| /* Copyright 2020 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| |
| #include <type_traits> |
| |
| #include "tensorflow/lite/c/builtin_op_data.h" |
| #include "tensorflow/lite/c/common.h" |
| #include "tensorflow/lite/micro/kernels/kernel_runner.h" |
| #include "tensorflow/lite/micro/test_helpers.h" |
| #include "tensorflow/lite/micro/testing/micro_test.h" |
| |
| namespace tflite { |
| namespace testing { |
| namespace { |
| |
| void ExecuteDivTest(TfLiteTensor* tensors, int tensors_count, |
| TfLiteFusedActivation activation) { |
| TfLiteDivParams builtin_data = {}; |
| builtin_data.activation = activation; |
| |
| int kInputArrayData[] = {2, 0, 1}; |
| TfLiteIntArray* inputs_array = IntArrayFromInts(kInputArrayData); |
| int kOutputArrayData[] = {1, 2}; |
| TfLiteIntArray* outputs_array = IntArrayFromInts(kOutputArrayData); |
| |
| const TFLMRegistration registration = tflite::Register_DIV(); |
| micro::KernelRunner runner(registration, tensors, tensors_count, inputs_array, |
| outputs_array, static_cast<void*>(&builtin_data)); |
| |
| TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.InitAndPrepare()); |
| TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.Invoke()); |
| } |
| |
| template <typename T> |
| void TestDiv(int* input1_dims_data, const T* input1_data, int* input2_dims_data, |
| const T* input2_data, int* expected_dims, const T* expected_data, |
| T* output_data, TfLiteFusedActivation activation) { |
| TfLiteIntArray* input1_dims = IntArrayFromInts(input1_dims_data); |
| TfLiteIntArray* input2_dims = IntArrayFromInts(input2_dims_data); |
| TfLiteIntArray* output_dims = IntArrayFromInts(expected_dims); |
| const int output_count = ElementCount(*output_dims); |
| |
| constexpr int inputs_size = 2; |
| constexpr int outputs_size = 1; |
| constexpr int tensors_size = inputs_size + outputs_size; |
| TfLiteTensor tensors[tensors_size] = { |
| CreateTensor(input1_data, input1_dims), |
| CreateTensor(input2_data, input2_dims), |
| CreateTensor(output_data, output_dims), |
| }; |
| constexpr int tensors_count = std::extent<decltype(tensors)>::value; |
| |
| ExecuteDivTest(tensors, tensors_count, activation); |
| |
| constexpr float kTolerance = 1e-5; |
| for (int i = 0; i < output_count; i++) { |
| TF_LITE_MICRO_EXPECT_NEAR(expected_data[i], output_data[i], kTolerance); |
| } |
| } |
| |
| // For quantized Div, the error shouldn't exceed (2*step + step^2). |
| inline float GetTolerance(int min, int max) { |
| const float kQuantizedStep = (max - min) / 255.0f; |
| const float kQuantizedTolerance = |
| 2.0f * kQuantizedStep + kQuantizedStep * kQuantizedStep; |
| return kQuantizedTolerance; |
| } |
| |
| // min/max are used to compute scale, zero-point, compare tolerance |
| template <typename T> |
| struct TestQuantParams { |
| float data_min; // input and output data minimum value |
| float data_max; // input and output data maximum value |
| T* input1_data; // quantized input1 storage |
| T* input2_data; // quantized input2 storage |
| T* output_data; // quantized output storage |
| }; |
| |
| template <typename T> |
| void TestDivQuantized(int* input1_dims_data, const float* input1_data, |
| int* input2_dims_data, const float* input2_data, |
| int* expected_dims, const float* expected_data, |
| float* output_data, TfLiteFusedActivation activation, |
| const TestQuantParams<T>* params) { |
| TfLiteIntArray* input1_dims = IntArrayFromInts(input1_dims_data); |
| TfLiteIntArray* input2_dims = IntArrayFromInts(input2_dims_data); |
| TfLiteIntArray* output_dims = IntArrayFromInts(expected_dims); |
