| /* Copyright 2021 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| #include <stddef.h> |
| #include <stdint.h> |
| |
| #include "tensorflow/lite/c/common.h" |
| #include "tensorflow/lite/kernels/internal/reference/pooling.h" |
| #include "tensorflow/lite/kernels/internal/types.h" |
| #include "tensorflow/lite/kernels/kernel_util.h" |
| #include "tensorflow/lite/kernels/padding.h" |
| #include "tensorflow/lite/micro/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/micro_log.h" |
| |
| namespace tflite { |
| namespace { |
| |
| // Input/output tensor index. |
| constexpr int kInputTensor = 0; |
| constexpr int kOutputTensor = 0; |
| |
| // required rank for input/output tensor shape |
| constexpr int kTensorShapeRank = 4; |
| |
| // input/output tensor shape rank associations |
| enum { kBatchRank = 0, kHeightRank, kWidthRank, kChannelRank }; |
| |
| TfLiteStatus L2Prepare(TfLiteContext* context, TfLiteNode* node) { |
| MicroContext* micro_context = GetMicroContext(context); |
| |
| auto* params = static_cast<TfLitePoolParams*>(node->builtin_data); |
| |
| TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); |
| TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); |
| TfLiteTensor* output = |
| micro_context->AllocateTempOutputTensor(node, kOutputTensor); |
| TF_LITE_ENSURE(context, output != nullptr); |
| TfLiteTensor* input = |
| micro_context->AllocateTempInputTensor(node, kInputTensor); |
| TF_LITE_ENSURE(context, input != nullptr); |
| TF_LITE_ENSURE_EQ(context, NumDimensions(input), kTensorShapeRank); |
| TF_LITE_ENSURE_EQ(context, NumDimensions(output), kTensorShapeRank); |
| TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type); |
| |
| int batches = SizeOfDimension(input, kBatchRank); |
| int height = SizeOfDimension(input, kHeightRank); |
| int width = SizeOfDimension(input, kWidthRank); |
| int channels_out = SizeOfDimension(input, kChannelRank); |
| |
| // Matching GetWindowedOutputSize in TensorFlow. |
| auto padding = params->padding; |
| int out_width, out_height; |
| |
| params->computed.padding = ComputePaddingHeightWidth( |
| params->stride_height, params->stride_width, 1, 1, height, width, |
| params->filter_height, params->filter_width, padding, &out_height, |
| &out_width); |
| |
| // We currently don't have a quantized implementation of L2Pool |
| TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteFloat32); |
| |
| // We must update the output tensor dimensions. |
| // The dims storage is expected to be the same area in memory |
| // for both TfLiteTensor and TfLiteEvalTensor. This is important |
| // because TfLiteTensor in the MicroInterpreter is a temporary |
| // allocation. For the KernelRunner interpreter, TfLiteEvalTensor |
| // is a temporary allocation. We must therefore relocate the dims |
| // from the FlatBuffer to the persistent storage arena. |
| TfLiteEvalTensor* output_eval = |
| tflite::micro::GetEvalOutput(context, node, kOutputTensor); |
| TF_LITE_ENSURE_OK(context, tflite::micro::CreateWritableTensorDimsWithCopy( |
| context, output, output_eval)); |
| output->dims->data[kBatchRank] = batches; |
| output->dims->data[kHeightRank] = out_height; |
| output->dims->data[kWidthRank] = out_width; |
| output->dims->data[kChannelRank] = channels_out; |
| |
| micro_context->DeallocateTempTfLiteTensor(output); |
| micro_context->DeallocateTempTfLiteTensor(input); |
| |
| return kTfLiteOk; |
| } |
| |
| void L2EvalFloat(const TfLitePoolParams& params, const TfLiteEvalTensor& input, |
| tflite::PoolParams* op_params, TfLiteEvalTensor* output) { |
| float activation_min, activation_max; |
| CalculateActivationRange(params.activation, &activation_min, &activation_max); |
| |
| op_params->float_activation_min = activation_min; |
| op_params->float_activation_max = activation_max; |
| reference_ops::L2Pool(*op_params, tflite::micro::GetTensorShape(&input), |
| tflite::micro::GetTensorData<float>(&input), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<float>(output)); |
| } |
| |
| TfLiteStatus L2Eval(TfLiteContext* context, TfLiteNode* node) { |
| auto* params = static_cast<const TfLitePoolParams*>(node->builtin_data); |
| |
| TfLiteEvalTensor* output = |
| tflite::micro::GetEvalOutput(context, node, kOutputTensor); |
| const TfLiteEvalTensor* input = |
| tflite::micro::GetEvalInput(context, node, kInputTensor); |
| |
| tflite::PoolParams op_params; |
| op_params.stride_height = params->stride_height; |
| op_params.stride_width = params->stride_width; |
| op_params.filter_height = params->filter_height; |
| op_params.filter_width = params->filter_width; |
| op_params.padding_values.height = params->computed.padding.height; |
| op_params.padding_values.width = params->computed.padding.width; |
| |
| switch (input->type) { // Already know in/out types are same. |
| case kTfLiteFloat32: |
| L2EvalFloat(*params, *input, &op_params, output); |
| break; |
| default: |
| MicroPrintf("L2_POOL_2D only supports float32 currently, got %s.", |
| TfLiteTypeGetName(input->type)); |
| return kTfLiteError; |
| } |
| return kTfLiteOk; |
| } |
| |
| } // namespace |
| |
| TFLMRegistration Register_L2_POOL_2D() { |
| return tflite::micro::RegisterOp(nullptr, L2Prepare, L2Eval); |
| } |
| |
| } // namespace tflite |