| /* Copyright 2022 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| #include "tensorflow/lite/micro/kernels/lstm_eval_test.h" |
| |
| #include <cstdint> |
| #include <cstdlib> |
| #include <memory> |
| #include <utility> |
| |
| #include "tensorflow/lite/c/builtin_op_data.h" |
| #include "tensorflow/lite/c/common.h" |
| #include "tensorflow/lite/micro/kernels/lstm_eval.h" |
| #include "tensorflow/lite/micro/kernels/lstm_shared.h" |
| #include "tensorflow/lite/micro/kernels/testdata/lstm_test_data.h" |
| #include "tensorflow/lite/micro/test_helpers.h" |
| #include "tensorflow/lite/micro/testing/micro_test.h" |
| |
| // TODO(b/230666079) enable below tests for xtensa when the xtensa |
| // kernel is reconciled with reference kernel |
| #if !defined(XTENSA) |
| namespace { |
| // Test Settings |
| constexpr float kTestFloatTolerance = 1e-6f; |
| } // namespace |
| #endif // !defined(XTENSA) |
| |
| TF_LITE_MICRO_TESTS_BEGIN |
| // TODO(b/230666079) enable below tests for xtensa when the xtensa |
| // kernel is reconciled with reference kernel |
| #if !defined(XTENSA) |
| TF_LITE_MICRO_TEST(CheckGateOutputFloat) { |
| const tflite::testing::GateOutputCheckData<4, 4> gate_output_data = |
| tflite::testing::Get2X2GateOutputCheckData(); |
| tflite::testing::LstmNodeContent<float, float, float, float, 2, 3, 2, 2> |
| float_node_contents = tflite::testing::Create2x3x2X2FloatNodeContents( |
| gate_output_data.input_data, gate_output_data.hidden_state, |
| gate_output_data.cell_state); |
| |
| // Forget gate |
| tflite::testing::TestCalculateLstmGateFloat<2, 2>( |
| float_node_contents.GetEvalTensor(tflite::kLstmInputTensor), |
| float_node_contents.GetEvalTensor( |
| tflite::kLstmInputToForgetWeightsTensor), |
| float_node_contents.GetEvalTensor(tflite::kLstmForgetGateBiasTensor), |
| // Recurrent FC |
| float_node_contents.HiddenStateEvalTensor(), |
| float_node_contents.GetEvalTensor( |
| tflite::kLstmRecurrentToForgetWeightsTensor), |
| nullptr, // bias fused to activation FC, |
| // Result comparison |
| kTfLiteActSigmoid, gate_output_data.expected_forget_gate_output, |
| kTestFloatTolerance); |
| |
| // Input gate |
| tflite::testing::TestCalculateLstmGateFloat<2, 2>( |
| float_node_contents.GetEvalTensor(tflite::kLstmInputTensor), |
| float_node_contents.GetEvalTensor(tflite::kLstmInputToInputWeightsTensor), |
| float_node_contents.GetEvalTensor(tflite::kLstmInputGateBiasTensor), |
| // Recurrent FC |
| float_node_contents.HiddenStateEvalTensor(), |
| float_node_contents.GetEvalTensor( |
| tflite::kLstmRecurrentToInputWeightsTensor), |
| nullptr, // bias fused to activation FC, |
| // Result comparison |
| kTfLiteActSigmoid, gate_output_data.expected_input_gate_output, |
| kTestFloatTolerance); |
| |
| // Output gate |
| tflite::testing::TestCalculateLstmGateFloat<2, 2>( |
| float_node_contents.GetEvalTensor(tflite::kLstmInputTensor), |
| float_node_contents.GetEvalTensor( |
| tflite::kLstmInputToOutputWeightsTensor), |
| float_node_contents.GetEvalTensor(tflite::kLstmOutputGateBiasTensor), |
| // Recurrent FC |
| float_node_contents.HiddenStateEvalTensor(), |
| float_node_contents.GetEvalTensor( |
| tflite::kLstmRecurrentToOutputWeightsTensor), |
| nullptr, // bias fused to activation FC, |
| // Result comparison |