| const int output_count = ElementCount(*output_dims); |
| |
| const float scale = ScaleFromMinMax<T>(params->data_min, params->data_max); |
| const int zero_point = |
| ZeroPointFromMinMax<T>(params->data_min, params->data_max); |
| |
| TfLiteTensor tensors[] = { |
| CreateQuantizedTensor(input1_data, params->input1_data, input1_dims, |
| scale, zero_point), |
| CreateQuantizedTensor(input2_data, params->input2_data, input2_dims, |
| scale, zero_point), |
| CreateQuantizedTensor(params->output_data, output_dims, scale, |
| zero_point), |
| }; |
| constexpr int kTensorsCount = std::extent<decltype(tensors)>::value; |
| |
| ExecuteDivTest(tensors, kTensorsCount, activation); |
| |
| Dequantize(params->output_data, output_count, scale, zero_point, output_data); |
| const float kTolerance = GetTolerance(params->data_min, params->data_max); |
| for (int i = 0; i < output_count; i++) { |
| TF_LITE_MICRO_EXPECT_NEAR(expected_data[i], output_data[i], kTolerance); |
| } |
| } |
| |
| template <typename T> |
| void TestDivMultiShape(int** shapes, const int shapes_count, |
| const T* input1_data, const T* input2_data, |
| const T* expected_data, T* output_data, |
| TfLiteFusedActivation activation) { |
| for (int i = 0; i < shapes_count; i++) { |
| TestDiv(shapes[i], input1_data, shapes[i], input2_data, shapes[i], |
| expected_data, output_data, activation); |
| } |
| } |
| |
| template <typename T> |
| void TestDivMultiShapeQuant(int** shapes, const int shapes_count, |
| const float* input1_data, const float* input2_data, |
| const float* expected_data, float* output_data, |
| TfLiteFusedActivation activation, |
| const TestQuantParams<T>* params) { |
| for (int i = 0; i < shapes_count; i++) { |
| TestDivQuantized(shapes[i], input1_data, shapes[i], input2_data, shapes[i], |
| expected_data, output_data, activation, params); |
| } |
| } |
| |
| // when broadcasting input2 is a scaler |
| template <typename T> |
| void TestDivMultiBroadcast(int** shapes, const int shapes_count, |
| const T* input1_data, const T* input2_data, |
| const T* expected_data, T* output_data, |
| TfLiteFusedActivation activation) { |
| int kDimScaler[] = {1, 1}; |
| for (int i = 0; i < shapes_count; i++) { |
| TestDiv(shapes[i], input1_data, kDimScaler, input2_data, shapes[i], |
| expected_data, output_data, activation); |
| } |
| } |
| |
| // when broadcasting input2 is a scaler |
| template <typename T> |
| void TestDivMultiBroadcastQuant(int** shapes, const int shapes_count, |
| const float* input1_data, |
| const float* input2_data, |
| const float* expected_data, float* output_data, |
| TfLiteFusedActivation activation, |
| const TestQuantParams<T>* params) { |
| int kDimScaler[] = {1, 1}; |
| for (int i = 0; i < shapes_count; i++) { |
| TestDivQuantized(shapes[i], input1_data, kDimScaler, input2_data, shapes[i], |
| expected_data, output_data, activation, params); |
| } |
| } |
| |
| } // namespace |
| } // namespace testing |
| } // namespace tflite |
| |
| TF_LITE_MICRO_TESTS_BEGIN |
| |
| TF_LITE_MICRO_TEST(FloatDivOpTestActNone) { |
| int kDims[] = {4, 1, 2, 2, 1}; |
| constexpr float kInput1[] = {-0.2, 0.2, -1.2, 0.8}; |
| constexpr float kInput2[] = {0.5, 0.2, -1.5, 0.5}; |
| constexpr float kExpect[] = {-0.4, 1.0, 0.8, 1.6}; |
| constexpr int kOutputCount = std::extent<decltype(kExpect)>::value; |
| float output_data[kOutputCount]; |
| |
| tflite::testing::TestDiv(kDims, kInput1, kDims, kInput2, kDims, kExpect, |
| output_data, kTfLiteActNone); |
| } |
| |
| TF_LITE_MICRO_TEST(FloatDivOpTestActReluN1To1) { |
| int kDims[] = {4, 1, 2, 2, 1}; |
