| /* Copyright 2021 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| #include <type_traits> |
| |
| #include "tensorflow/lite/c/builtin_op_data.h" |
| #include "tensorflow/lite/c/common.h" |
| #include "tensorflow/lite/micro/kernels/kernel_runner.h" |
| #include "tensorflow/lite/micro/test_helpers.h" |
| #include "tensorflow/lite/micro/testing/micro_test.h" |
| |
| namespace tflite { |
| namespace testing { |
| namespace { |
| |
| constexpr float kTolerance = 1e-5; |
| |
| constexpr int kOutputDimsCount = 4; |
| |
| struct L2Pool2DTestParams { |
| TfLitePadding padding = kTfLitePaddingValid; |
| int stride_width = 2; |
| int stride_height = 2; |
| int filter_width = 2; |
| int filter_height = 2; |
| TfLiteFusedActivation activation = kTfLiteActNone; |
| float compare_tolerance = kTolerance; |
| // output_dims_data is a TfLiteIntArray |
| int output_dims_data[kOutputDimsCount + 1] = {kOutputDimsCount, 0, 0, 0, 0}; |
| }; |
| |
| void ExecuteL2Pool2DTest(const L2Pool2DTestParams& params, |
| TfLiteTensor* tensors, int tensors_count) { |
| int kInputArrayData[] = {1, 0}; |
| TfLiteIntArray* inputs_array = IntArrayFromInts(kInputArrayData); |
| int kOutputArrayData[] = {1, 1}; |
| TfLiteIntArray* outputs_array = IntArrayFromInts(kOutputArrayData); |
| |
| TfLitePoolParams op_params = {}; |
| op_params.activation = params.activation; |
| op_params.filter_height = params.filter_height; |
| op_params.filter_width = params.filter_width; |
| op_params.padding = params.padding; |
| op_params.stride_height = params.stride_height; |
| op_params.stride_width = params.stride_width; |
| |
| const TFLMRegistration registration = tflite::Register_L2_POOL_2D(); |
| micro::KernelRunner runner(registration, tensors, tensors_count, inputs_array, |
| outputs_array, static_cast<void*>(&op_params)); |
| |
| TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.InitAndPrepare()); |
| TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.Invoke()); |
| } |
| |
| template <typename T> |
| void TestL2Pool2D(L2Pool2DTestParams& params, int* input_dims_data, |
| const T* input_data, int* expected_dims_data, |
| const T* expected_data, T* output_data) { |
| TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data); |
| TfLiteIntArray* expected_dims = IntArrayFromInts(expected_dims_data); |
| TfLiteIntArray* output_dims = IntArrayFromInts(params.output_dims_data); |
| const int expected_count = ElementCount(*expected_dims); |
| |
| TfLiteTensor tensors[] = { |
| CreateTensor(input_data, input_dims), |
| CreateTensor(output_data, output_dims), |
| }; |
| constexpr int tensors_count = std::extent<decltype(tensors)>::value; |
| ExecuteL2Pool2DTest(params, tensors, tensors_count); |
| |
| for (int i = 0; i < expected_count; i++) { |
| TF_LITE_MICRO_EXPECT_NEAR(expected_data[i], output_data[i], |
| params.compare_tolerance); |
| } |
| for (int i = 0; i < expected_dims->size; i++) { |
| // output dims will have been relocated during prepare phase, |
| // so use the tensor dims pointer. |
| TF_LITE_MICRO_EXPECT_EQ(expected_dims->data[i], tensors[1].dims->data[i]); |
| } |
| } |
| |
| } // namespace |
| } // namespace testing |
| } // namespace tflite |
| |
| TF_LITE_MICRO_TESTS_BEGIN |
| |
| TF_LITE_MICRO_TEST(FloatPoolingOpTestL2Pool) { |
| int kInputDims[] = {4, 1, 2, 4, 1}; |
| constexpr float kInput[] = { |
| 0, 6, 2, 4, // |
| 3, 2, 10, 7, // |
| }; |
| int kExpectDims[] = {4, 1, 1, 2, 1}; |
| constexpr float kExpect[] = {3.5, 6.5}; |
| constexpr int kOutputCount = std::extent<decltype(kExpect)>::value; |
| float output_data[kOutputCount]; |
| tflite::testing::L2Pool2DTestParams params; |
| |
| tflite::testing::TestL2Pool2D(params, kInputDims, kInput, kExpectDims, |
| kExpect, output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(FloatPoolingOpTestL2PoolActivationRelu) { |
