; |
| constexpr int outputs_size = 1; |
| constexpr int tensors_size = inputs_size + outputs_size; |
| TfLiteTensor tensors[tensors_size] = { |
| CreateTensor(input1_data, input1_dims), |
| CreateTensor(input2_data, input2_dims), |
| CreateTensor(output_data, output_dims), |
| }; |
| |
| ValidateMulGoldens(tensors, tensors_size, activation, golden, |
| output_dims_count, 1e-5, output_data); |
| } |
| |
| template <typename T> |
| void TestMulQuantized(int* input1_dims_data, const float* input1_data, |
| T* input1_quantized, int* input2_dims_data, |
| const float* input2_data, T* input2_quantized, |
| const float input_scale, const int input_zero_point, |
| int* output_dims_data, const float* golden, |
| T* golden_quantized, const float output_scale, |
| const int output_zero_point, T* output_data, |
| TfLiteFusedActivation activation) { |
| TfLiteIntArray* input1_dims = IntArrayFromInts(input1_dims_data); |
| TfLiteIntArray* input2_dims = IntArrayFromInts(input2_dims_data); |
| TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data); |
| const int output_dims_count = ElementCount(*output_dims); |
| |
| constexpr int inputs_size = 2; |
| constexpr int outputs_size = 1; |
| constexpr int tensors_size = inputs_size + outputs_size; |
| TfLiteTensor tensors[tensors_size] = { |
| CreateQuantizedTensor(input1_data, input1_quantized, input1_dims, |
| input_scale, input_zero_point), |
| CreateQuantizedTensor(input2_data, input2_quantized, input2_dims, |
| input_scale, input_zero_point), |
| CreateQuantizedTensor(output_data, output_dims, output_scale, |
| output_zero_point)}; |
| |
| Quantize(golden, golden_quantized, output_dims_count, output_scale, |
| output_zero_point); |
| |
| ValidateMulGoldens(tensors, tensors_size, activation, golden_quantized, |
| output_dims_count, 1.0f, output_data); |
| } |
| |
| } // namespace |
| |
| } // namespace testing |
| } // namespace tflite |
| |
| TF_LITE_MICRO_TESTS_BEGIN |
| |
| TF_LITE_MICRO_TEST(SimpleFloatNoActivationShouldMatchGolden) { |
| float output_data[tflite::testing::flat_size_simple]; |
| |
| tflite::testing::TestMulFloat( |
| tflite::testing::dims_simple, tflite::testing::input1_simple, |
| tflite::testing::dims_simple, tflite::testing::input2_simple, |
| tflite::testing::dims_simple, tflite::testing::golden_simple, output_data, |
| kTfLiteActNone); |
| } |
| |
| TF_LITE_MICRO_TEST(SimpleFloatReluShouldMatchGolden) { |
| float output_data[tflite::testing::flat_size_simple]; |
| |
| tflite::testing::TestMulFloat( |
| tflite::testing::dims_simple, tflite::testing::input1_simple, |
| tflite::testing::dims_simple, tflite::testing::input2_simple, |
| tflite::testing::dims_simple, tflite::testing::golden_simple_relu, |
| output_data, kTfLiteActRelu); |
| } |
| |
| TF_LITE_MICRO_TEST(SimpleInt8NoActivationShouldMatchGolden) { |
| int8_t input1_quantized[tflite::testing::flat_size_simple]; |
| int8_t input2_quantized[tflite::testing::flat_size_simple]; |
| int8_t golden_quantized[tflite::testing::flat_size_simple]; |
| int8_t output_data[tflite::testing::flat_size_simple]; |
| |
| tflite::testing::TestMulQuantized( |
| tflite::testing::dims_simple, tflite::testing::input1_simple, |
| input1_quantized, tflite::testing::dims_simple, |
| tflite::testing::input2_simple, input2_quantized, |
| tflite::testing::scale_simple, 0, tflite::testing::dims_simple, |
| tflite::testing::golden_simple, golden_quantized, |
| tflite::testing::scale_simple, 0, output_data, kTfLiteActNone); |
| } |
| |
| TF_LITE_MICRO_TEST(SimpleInt16NoActivationShouldMatchGolden) { |
| int16_t input1_quantized[tflite::testing::flat_size_simple]; |
| int16_t input2_quantized[tflite::testing::flat_size_simple]; |
| int16_t golden_quantized[tflite::testing::flat_size_simple]; |
| int16_t output_data[tflite::testing::flat_size_simple]; |
| |
| tflite::testing::TestMulQuantized( |