| kTfLiteActSigmoid, gate_output_data.expected_output_gate_output, |
| kTestFloatTolerance); |
| |
| // Cell gate |
| tflite::testing::TestCalculateLstmGateFloat<2, 2>( |
| float_node_contents.GetEvalTensor(tflite::kLstmInputTensor), |
| float_node_contents.GetEvalTensor(tflite::kLstmInputToCellWeightsTensor), |
| float_node_contents.GetEvalTensor(tflite::kLstmCellGateBiasTensor), |
| // Recurrent FC |
| float_node_contents.HiddenStateEvalTensor(), |
| float_node_contents.GetEvalTensor( |
| tflite::kLstmRecurrentToCellWeightsTensor), |
| nullptr, // bias fused to activation FC, |
| // Result comparison |
| float_node_contents.BuiltinData().activation, |
| gate_output_data.expected_cell_gate_output, kTestFloatTolerance); |
| } |
| |
| TF_LITE_MICRO_TEST(CheckGateOutputInt8) { |
| const tflite::testing::GateOutputCheckData<4, 4> gate_output_data = |
| tflite::testing::Get2X2GateOutputCheckData(); |
| tflite::testing::LstmNodeContent<int8_t, int8_t, int32_t, int16_t, 2, 3, 2, 2> |
| int8_node_contents = tflite::testing::Create2x3x2X2Int8NodeContents( |
| gate_output_data.input_data, gate_output_data.hidden_state, |
| gate_output_data.cell_state); |
| |
| // Forget gate |
| // Quantization performs badly here due to integer overflow!!! |
| float tolerance = 1e-1f; |
| tflite::testing::TestCalculateLstmGateInteger<int8_t, int8_t, int32_t, |
| int16_t, 2, 2>( |
| int8_node_contents.GetEvalTensor(tflite::kLstmInputTensor), |
| int8_node_contents.GetEvalTensor(tflite::kLstmInputToForgetWeightsTensor), |
| int8_node_contents.GetEvalTensor(tflite::kLstmForgetGateBiasTensor), |
| // Recurrent FC |
| int8_node_contents.HiddenStateEvalTensor(), |
| int8_node_contents.GetEvalTensor( |
| tflite::kLstmRecurrentToForgetWeightsTensor), |
| nullptr, // bias fused to activation FC, |
| // Quantization settings |
| int8_node_contents.QuantizationSettings(), |
| int8_node_contents.QuantizationSettings().forget_gate, |
| // Result comparison |
| kTfLiteActSigmoid, gate_output_data.expected_forget_gate_output, |
| tolerance); |
| |
| // Input gate |
| // Quantization performs badly here due to integer overflow!!! |
| tolerance = 1e-1f; |
| tflite::testing::TestCalculateLstmGateInteger<int8_t, int8_t, int32_t, |
| int16_t, 2, 2>( |
| int8_node_contents.GetEvalTensor(tflite::kLstmInputTensor), |
| int8_node_contents.GetEvalTensor(tflite::kLstmInputToInputWeightsTensor), |
| int8_node_contents.GetEvalTensor(tflite::kLstmInputGateBiasTensor), |
| // Recurrent FC |
| int8_node_contents.HiddenStateEvalTensor(), |
| int8_node_contents.GetEvalTensor( |
| tflite::kLstmRecurrentToInputWeightsTensor), |
| nullptr, // bias fused to activation FC, |
| // Quantization settings |
| int8_node_contents.QuantizationSettings(), |
| int8_node_contents.QuantizationSettings().input_gate, |
| // Result comparison |
| kTfLiteActSigmoid, gate_output_data.expected_input_gate_output, |
| tolerance); |
| |
| // Output gate |
| tolerance = 1e-2f; |
| tflite::testing::TestCalculateLstmGateInteger<int8_t, int8_t, int32_t, |
| int16_t, 2, 2>( |
| int8_node_contents.GetEvalTensor(tflite::kLstmInputTensor), |
| int8_node_contents.GetEvalTensor(tflite::kLstmInputToOutputWeightsTensor), |
| int8_node_contents.GetEvalTensor(tflite::kLstmOutputGateBiasTensor), |
| // Recurrent FC |