| constexpr float kInput1[] = {-0.2, 0.2, -1.2, 0.8}; |
| constexpr float kInput2[] = {0.1, 0.2, -1.5, 0.5}; |
| constexpr float kExpect[] = {-1.0, 1.0, 0.8, 1.0}; |
| constexpr int kOutputCount = std::extent<decltype(kExpect)>::value; |
| float output_data[kOutputCount]; |
| |
| tflite::testing::TestDiv(kDims, kInput1, kDims, kInput2, kDims, kExpect, |
| output_data, kTfLiteActReluN1To1); |
| } |
| |
| TF_LITE_MICRO_TEST(FloatDivOpTestMultiShape) { |
| int kShape1[] = {1, 6}; |
| int kShape2[] = {2, 2, 3}; |
| int kShape3[] = {3, 2, 1, 3}; |
| int kShape4[] = {4, 1, 3, 1, 2}; |
| int* kDims[] = {kShape1, kShape2, kShape3, kShape4}; |
| constexpr int kDimsCount = std::extent<decltype(kDims)>::value; |
| |
| constexpr float kInput1[] = {-2.0, 0.2, 0.3, 0.8, 1.1, -2.0}; |
| constexpr float kInput2[] = {0.1, 0.2, 0.6, 0.5, -1.1, -0.1}; |
| constexpr float kExpect[] = {-20.0, 1.0, 0.5, 1.6, -1.0, 20.0}; |
| constexpr int kOutputCount = std::extent<decltype(kExpect)>::value; |
| float output_data[kOutputCount]; |
| |
| tflite::testing::TestDivMultiShape(kDims, kDimsCount, kInput1, kInput2, |
| kExpect, output_data, kTfLiteActNone); |
| } |
| |
| TF_LITE_MICRO_TEST(FloatDivOpTestBroadcast) { |
| int kShape1[] = {1, 8}; |
| int kShape2[] = {2, 2, 4}; |
| int kShape3[] = {3, 2, 1, 4}; |
| int kShape4[] = {4, 1, 2, 2, 2}; |
| int* kDims[] = {kShape1, kShape2, kShape3, kShape4}; |
| constexpr int kDimsCount = std::extent<decltype(kDims)>::value; |
| |
| constexpr float kInput1[] = {-0.2, 0.2, 0.07, 0.08, |
| 0.11, -0.123, -0.32, 0.54}; |
| constexpr float kInput2[] = {0.1}; |
| constexpr float kExpect[] = {-2.0, 2.0, 0.7, 0.8, 1.1, -1.23, -3.2, 5.4}; |
| constexpr int kOutputCount = std::extent<decltype(kExpect)>::value; |
| float output_data[kOutputCount]; |
| |
| tflite::testing::TestDivMultiBroadcast(kDims, kDimsCount, kInput1, kInput2, |
| kExpect, output_data, kTfLiteActNone); |
| } |
| |
| TF_LITE_MICRO_TEST(FloatDivOpTestBroadcast5D) { |
| int kShape1[] = {5, 1, 2, 1, 2, 2}; |
| int* kDims[] = {kShape1}; |
| constexpr int kDimsCount = std::extent<decltype(kDims)>::value; |
| |
| constexpr float kInput1[] = {-0.2, 0.2, 0.07, 0.08, |
| 0.11, -0.123, -0.32, 0.54}; |
| constexpr float kInput2[] = {0.1}; |
| constexpr float kExpect[] = {-2.0, 2.0, 0.7, 0.8, 1.1, -1.23, -3.2, 5.4}; |
| constexpr int kOutputCount = std::extent<decltype(kExpect)>::value; |
| float output_data[kOutputCount]; |
| |
| tflite::testing::TestDivMultiBroadcast(kDims, kDimsCount, kInput1, kInput2, |
| kExpect, output_data, kTfLiteActNone); |
| } |
| |
| TF_LITE_MICRO_TEST(QuantizedDivOpTestActNone) { |
| int kDims[] = {4, 1, 2, 2, 1}; |
| constexpr float kInput1[] = {-0.8, -0.2, 0.3, 0.7}; |
| constexpr float kInput2[] = {-0.8, 0.4, 0.8, 1.0}; |
| constexpr float kExpect[] = {1.0, -0.5, 0.375, 0.7}; |
| constexpr int kOutputCount = std::extent<decltype(kExpect)>::value; |
| float output_data[kOutputCount]; |
| |
| // setup quantization storage and parameters |
| int8_t q_output_data[kOutputCount]; |
| int8_t q_input1_data[kOutputCount]; |
| int8_t q_input2_data[kOutputCount]; |
| tflite::testing::TestQuantParams<int8_t> params = {}; |
| params.data_min = -1.0; |
| params.data_max = 1.0; |
| params.input1_data = q_input1_data; |
| params.input2_data = q_input2_data; |
| params.output_data = q_output_data; |
| |
| tflite::testing::TestDivQuantized(kDims, kInput1, kDims, kInput2, kDims, |
| kExpect, output_data, kTfLiteActNone, |
| ¶ms); |
| } |
| |
| TF_LITE_MICRO_TEST(QuantizedDivOpTestActReluN1To1) { |
| int kDims[] = {4, 1, 2, 2, 1}; |