| int kInputDims[] = {4, 1, 2, 4, 1}; |
| constexpr float kInput[] = { |
| -1, -6, 2, 4, // |
| -3, -2, 10, 7, // |
| }; |
| int kExpectDims[] = {4, 1, 1, 2, 1}; |
| constexpr float kExpect[] = {3.53553, 6.5}; |
| constexpr int kOutputCount = std::extent<decltype(kExpect)>::value; |
| float output_data[kOutputCount]; |
| tflite::testing::L2Pool2DTestParams params; |
| params.activation = kTfLiteActRelu; |
| |
| tflite::testing::TestL2Pool2D(params, kInputDims, kInput, kExpectDims, |
| kExpect, output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(FloatPoolingOpTestL2PoolActivationRelu1) { |
| int kInputDims[] = {4, 1, 2, 4, 1}; |
| constexpr float kInput[] = { |
| -0.1, -0.6, 2, 4, // |
| -0.3, -0.2, 10, 7, // |
| }; |
| int kExpectDims[] = {4, 1, 1, 2, 1}; |
| constexpr float kExpect[] = {0.353553, 1.0}; |
| constexpr int kOutputCount = std::extent<decltype(kExpect)>::value; |
| float output_data[kOutputCount]; |
| tflite::testing::L2Pool2DTestParams params; |
| params.activation = kTfLiteActReluN1To1; |
| |
| tflite::testing::TestL2Pool2D(params, kInputDims, kInput, kExpectDims, |
| kExpect, output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(FloatPoolingOpTestL2PoolActivationRelu6) { |
| int kInputDims[] = {4, 1, 2, 4, 1}; |
| constexpr float kInput[] = { |
| -0.1, -0.6, 2, 4, // |
| -0.3, -0.2, 10, 7, // |
| }; |
| int kExpectDims[] = {4, 1, 1, 2, 1}; |
| constexpr float kExpect[] = {0.353553, 6.0}; |
| constexpr int kOutputCount = std::extent<decltype(kExpect)>::value; |
| float output_data[kOutputCount]; |
| tflite::testing::L2Pool2DTestParams params; |
| params.activation = kTfLiteActRelu6; |
| |
| tflite::testing::TestL2Pool2D(params, kInputDims, kInput, kExpectDims, |
| kExpect, output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(FloatPoolingOpTestL2PoolPaddingSame) { |
| int kInputDims[] = {4, 1, 2, 4, 1}; |
| constexpr float kInput[] = { |
| 0, 6, 2, 4, // |
| 3, 2, 10, 7, // |
| }; |
| int kExpectDims[] = {4, 1, 1, 2, 1}; |
| constexpr float kExpect[] = {3.5, 6.5}; |
| constexpr int kOutputCount = std::extent<decltype(kExpect)>::value; |
| float output_data[kOutputCount]; |
| tflite::testing::L2Pool2DTestParams params; |
| params.padding = kTfLitePaddingSame; |
| |
| tflite::testing::TestL2Pool2D(params, kInputDims, kInput, kExpectDims, |
| kExpect, output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(FloatPoolingOpTestL2PoolPaddingSameStride1) { |
| int kInputDims[] = {4, 1, 2, 4, 1}; |
| constexpr float kInput[] = { |
| 0, 6, 2, 4, // |
| 3, 2, 10, 7, // |
| }; |
| int kExpectDims[] = {4, 1, 2, 4, 1}; |
| constexpr float kExpect[] = {3.5, 6.0, 6.5, 5.70088, |
| 2.54951, 7.2111, 8.63134, 7.0}; |
| constexpr int kOutputCount = std::extent<decltype(kExpect)>::value; |
| float output_data[kOutputCount]; |
| tflite::testing::L2Pool2DTestParams params; |
| params.padding = kTfLitePaddingSame; |
| params.compare_tolerance = 1e-4; |
| params.stride_width = 1; |
| params.stride_height = 1; |
| |
| tflite::testing::TestL2Pool2D(params, kInputDims, kInput, kExpectDims, |
| kExpect, output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(FloatPoolingOpTestL2PoolPaddingValidStride1) { |
| int kInputDims[] = {4, 1, 2, 4, 1}; |
| constexpr float kInput[] = { |
| 0, 6, 2, 4, // |
| 3, 2, 10, 7, // |
| }; |
| int kExpectDims[] = {4, 1, 1, 3, 1}; |
| constexpr float kExpect[] = {3.5, 6.0, 6.5}; |
| constexpr int kOutputCount = std::extent<decltype(kExpect)>::value; |
| float output_data[kOutputCount]; |
| tflite::testing::L2Pool2DTestParams params; |
| params.stride_width = 1; |
| params.stride_height = 1; |
| |
| tflite::testing::TestL2Pool2D(params, kInputDims, kInput, kExpectDims, |
| kExpect, output_data); |
| } |
| |
| TF_LITE_MICRO_TESTS_END |