| int8_node_contents.HiddenStateEvalTensor(), |
| int8_node_contents.GetEvalTensor( |
| tflite::kLstmRecurrentToOutputWeightsTensor), |
| nullptr, // bias fused to activation FC, |
| // Quantization settings |
| int8_node_contents.QuantizationSettings(), |
| int8_node_contents.QuantizationSettings().output_gate, |
| // Result comparison |
| kTfLiteActSigmoid, gate_output_data.expected_output_gate_output, |
| tolerance); |
| |
| // Cell gate |
| tolerance = 1e-2f; |
| tflite::testing::TestCalculateLstmGateInteger<int8_t, int8_t, int32_t, |
| int16_t, 2, 2>( |
| int8_node_contents.GetEvalTensor(tflite::kLstmInputTensor), |
| int8_node_contents.GetEvalTensor(tflite::kLstmInputToCellWeightsTensor), |
| int8_node_contents.GetEvalTensor(tflite::kLstmCellGateBiasTensor), |
| // Recurrent FC |
| int8_node_contents.HiddenStateEvalTensor(), |
| int8_node_contents.GetEvalTensor( |
| tflite::kLstmRecurrentToCellWeightsTensor), |
| nullptr, // bias fused to activation FC, |
| // Quantization settings |
| int8_node_contents.QuantizationSettings(), |
| int8_node_contents.QuantizationSettings().cell_gate, |
| // Result comparison |
| int8_node_contents.BuiltinData().activation, |
| gate_output_data.expected_cell_gate_output, tolerance); |
| } |
| |
| TF_LITE_MICRO_TEST(CheckGateOutputInt16) { |
| const tflite::testing::GateOutputCheckData<4, 4> gate_output_data = |
| tflite::testing::Get2X2GateOutputCheckData(); |
| tflite::testing::LstmNodeContent<int16_t, int8_t, int64_t, int16_t, 2, 3, 2, |
| 2> |
| int16_node_contents = tflite::testing::Create2x3x2X2Int16NodeContents( |
| gate_output_data.input_data, gate_output_data.hidden_state, |
| gate_output_data.cell_state); |
| |
| // Forget gate |
| // Quantization performs badly here due to integer overflow (from batch2)!!! |
| float tolerance = 1e-1f; |
| tflite::testing::TestCalculateLstmGateInteger<int16_t, int8_t, int64_t, |
| int16_t, 2, 2>( |
| int16_node_contents.GetEvalTensor(tflite::kLstmInputTensor), |
| int16_node_contents.GetEvalTensor( |
| tflite::kLstmInputToForgetWeightsTensor), |
| int16_node_contents.GetEvalTensor(tflite::kLstmForgetGateBiasTensor), |
| // Recurrent FC |
| int16_node_contents.HiddenStateEvalTensor(), |
| int16_node_contents.GetEvalTensor( |
| tflite::kLstmRecurrentToForgetWeightsTensor), |
| nullptr, // bias fused to activation FC, |
| // Quantization settings |
| int16_node_contents.QuantizationSettings(), |
| int16_node_contents.QuantizationSettings().forget_gate, |
| // Result comparison |
| kTfLiteActSigmoid, gate_output_data.expected_forget_gate_output, |
| tolerance); |
| |
| // Input gate |
| // Quantization performs badly here due to integer overflow (from batch2)!!! |
| tolerance = 1e-1f; |
| tflite::testing::TestCalculateLstmGateInteger<int16_t, int8_t, int64_t, |
| int16_t, 2, 2>( |
| int16_node_contents.GetEvalTensor(tflite::kLstmInputTensor), |
| int16_node_contents.GetEvalTensor(tflite::kLstmInputToInputWeightsTensor), |
| int16_node_contents.GetEvalTensor(tflite::kLstmInputGateBiasTensor), |
| // Recurrent FC |
| int16_node_contents.HiddenStateEvalTensor(), |
| int16_node_contents.GetEvalTensor( |
| tflite::kLstmRecurrentToInputWeightsTensor), |
| nullptr, // bias fused to activation FC, |
| // Quantization settings |
| int16_node_contents.QuantizationSettings(), |