| constexpr float kInput1[] = {-0.8, 0.2, 0.9, 0.7}; |
| constexpr float kInput2[] = {0.6, 0.4, 0.9, -0.8}; |
| constexpr float kExpect1[] = {-1.0, 0.5, 1.0, -0.875}; |
| constexpr int kOutputCount = std::extent<decltype(kExpect1)>::value; |
| float output_data[kOutputCount]; |
| |
| // setup quantization storage and parameters |
| int8_t q_output_data[kOutputCount]; |
| int8_t q_input1_data[kOutputCount]; |
| int8_t q_input2_data[kOutputCount]; |
| tflite::testing::TestQuantParams<int8_t> params = {}; |
| params.data_min = -1.0; |
| params.data_max = 1.0; |
| params.input1_data = q_input1_data; |
| params.input2_data = q_input2_data; |
| params.output_data = q_output_data; |
| |
| tflite::testing::TestDivQuantized(kDims, kInput1, kDims, kInput2, kDims, |
| kExpect1, output_data, kTfLiteActReluN1To1, |
| ¶ms); |
| |
| constexpr float kInput3[] = {-0.5, 0.2, 0.6, 0.3}; |
| constexpr float kInput4[] = {0.6, 0.5, -0.8, 0.5}; |
| constexpr float kExpect2[] = {-0.833, 0.4, -0.75, 0.6}; |
| |
| tflite::testing::TestDivQuantized(kDims, kInput3, kDims, kInput4, kDims, |
| kExpect2, output_data, kTfLiteActReluN1To1, |
| ¶ms); |
| } |
| |
| TF_LITE_MICRO_TEST(QuantizedDivOpTestMultiShape) { |
| int kShape1[] = {1, 6}; |
| int kShape2[] = {2, 2, 3}; |
| int kShape3[] = {3, 2, 1, 3}; |
| int kShape4[] = {4, 1, 3, 1, 2}; |
| int* kDims[] = {kShape1, kShape2, kShape3, kShape4}; |
| constexpr int kDimsCount = std::extent<decltype(kDims)>::value; |
| |
| constexpr float kInput1[] = {-2.0, 0.2, 1.7, 0.9, 0.4, 2.0}; |
| constexpr float kInput2[] = {1.3, 0.3, 1.1, 0.4, -1.1, 1.9}; |
| constexpr float kExpect[] = {-1.538, 0.667, 1.545, 2.25, -0.364, 1.053}; |
| constexpr int kOutputCount = std::extent<decltype(kExpect)>::value; |
| float output_data[kOutputCount]; |
| |
| // setup quantization storage and parameters |
| int8_t q_output_data[kOutputCount]; |
| int8_t q_input1_data[kOutputCount]; |
| int8_t q_input2_data[kOutputCount]; |
| tflite::testing::TestQuantParams<int8_t> params = {}; |
| params.data_min = -3.0; |
| params.data_max = 3.0; |
| params.input1_data = q_input1_data; |
| params.input2_data = q_input2_data; |
| params.output_data = q_output_data; |
| |
| tflite::testing::TestDivMultiShapeQuant(kDims, kDimsCount, kInput1, kInput2, |
| kExpect, output_data, kTfLiteActNone, |
| ¶ms); |
| } |
| |
| TF_LITE_MICRO_TEST(QuantizedDivOpTestBroadcast) { |
| int kShape1[] = {1, 8}; |
| int kShape2[] = {2, 2, 4}; |
| int kShape3[] = {3, 2, 1, 4}; |
| int kShape4[] = {4, 1, 4, 1, 2}; |
| int kShape5[] = {5, 1, 2, 1, 2, 2}; |
| int* kDims[] = {kShape1, kShape2, kShape3, kShape4, kShape5}; |
| constexpr int kDimsCount = std::extent<decltype(kDims)>::value; |
| |
| constexpr float kInput1[] = {-2.0, 0.2, 0.7, 0.8, -0.5, 1.1, -1.3, 1.2}; |
| constexpr float kInput2[] = {0.7}; |
| constexpr float kExpect[] = {-2.857, 0.286, 1.0, 1.143, |
| -0.714, 1.571, -1.857, 1.714}; |
| constexpr int kOutputCount = std::extent<decltype(kExpect)>::value; |
| float output_data[kOutputCount]; |
| |
| // setup quantization storage and parameters |
| int8_t q_output_data[kOutputCount]; |
| int8_t q_input1_data[kOutputCount]; |
| int8_t q_input2_data[kOutputCount]; |
| tflite::testing::TestQuantParams<int8_t> params = {}; |
| params.data_min = -3.0; |
| params.data_max = 3.0; |
| params.input1_data = q_input1_data; |
| params.input2_data = q_input2_data; |
| params.output_data = q_output_data; |
| |
| tflite::testing::TestDivMultiBroadcastQuant(kDims, kDimsCount, kInput1, |
| kInput2, kExpect, output_data, |
| kTfLiteActNone, ¶ms); |
| } |
| |
| TF_LITE_MICRO_TESTS_END |