| /* Copyright 2020 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| |
| #include "tensorflow/lite/kernels/internal/reference/fill.h" |
| |
| #include <stdint.h> |
| |
| #include "tensorflow/lite/c/common.h" |
| #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" |
| #include "tensorflow/lite/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/micro_log.h" |
| |
| namespace tflite { |
| |
| namespace { |
| |
| template <typename T> |
| TfLiteStatus EnsureEqImpl(TfLiteContext* context, const TfLiteIntArray* array, |
| const TfLiteTensor* tensor) { |
| for (int i = 0; i < array->size; ++i) { |
| TF_LITE_ENSURE_EQ(context, array->data[i], GetTensorData<T>(tensor)[i]); |
| } |
| return kTfLiteOk; |
| } |
| |
| // Ensure the equality of an int array and a tensor, which must be |
| // one-dimensional and of an integer type. |
| TfLiteStatus EnsureEq(TfLiteContext* context, const TfLiteIntArray* array, |
| const TfLiteTensor* tensor) { |
| TF_LITE_ENSURE_EQ(context, NumDimensions(tensor), 1); |
| const auto tensor_len = tensor->dims->data[0]; |
| TF_LITE_ENSURE_EQ(context, array->size, tensor_len); |
| |
| switch (tensor->type) { |
| case kTfLiteInt8: |
| return EnsureEqImpl<int8_t>(context, array, tensor); |
| case kTfLiteInt16: |
| return EnsureEqImpl<int16_t>(context, array, tensor); |
| case kTfLiteInt32: |
| return EnsureEqImpl<int32_t>(context, array, tensor); |
| case kTfLiteInt64: |
| return EnsureEqImpl<int64_t>(context, array, tensor); |
| default: |
| MicroPrintf("cannot compare int array to tensor of type %d.", |
| tensor->type); |
| return kTfLiteError; |
| } |
| } |
| |
| constexpr int kDimsTensor = 0; |
| constexpr int kValueTensor = 1; |
| constexpr int kOutputTensor = 0; |
| |
| TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { |
| MicroContext* micro_context = GetMicroContext(context); |
| |
| // Ensure inputs and outputs exist. |
| TfLiteTensor* dims = |
| micro_context->AllocateTempInputTensor(node, kDimsTensor); |
| TF_LITE_ENSURE(context, dims != nullptr); |
| TfLiteTensor* value = |
| micro_context->AllocateTempInputTensor(node, kValueTensor); |
| TF_LITE_ENSURE(context, value != nullptr); |
| TfLiteTensor* output = |
| micro_context->AllocateTempOutputTensor(node, kOutputTensor); |
| TF_LITE_ENSURE(context, output != nullptr); |
| |
| // The value tensor must be a scalar. |
| TF_LITE_ENSURE_EQ(context, NumDimensions(value), 0); |
| |
| // The value type and output type must match. |
| TF_LITE_ENSURE_EQ(context, value->type, output->type); |
| |
| // The dimension of the output tensor is known in model already. |
| TFLITE_DCHECK(output->dims != nullptr); |
| |
| if (dims->data.data != nullptr) { |
| // When the dims tensor is specified in model already (i.e. is not an |
| // activation tensor), the dims tensor must match the output tensor shape. |
| // As a byproduct, ensures the dims tensor is of an integer type. |
| TF_LITE_ENSURE_OK(context, EnsureEq(context, output->dims, dims)); |
| } |
| |
| micro_context->DeallocateTempTfLiteTensor(dims); |
| micro_context->DeallocateTempTfLiteTensor(value); |
| micro_context->DeallocateTempTfLiteTensor(output); |
| return kTfLiteOk; |
| } |
| |
| template <typename T> |
| void FillImpl(const TfLiteEvalTensor* value, TfLiteEvalTensor* output) { |
| reference_ops::Fill( |
| micro::GetTensorShape(value), micro::GetTensorData<T>(value), |
| micro::GetTensorShape(output), micro::GetTensorData<T>(output)); |
| } |
| |
| TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { |
| const TfLiteEvalTensor* value = |
| micro::GetEvalInput(context, node, kValueTensor); |
| TfLiteEvalTensor* output = micro::GetEvalOutput(context, node, kOutputTensor); |
| |
| switch (value->type) { |
| case kTfLiteFloat32: |
| FillImpl<float>(value, output); |
| break; |
| case kTfLiteInt32: |
| FillImpl<int32_t>(value, output); |
| break; |
| case kTfLiteInt8: |
| FillImpl<int8_t>(value, output); |
| break; |
| default: |
| MicroPrintf("Fill only currently supports float32 for input 1, got %d.", |
| TfLiteTypeGetName(value->type)); |
| return kTfLiteError; |
| } |
| |
| return kTfLiteOk; |
| } |
| |
| } // namespace |
| |
| TFLMRegistration Register_FILL() { |
| return tflite::micro::RegisterOp(nullptr, Prepare, Eval); |
| } |
| |
| } // namespace tflite |