| int16_node_contents.QuantizationSettings().input_gate, |
| // Result comparison |
| kTfLiteActSigmoid, gate_output_data.expected_input_gate_output, |
| tolerance); |
| |
| // Output gate |
| // Quantization scale (theoritical lowest range) is at range 1e-5 |
| tolerance = 1e-4f; |
| tflite::testing::TestCalculateLstmGateInteger<int16_t, int8_t, int64_t, |
| int16_t, 2, 2>( |
| int16_node_contents.GetEvalTensor(tflite::kLstmInputTensor), |
| int16_node_contents.GetEvalTensor( |
| tflite::kLstmInputToOutputWeightsTensor), |
| int16_node_contents.GetEvalTensor(tflite::kLstmOutputGateBiasTensor), |
| // Recurrent FC |
| int16_node_contents.HiddenStateEvalTensor(), |
| int16_node_contents.GetEvalTensor( |
| tflite::kLstmRecurrentToOutputWeightsTensor), |
| nullptr, // bias fused to activation FC, |
| // Quantization settings |
| int16_node_contents.QuantizationSettings(), |
| int16_node_contents.QuantizationSettings().output_gate, |
| // Result comparison |
| kTfLiteActSigmoid, gate_output_data.expected_output_gate_output, |
| tolerance); |
| |
| // Cell gate |
| tolerance = 1e-4f; |
| tflite::testing::TestCalculateLstmGateInteger<int16_t, int8_t, int64_t, |
| int16_t, 2, 2>( |
| int16_node_contents.GetEvalTensor(tflite::kLstmInputTensor), |
| int16_node_contents.GetEvalTensor(tflite::kLstmInputToCellWeightsTensor), |
| int16_node_contents.GetEvalTensor(tflite::kLstmCellGateBiasTensor), |
| // Recurrent FC |
| int16_node_contents.HiddenStateEvalTensor(), |
| int16_node_contents.GetEvalTensor( |
| tflite::kLstmRecurrentToCellWeightsTensor), |
| nullptr, // bias fused to activation FC, |
| // Quantization settings |
| int16_node_contents.QuantizationSettings(), |
| int16_node_contents.QuantizationSettings().cell_gate, |
| // Result comparison |
| int16_node_contents.BuiltinData().activation, |
| gate_output_data.expected_cell_gate_output, tolerance); |
| } |
| |
| TF_LITE_MICRO_TEST(CheckCellStateUpdateFloat) { |
| const tflite::testing::GateOutputCheckData<4, 4> gate_output_data = |
| tflite::testing::Get2X2GateOutputCheckData(); |
| tflite::testing::LstmNodeContent<float, float, float, float, 2, 3, 2, 2> |
| float_node_contents = tflite::testing::Create2x3x2X2FloatNodeContents( |
| gate_output_data.input_data, gate_output_data.hidden_state, |
| gate_output_data.cell_state); |
| |
| tflite::testing::TestUpdateLstmCellFloat( |
| gate_output_data, float_node_contents, kTestFloatTolerance); |
| } |
| |
| TF_LITE_MICRO_TEST(CheckCellStateUpdateInt8) { |
| const tflite::testing::GateOutputCheckData<4, 4> gate_output_data = |
| tflite::testing::Get2X2GateOutputCheckData(); |
| tflite::testing::LstmNodeContent<int8_t, int8_t, int32_t, int16_t, 2, 3, 2, 2> |
| int8_node_contents = tflite::testing::Create2x3x2X2Int8NodeContents( |
| gate_output_data.input_data, gate_output_data.hidden_state, |
| gate_output_data.cell_state); |
| |
| // Very high precision. The error is introduced by the |
| // quantization error of the clip value (~1e-5), but cannot actually reach |
| // the precision due to integer overflow of the elements |
| const float tolerance = 1e-3f; |
| tflite::testing::TestUpdateLstmCellInteger(gate_output_data, |
| int8_node_contents, tolerance); |
| } |
| |
| TF_LITE_MICRO_TEST(CheckCellStateUpdateInt16) { |
