| /* Copyright 2022 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| #ifndef TENSORFLOW_LITE_MICRO_KERNELS_FULLY_CONNECTED_H_ |
| #define TENSORFLOW_LITE_MICRO_KERNELS_FULLY_CONNECTED_H_ |
| |
| #include <cstdint> |
| |
| #include "tensorflow/lite/c/builtin_op_data.h" |
| #include "tensorflow/lite/kernels/internal/types.h" |
| #include "tensorflow/lite/micro/micro_common.h" |
| |
| namespace tflite { |
| |
| struct OpDataFullyConnected { |
| // The scaling factor from input to output (aka the 'real multiplier') can |
| // be represented as a fixed point multiplier plus a left shift. |
| int32_t output_multiplier; |
| int output_shift; |
| // The range of the fused activation layer. For example for kNone and |
| // uint8_t these would be 0 and 255. |
| int32_t output_activation_min; |
| int32_t output_activation_max; |
| // The index of the temporary tensor where the quantized inputs are cached. |
| int input_quantized_index; |
| // Cached zero point values of tensors. |
| int32_t input_zero_point; |
| int32_t filter_zero_point; |
| int32_t output_zero_point; |
| |
| // TODO(b/258710417): enable by default once optimized fully-connected works for |
| // all targets. |
| #if !defined(HEXAGON) |
| // A buffer used to store unpacked filter values. This is used if the source |
| // tensor is of n-bit precision that cannot be easily processed by kernels. |
| int filter_buffer_index; |
| #endif |
| }; |
| |
| extern const int kFullyConnectedInputTensor; |
| extern const int kFullyConnectedWeightsTensor; |
| extern const int kFullyConnectedBiasTensor; |
| extern const int kFullyConnectedOutputTensor; |
| |
| // Returns a FullyConnectedParams struct with all the parameters needed for a |
| // float computation. |
| FullyConnectedParams FullyConnectedParamsFloat( |
| TfLiteFusedActivation activation); |
| |
| // Returns a FullyConnectedParams struct with all the parameters needed for a |
| // quantized computation. |
| FullyConnectedParams FullyConnectedParamsQuantized( |
| const OpDataFullyConnected& op_data); |
| |
| TfLiteStatus CalculateOpDataFullyConnected( |
| TfLiteContext* context, TfLiteFusedActivation activation, |
| TfLiteType data_type, const TfLiteTensor* input, const TfLiteTensor* filter, |
| const TfLiteTensor* bias, TfLiteTensor* output, OpDataFullyConnected* data); |
| |
| // This is the most generic TFLMRegistration. The actual supported types |
| // may still be target dependent. The only requirement is that every |
| // implementation (reference or optimized) must define this function. |
| TFLMRegistration Register_FULLY_CONNECTED(); |
| |
| #if defined(CMSIS_NN) || defined(HEXAGON) || defined(XTENSA) |
| // Returns a TFLMRegistration struct for kernel variant that only supports |
| // int8. |
| TFLMRegistration Register_FULLY_CONNECTED_INT8(); |
| |
| #else |
| // Note that while this block gets used for both reference and optimized kernels |
| // that do not have any specialized implementations, the only goal here is to |
| // define fallback implementation that allow reference kernels to still be used |
| // from applications that call a more specific kernel variant. |
| |
| inline TFLMRegistration Register_FULLY_CONNECTED_INT8() { |
| return Register_FULLY_CONNECTED(); |
| } |
| |
| #endif |
| |
| #if defined(CMSIS_NN) |
| // Returns a TFLMRegistration struct for kernel variant that only supports |
| // int16. |
| TFLMRegistration Register_FULLY_CONNECTED_INT16(); |
| |
| #else |
| // Note that while this block gets used for both reference and optimized kernels |
| // that do not have any specialized implementations, the only goal here is to |
| // define fallback implementation that allow reference kernels to still be used |
| // from applications that call a more specific kernel variant. |
| |
| inline TFLMRegistration Register_FULLY_CONNECTED_INT16() { |
| return Register_FULLY_CONNECTED(); |
| } |
| |
| #endif |
| |
| } // namespace tflite |
| |
| #endif // TENSORFLOW_LITE_MICRO_KERNELS_FULLY_CONNECTED_H_ |