blob: 3c5df3f2ac8cbcd308effafc5f5071abc0994f36 [file] [log] [blame]
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <limits>
#include <type_traits>
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/micro/kernels/kernel_runner.h"
#include "tensorflow/lite/micro/test_helpers.h"
#include "tensorflow/lite/micro/testing/micro_test.h"
namespace tflite {
namespace testing {
namespace {
// min/max are used to compute scale, zero-point, compare tolerance
template <typename T>
struct TestLeakyReluParams {
// general parameters
float alpha; // alpha multiplier
// quantization parameters
float scale; // quantization scale of input and output
int zero_point; // quantization zero_point of input and output
T* input_data; // quantized input storage
T* output_data; // quantized output storage
float tolerance; // output vs expected value tolerance
};
void ExecuteLeakyReluTest(const float alpha, const int tensors_count,
TfLiteTensor* tensors) {
TfLiteLeakyReluParams builtin_data = {};
builtin_data.alpha = alpha;
int kInputArrayData[] = {1, 0};
TfLiteIntArray* inputs_array = IntArrayFromInts(kInputArrayData);
int kOutputArrayData[] = {1, 1};
TfLiteIntArray* outputs_array = IntArrayFromInts(kOutputArrayData);
const TFLMRegistration registration = tflite::Register_LEAKY_RELU();
micro::KernelRunner runner(registration, tensors, tensors_count, inputs_array,
outputs_array, static_cast<void*>(&builtin_data));
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.InitAndPrepare());
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.Invoke());
}
template <typename T>
void TestLeakyRelu(const TestLeakyReluParams<T>& params, int* input_dims_data,
const T* input_data, int* expected_dims,
const T* expected_data, T* output_data) {
TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data);
TfLiteIntArray* output_dims = IntArrayFromInts(expected_dims);
const int output_count = ElementCount(*output_dims);
TfLiteTensor tensors[] = {
CreateTensor(input_data, input_dims),
CreateTensor(output_data, output_dims),
};
constexpr int tensors_count = std::extent<decltype(tensors)>::value;
ExecuteLeakyReluTest(params.alpha, tensors_count, tensors);
for (int i = 0; i < output_count; i++) {
TF_LITE_MICRO_EXPECT_EQ(expected_data[i], output_data[i]);
}
}
template <typename T>
void TestLeakyReluQuantized(const TestLeakyReluParams<T>& params,
int* input_dims_data, const float* input_data,
int* expected_dims, const float* expected_data,
float* output_data) {
TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data);
TfLiteIntArray* output_dims = IntArrayFromInts(expected_dims);
const int output_count = ElementCount(*output_dims);
TfLiteTensor tensors[] = {
CreateQuantizedTensor(input_data, params.input_data, input_dims,
params.scale, params.zero_point),
CreateQuantizedTensor(params.output_data, output_dims, params.scale,
params.zero_point),
};
constexpr int kTensorsCount = std::extent<decltype(tensors)>::value;
ExecuteLeakyReluTest(params.alpha, kTensorsCount, tensors);
Dequantize(params.output_data, output_count, params.scale, params.zero_point,
output_data);
const float kTolerance = params.tolerance;
for (int i = 0; i < output_count; i++) {
TF_LITE_MICRO_EXPECT_NEAR(expected_data[i], output_data[i], kTolerance);
}
}
// Our fixed-point math function implementations have roughly 12 bits of
// accuracy, when specialized to 16-bit fixed-point arithmetic.
// That is purely an implementation compromise, it would have been possible
// to get closer to 16 bits of accuracy but that would be more expensive,
// and not needed for our purposes as ultimately the output is either
// immediately down-quantized to 8 bits, or will typically be at the output
// of the surrounding LSTM cell.
// So we can require roughly 2^-12 accuracy when the output is 16-bit, and
// we can more or less expect the full 2^-8 accuracy when the output is 8-bit.
//
// However, the representable output interval is often [-1, 1] (it has to be
// for tanh, and even for logistic, when we implement it in fixed-point, we
// typically have to do so on such a symmetric interval, e.g. ARM NEON only
// has signed fixed-point arithmetic (SQRDMULH)). As the width of [-1, 1]
// is 2, our representable values are often diluted by a factor of 2, whence
// the factor of 2 below.