| const tflite::testing::GateOutputCheckData<4, 4> gate_output_data = |
| tflite::testing::Get2X2GateOutputCheckData(); |
| tflite::testing::LstmNodeContent<int16_t, int8_t, int64_t, int16_t, 2, 3, 2, |
| 2> |
| int16_node_contents = tflite::testing::Create2x3x2X2Int16NodeContents( |
| gate_output_data.input_data, gate_output_data.hidden_state, |
| gate_output_data.cell_state); |
| // Very high precision. The error is introduced by the |
| // quantization error of the clip value (~1e-5), but cannot actually reach |
| // the precision due to integer overflow of the elements |
| const float tolerance = 1e-3f; |
| tflite::testing::TestUpdateLstmCellInteger(gate_output_data, |
| int16_node_contents, tolerance); |
| } |
| |
| TF_LITE_MICRO_TEST(CheckHiddenStateUpdateFloat) { |
| const tflite::testing::GateOutputCheckData<4, 4> gate_output_data = |
| tflite::testing::Get2X2GateOutputCheckData(); |
| tflite::testing::LstmNodeContent<float, float, float, float, 2, 3, 2, 2> |
| float_node_contents = tflite::testing::Create2x3x2X2FloatNodeContents( |
| gate_output_data.input_data, gate_output_data.hidden_state, |
| gate_output_data.expected_updated_cell); |
| |
| tflite::testing::TestUpdateLstmHiddenFloat( |
| gate_output_data, float_node_contents, kTestFloatTolerance); |
| } |
| |
| TF_LITE_MICRO_TEST(CheckHiddenStateUpdateInt8) { |
| const tflite::testing::GateOutputCheckData<4, 4> gate_output_data = |
| tflite::testing::Get2X2GateOutputCheckData(); |
| tflite::testing::LstmNodeContent<int8_t, int8_t, int32_t, int16_t, 2, 3, 2, 2> |
| int8_node_contents = tflite::testing::Create2x3x2X2Int8NodeContents( |
| gate_output_data.input_data, gate_output_data.hidden_state, |
| gate_output_data.expected_updated_cell); |
| |
| // Theoritical error floor = quantization scale = 0.004705882165580988 |
| const float tolerance = 1e-2; |
| tflite::testing::TestUpdateLstmHiddenInteger(gate_output_data, |
| int8_node_contents, tolerance); |
| } |
| |
| TF_LITE_MICRO_TEST(CheckHiddenStateUpdateInt16) { |
| const tflite::testing::GateOutputCheckData<4, 4> gate_output_data = |
| tflite::testing::Get2X2GateOutputCheckData(); |
| tflite::testing::LstmNodeContent<int16_t, int8_t, int64_t, int16_t, 2, 3, 2, |
| 2> |
| int16_node_contents = tflite::testing::Create2x3x2X2Int16NodeContents( |
| gate_output_data.input_data, gate_output_data.hidden_state, |
| gate_output_data.expected_updated_cell); |
| |
| const float tolerance = 1e-4; |
| tflite::testing::TestUpdateLstmHiddenInteger(gate_output_data, |
| int16_node_contents, tolerance); |
| } |
| |
| TF_LITE_MICRO_TEST(CheckOneStepLSTMFloat) { |
| const tflite::testing::GateOutputCheckData<4, 4> gate_output_data = |
| tflite::testing::Get2X2GateOutputCheckData(); |
| tflite::testing::LstmNodeContent<float, float, float, float, 2, 3, 2, 2> |
| float_node_contents = tflite::testing::Create2x3x2X2FloatNodeContents( |
| gate_output_data.input_data, gate_output_data.hidden_state, |
| gate_output_data.cell_state); |
| tflite::testing::TestLstmStepFloat(gate_output_data, kTestFloatTolerance, |
| kTestFloatTolerance, float_node_contents); |
| } |
| |
| TF_LITE_MICRO_TEST(CheckOneStepLSTMInt8) { |
| const tflite::testing::GateOutputCheckData<4, 4> gate_output_data = |
| tflite::testing::Get2X2GateOutputCheckData(); |