| tflite::testing::dims_simple, tflite::testing::input1_simple, |
| input1_quantized, tflite::testing::dims_simple, |
| tflite::testing::input2_simple, input2_quantized, |
| tflite::testing::scale_simple, 0, tflite::testing::dims_simple, |
| tflite::testing::golden_simple, golden_quantized, |
| tflite::testing::scale_simple, 0, output_data, kTfLiteActNone); |
| } |
| |
| TF_LITE_MICRO_TEST(BroadcastFloatNoActivationShouldMatchGolden) { |
| float output_data[tflite::testing::flat_size_broadcast]; |
| |
| tflite::testing::TestMulFloat( |
| tflite::testing::dims_broadcast, tflite::testing::input1_broadcast, |
| tflite::testing::dims_scalar_broadcast, tflite::testing::input2_broadcast, |
| tflite::testing::dims_broadcast, tflite::testing::golden_broadcast, |
| output_data, kTfLiteActNone); |
| } |
| |
| TF_LITE_MICRO_TEST(BroadcastFloatReluShouldMatchGolden) { |
| float output_data[tflite::testing::flat_size_broadcast]; |
| |
| tflite::testing::TestMulFloat( |
| tflite::testing::dims_broadcast, tflite::testing::input1_broadcast, |
| tflite::testing::dims_scalar_broadcast, tflite::testing::input2_broadcast, |
| tflite::testing::dims_broadcast, tflite::testing::golden_broadcast_relu, |
| output_data, kTfLiteActRelu); |
| } |
| |
| TF_LITE_MICRO_TEST(BroadcastInt8NoActivationShouldMatchGolden) { |
| int8_t input1_quantized[tflite::testing::flat_size_broadcast]; |
| int8_t input2_quantized[tflite::testing::flat_size_broadcast]; |
| int8_t golden_quantized[tflite::testing::flat_size_broadcast]; |
| int8_t output_data[tflite::testing::flat_size_broadcast]; |
| |
| tflite::testing::TestMulQuantized( |
| tflite::testing::dims_broadcast, tflite::testing::input1_broadcast, |
| input1_quantized, tflite::testing::dims_scalar_broadcast, |
| tflite::testing::input2_broadcast, input2_quantized, |
| tflite::testing::input_scale_broadcast, 0, |
| tflite::testing::dims_broadcast, tflite::testing::golden_broadcast, |
| golden_quantized, tflite::testing::output_scale_broadcast, 0, output_data, |
| kTfLiteActNone); |
| } |
| |
| TF_LITE_MICRO_TEST(BroadcastInt16NoActivationShouldMatchGolden) { |
| int16_t input1_quantized[tflite::testing::flat_size_broadcast]; |
| int16_t input2_quantized[tflite::testing::flat_size_broadcast]; |
| int16_t golden_quantized[tflite::testing::flat_size_broadcast]; |
| int16_t output_data[tflite::testing::flat_size_broadcast]; |
| |
| tflite::testing::TestMulQuantized( |
| tflite::testing::dims_broadcast, tflite::testing::input1_broadcast, |
| input1_quantized, tflite::testing::dims_scalar_broadcast, |
| tflite::testing::input2_broadcast, input2_quantized, |
| tflite::testing::input_scale_broadcast, 0, |
| tflite::testing::dims_broadcast, tflite::testing::golden_broadcast, |
| golden_quantized, tflite::testing::output_scale_broadcast, 0, output_data, |
| kTfLiteActNone); |
| } |
| |
| TF_LITE_MICRO_TEST(SimpleInt32NoActivationShouldMatchGolden) { |
| int32_t input1_quantized[tflite::testing::flat_size_simple]; |
| int32_t input2_quantized[tflite::testing::flat_size_simple]; |
| int32_t golden_quantized[tflite::testing::flat_size_simple]; |
| int32_t output_data[tflite::testing::flat_size_simple]; |
| |
| // Int32 mul ignores quantization parameters with TFLite and TFLM. Use |
| // TestMulQuantized method to convert float arrays to int32 arrays, but use |
| // quantization parameters of 0.01 for both inputs and 0.0001 for output, |
| // since input scales are multiplied together to get output scale when there |
| // is no rescaling inside the op. |
| tflite::testing::TestMulQuantized( |
| tflite::testing::dims_simple, tflite::testing::input1_simple, |
| input1_quantized, tflite::testing::dims_simple, |
| tflite::testing::input2_simple, input2_quantized, 0.01, 0, |
| tflite::testing::dims_simple, tflite::testing::golden_simple, |
| golden_quantized, 0.0001, 0, output_data, kTfLiteActNone); |
| } |
| |
| TF_LITE_MICRO_TESTS_END |