const float kQuantizedTolerance = 2 * (1. / 256);
template <typename integer_dtype>
void QuantizedActivationsOpTestLeakyRelu() {
int kDims[] = {2, 5, 5};
constexpr float kInput[] = {
-5.0f, -4.6f, -4.2f, -3.8f, -3.4f, // Row 1
-3.0f, -2.6f, -2.2f, -1.8f, -1.4f, // Row 2
-1.0f, -0.6f, -0.2f, 0.2f, 0.6f, // Row 3
1.0f, 1.4f, 1.8f, 2.2f, 2.6f, // Row 4
3.0f, 3.4f, 3.8f, 4.2f, 4.6f, // Row 5
};
constexpr float kExpect[] = {
-0.50f, -0.46f, -0.42f, -0.38f, -0.34f, // Row 1
-0.30f, -0.26f, -0.22f, -0.18f, -0.14f, // Row 2
-0.10f, -0.06f, -0.02f, 0.20f, 0.60f, // Row 3
1.00f, 1.40f, 1.80f, 2.20f, 2.60f, // Row 4
3.00f, 3.40f, 3.80f, 4.20f, 4.60f, // Row 5
};
constexpr int kOutputCount = std::extent<decltype(kExpect)>::value;
float output_data[kOutputCount];
// setup quantization storage and parameters
integer_dtype q_output_data[kOutputCount];
integer_dtype q_input_data[kOutputCount];
constexpr float kMin = -1;
constexpr float kMax =
std::numeric_limits<integer_dtype>::max() /
static_cast<float>(std::numeric_limits<integer_dtype>::max() + 1);
// Quantize with a symmetric input / output range of {-5, 5}.
constexpr float kDataMin = 5 * kMin;
constexpr float kDataMax = 5 * kMax;
TestLeakyReluParams<integer_dtype> params = {};
params.alpha = 0.1f;
params.scale = ScaleFromMinMax<integer_dtype>(kDataMin, kDataMax);
params.zero_point = ZeroPointFromMinMax<integer_dtype>(kDataMin, kDataMax);
params.input_data = q_input_data;
params.output_data = q_output_data;
params.tolerance = kQuantizedTolerance * 5;
TestLeakyReluQuantized(params, kDims, kInput, kDims, kExpect, output_data);
}
} // namespace
} // namespace testing
} // namespace tflite
TF_LITE_MICRO_TESTS_BEGIN
TF_LITE_MICRO_TEST(QuantizedActivationsOpTestLeakyReluInt8_1) {
int kDims[] = {2, 2, 3};
constexpr float kInput[] = {0.0f, 1.0f, 3.0f, 1.0f, -1.0f, -2.0f};
constexpr float kExpect[] = {0.0f, 1.0f, 3.0f, 1.0f, -0.5f, -1.0f};
constexpr int kOutputCount = std::extent<decltype(kExpect)>::value;
float output_data[kOutputCount];
// setup quantization storage and parameters
int8_t q_output_data[kOutputCount];
int8_t q_input_data[kOutputCount];
tflite::testing::TestLeakyReluParams<int8_t> params = {};
params.alpha = 0.5f;
params.scale = 0.1f;
params.zero_point = 0;
params.input_data = q_input_data;
params.output_data = q_output_data;
params.tolerance = tflite::testing::kQuantizedTolerance;
tflite::testing::TestLeakyReluQuantized(params, kDims, kInput, kDims, kExpect,
output_data);
}
TF_LITE_MICRO_TEST(QuantizedActivationsOpTestLeakyReluInt8_2) {
tflite::testing::QuantizedActivationsOpTestLeakyRelu<int8_t>();
}
TF_LITE_MICRO_TEST(QuantizedActivationsOpTestLeakyReluInt16_1) {
int kDims[] = {2, 2, 3};
constexpr float kInput[] = {0.0f, 1.0f, 3.0f, 1.0f, -1.0f, -2.0f};
constexpr float kExpect[] = {0.0f, 1.0f, 3.0f, 1.0f, -0.5f, -1.0f};
constexpr int kOutputCount = std::extent<decltype(kExpect)>::value;
float output_data[kOutputCount];
// setup quantization storage and parameters
int16_t q_output_data[kOutputCount];
int16_t q_input_data[kOutputCount];
tflite::testing::TestLeakyReluParams<int16_t> params = {};
params.alpha = 0.5f;
params.scale = 0.01f;
params.zero_point = 0;
params.input_data = q_input_data;
params.output_data = q_output_data;
params.tolerance = tflite::testing::kQuantizedTolerance;
tflite::testing::TestLeakyReluQuantized(params, kDims, kInput, kDims, kExpect,
output_data);
}
TF_LITE_MICRO_TEST(QuantizedActivationsOpTestLeakyReluInt16_2) {
tflite::testing::QuantizedActivationsOpTestLeakyRelu<int16_t>();
}
TF_LITE_MICRO_TEST(FloatActivationsOpTestLeakyRelu) {
int kDims[] = {2, 2, 3};
constexpr float kInput[] = {0.0f, 1.0f, 3.0f, 1.0f, -1.0f, -2.0f};
constexpr float kExpect[] = {0.0f, 1.0f, 3.0f, 1.0f, -0.5f, -1.0f};
constexpr int kOutputCount = std::extent<decltype(kExpect)>::value;
float output_data[kOutputCount];
tflite::testing::TestLeakyReluParams<float> params = {};
params.alpha = 0.5f;
tflite::testing::TestLeakyRelu(params, kDims, kInput, kDims, kExpect,
output_data);
}
TF_LITE_MICRO_TESTS_END