| /* Copyright 2021 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| #include "tensorflow/lite/kernels/internal/reference/log_softmax.h" |
| |
| #include <cstddef> |
| #include <cstdint> |
| |
| #include "tensorflow/lite/c/common.h" |
| #include "tensorflow/lite/kernels/internal/quantization_util.h" |
| #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" |
| #include "tensorflow/lite/kernels/internal/types.h" |
| #include "tensorflow/lite/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/micro_log.h" |
| |
| namespace tflite { |
| namespace { |
| |
| // used only with quantized data |
| struct LogSoftmaxOpData { |
| int32_t input_multiplier; |
| int32_t input_left_shift; |
| int32_t reverse_scaling_divisor; |
| int32_t reverse_scaling_right_shift; |
| int diff_min; |
| size_t outer_size; // number of tensor elements skipping computation axis |
| size_t depth; // number of tensor elements on computation axis |
| }; |
| |
| // input/output tensor index |
| constexpr int kInputTensor = 0; |
| constexpr int kOutputTensor = 0; |
| |
| TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node) { |
| MicroContext* micro_context = GetMicroContext(context); |
| |
| TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); |
| TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); |
| TfLiteTensor* input = |
| micro_context->AllocateTempInputTensor(node, kInputTensor); |
| TF_LITE_ENSURE(context, input != nullptr); |
| TfLiteTensor* output = |
| micro_context->AllocateTempOutputTensor(node, kOutputTensor); |
| TF_LITE_ENSURE(context, output != nullptr); |
| TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type); |
| |
| TF_LITE_ENSURE(context, HaveSameShapes(input, output)); |
| |
| if (input->type == kTfLiteInt8) { |
| node->user_data = |
| context->AllocatePersistentBuffer(context, sizeof(LogSoftmaxOpData)); |
| auto data = static_cast<LogSoftmaxOpData*>(node->user_data); |
| |
| // quantization datum |
| constexpr int32_t kOutputZeroPoint = 127; |
| constexpr float kOutputScale = 16.0 / 256; |
| constexpr double kBeta = 1.0; |
| constexpr int kScaledDiffIntegerBits = 5; |
| |
| TF_LITE_ENSURE(context, output->params.scale == kOutputScale); |
| TF_LITE_ENSURE(context, output->params.zero_point == kOutputZeroPoint); |
| |
| int input_left_shift; |
| int reverse_scaling_right_shift; |
| tflite::PreprocessLogSoftmaxScalingExp( |
| kBeta, static_cast<double>(input->params.scale), kScaledDiffIntegerBits, |
| &data->input_multiplier, &input_left_shift, |
| &data->reverse_scaling_divisor, &reverse_scaling_right_shift); |
| data->input_left_shift = static_cast<int32_t>(input_left_shift); |
| data->reverse_scaling_right_shift = |
| static_cast<int32_t>(-reverse_scaling_right_shift); |
| // diff_min has a negative value, and is used to limit the maximum magnitude |
| // of the diffs, which are <= 0. |
| data->diff_min = |
| -tflite::CalculateInputRadius(kScaledDiffIntegerBits, input_left_shift); |
| |
| RuntimeShape input_shape = GetTensorShape(input); |
| const int trailing_dim = input_shape.DimensionsCount() - 1; |
| data->outer_size = |
| static_cast<size_t>(FlatSizeSkipDim(input_shape, trailing_dim)); |
| data->depth = static_cast<size_t>(input_shape.Dims(trailing_dim)); |
| } |
| |
| micro_context->DeallocateTempTfLiteTensor(input); |
| micro_context->DeallocateTempTfLiteTensor(output); |
| return kTfLiteOk; |
| } |
| |
| TfLiteStatus LogSoftmaxPrepare(TfLiteContext* context, TfLiteNode* node) { |
| return CalculateOpData(context, node); |
| } |
| |
| TfLiteStatus LogSoftmaxEval(TfLiteContext* context, TfLiteNode* node) { |
| const LogSoftmaxOpData* data = |
| static_cast<LogSoftmaxOpData*>(node->user_data); |
| const TfLiteEvalTensor* input = |
| tflite::micro::GetEvalInput(context, node, kInputTensor); |
| TfLiteEvalTensor* output = |
| tflite::micro::GetEvalOutput(context, node, kOutputTensor); |
| switch (input->type) { |
| case kTfLiteFloat32: { |
| SoftmaxParams op_params = {}; |
| reference_ops::LogSoftmax(op_params, tflite::micro::GetTensorShape(input), |
| tflite::micro::GetTensorData<float>(input), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<float>(output)); |
| return kTfLiteOk; |
| } |
| case kTfLiteInt8: { |
| SoftmaxParams op_params = {}; |
| op_params.input_multiplier = data->input_multiplier; |
| op_params.input_left_shift = data->input_left_shift; |
| op_params.reverse_scaling_divisor = data->reverse_scaling_divisor; |
| op_params.reverse_scaling_right_shift = data->reverse_scaling_right_shift; |
| op_params.diff_min = data->diff_min; |
| reference_ops::LogSoftmax(op_params, data->outer_size, data->depth, |
| tflite::micro::GetTensorShape(input), |
| tflite::micro::GetTensorData<int8_t>(input), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<int8_t>(output)); |
| return kTfLiteOk; |
| } |
| default: |
| MicroPrintf("LOG_SOFTMAX only supports float32, int8, got %s.", |
| TfLiteTypeGetName(input->type)); |
| return kTfLiteError; |
| } |
| } |
| |
| } // namespace |
| |
| TFLMRegistration Register_LOG_SOFTMAX() { |
| return tflite::micro::RegisterOp(nullptr, LogSoftmaxPrepare, LogSoftmaxEval); |
| } |
| |
| } // namespace tflite |