| tflite::testing::LstmNodeContent<int8_t, int8_t, int32_t, int16_t, 2, 3, 2, 2> |
| int8_node_contents = tflite::testing::Create2x3x2X2Int8NodeContents( |
| gate_output_data.input_data, gate_output_data.hidden_state, |
| gate_output_data.cell_state); |
| |
| const float hidden_state_tolerance = 1e-2; |
| // cell state degrade due to integer overflow |
| const float cell_state_tolerance = 1e-1; |
| tflite::testing::TestLstmStepInteger(gate_output_data, hidden_state_tolerance, |
| cell_state_tolerance, |
| int8_node_contents); |
| } |
| |
| TF_LITE_MICRO_TEST(CheckOneStepLSTMInt16) { |
| const tflite::testing::GateOutputCheckData<4, 4> gate_output_data = |
| tflite::testing::Get2X2GateOutputCheckData(); |
| tflite::testing::LstmNodeContent<int16_t, int8_t, int64_t, int16_t, 2, 3, 2, |
| 2> |
| int16_node_contents = tflite::testing::Create2x3x2X2Int16NodeContents( |
| gate_output_data.input_data, gate_output_data.hidden_state, |
| gate_output_data.cell_state); |
| const float hidden_state_tolerance = 1e-3; // actually very close to 1e-4 |
| // cell state degrade due to integer overflow |
| const float cell_state_tolerance = 1e-1; |
| tflite::testing::TestLstmStepInteger<int16_t, int8_t, int64_t, int16_t, 2, 3, |
| 2, 2>( |
| gate_output_data, hidden_state_tolerance, cell_state_tolerance, |
| int16_node_contents); |
| } |
| |
| TF_LITE_MICRO_TEST(TestLSTMEvalFloat) { |
| const tflite::testing::LstmEvalCheckData<12, 4, 12> kernel_eval_data = |
| tflite::testing::Get2X2LstmEvalCheckData(); |
| tflite::testing::LstmNodeContent<float, float, float, float, 2, 3, 2, 2> |
| float_node_contents = tflite::testing::Create2x3x2X2FloatNodeContents( |
| kernel_eval_data.input_data, kernel_eval_data.hidden_state); |
| |
| tflite::testing::TestEvalLstmFloat(kernel_eval_data, kTestFloatTolerance, |
| kTestFloatTolerance, float_node_contents); |
| } |
| |
| TF_LITE_MICRO_TEST(TestLSTMEvalInt8) { |
| const tflite::testing::LstmEvalCheckData<12, 4, 12> kernel_eval_data = |
| tflite::testing::Get2X2LstmEvalCheckData(); |
| tflite::testing::LstmNodeContent<int8_t, int8_t, int32_t, int16_t, 2, 3, 2, 2> |
| int8_node_contents = tflite::testing::Create2x3x2X2Int8NodeContents( |
| kernel_eval_data.input_data, kernel_eval_data.hidden_state); |
| |
| const float hidden_state_tolerance = 1e-2; |
| // cell state degrade due to integer overflow |
| const float cell_state_tolerance = 1e-2; |
| tflite::testing::TestEvalLstmInteger(kernel_eval_data, hidden_state_tolerance, |
| cell_state_tolerance, |
| int8_node_contents); |
| } |
| |
| TF_LITE_MICRO_TEST(TestLSTMEvalInt16) { |
| const tflite::testing::LstmEvalCheckData<12, 4, 12> kernel_eval_data = |
| tflite::testing::Get2X2LstmEvalCheckData(); |
| tflite::testing::LstmNodeContent<int16_t, int8_t, int64_t, int16_t, 2, 3, 2, |
| 2> |
| int16_node_contents = tflite::testing::Create2x3x2X2Int16NodeContents( |
| kernel_eval_data.input_data, kernel_eval_data.hidden_state); |
| |
| const float hidden_state_tolerance = 1e-3; // actually very close to 1e-4 |
| // cell state degrade due to integer overflow |
| const float cell_state_tolerance = 1e-2; |
| tflite::testing::TestEvalLstmInteger(kernel_eval_data, hidden_state_tolerance, |
| cell_state_tolerance, |
| int16_node_contents); |
| } |
| |
| #endif // !defined(XTENSA) |
| TF_LITE_MICRO_TESTS_END |