| /* Copyright 2022 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| |
| #include "tensorflow/lite/kernels/internal/reference/div.h" |
| |
| #include "tensorflow/lite/c/common.h" |
| #include "tensorflow/lite/kernels/internal/quantization_util.h" |
| #include "tensorflow/lite/kernels/internal/reference/process_broadcast_shapes.h" |
| #include "tensorflow/lite/kernels/internal/types.h" |
| #include "tensorflow/lite/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/micro_log.h" |
| |
| namespace tflite { |
| namespace { |
| |
| constexpr int kInputTensor1 = 0; |
| constexpr int kInputTensor2 = 1; |
| constexpr int kOutputTensor = 0; |
| |
| struct OpDataDiv { |
| // Parameters used in the quantized paths where the output is 8bit |
| int32_t input1_zero_point; |
| int32_t input2_zero_point; |
| int32_t output_zero_point; |
| int32_t output_activation_min; |
| int32_t output_activation_max; |
| |
| // Parameters used in all quantized paths |
| int32_t output_multiplier; |
| int output_shift; |
| }; |
| |
| TfLiteStatus CalculateOpDataDiv(TfLiteContext* context, TfLiteTensor* input1, |
| TfLiteTensor* input2, TfLiteTensor* output, |
| TfLiteDivParams* params, OpDataDiv* data) { |
| TF_LITE_ENSURE_TYPES_EQ(context, input1->type, input2->type); |
| TF_LITE_ENSURE_TYPES_EQ(context, input1->type, output->type); |
| |
| if (output->type == kTfLiteInt8) { |
| TF_LITE_ENSURE_STATUS(CalculateActivationRangeQuantized( |
| context, params->activation, output, &data->output_activation_min, |
| &data->output_activation_max)); |
| const double real_multiplier = static_cast<double>( |
| input1->params.scale / (input2->params.scale * output->params.scale)); |
| QuantizeMultiplier(real_multiplier, &data->output_multiplier, |
| &data->output_shift); |
| data->input1_zero_point = input1->params.zero_point; |
| data->input2_zero_point = input2->params.zero_point; |
| data->output_zero_point = output->params.zero_point; |
| } |
| |
| return kTfLiteOk; |
| } |
| |
| void* Init(TfLiteContext* context, const char* buffer, size_t length) { |
| TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); |
| return context->AllocatePersistentBuffer(context, sizeof(OpDataDiv)); |
| } |
| |
| TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { |
| TFLITE_DCHECK(node->user_data != nullptr); |
| TFLITE_DCHECK(node->builtin_data != nullptr); |
| |
| MicroContext* micro_context = GetMicroContext(context); |
| TfLiteTensor* input1 = |
| micro_context->AllocateTempInputTensor(node, kInputTensor1); |
| TF_LITE_ENSURE(context, input1 != nullptr); |
| TfLiteTensor* input2 = |
| micro_context->AllocateTempInputTensor(node, kInputTensor2); |
| TF_LITE_ENSURE(context, input2 != nullptr); |
| TfLiteTensor* output = |
| micro_context->AllocateTempOutputTensor(node, kOutputTensor); |
| TF_LITE_ENSURE(context, output != nullptr); |
| |
| OpDataDiv* data = static_cast<OpDataDiv*>(node->user_data); |
| auto* params = reinterpret_cast<TfLiteDivParams*>(node->builtin_data); |
| |
| TF_LITE_ENSURE_STATUS( |
| CalculateOpDataDiv(context, input1, input2, output, params, data)); |
| |
| micro_context->DeallocateTempTfLiteTensor(input1); |
| micro_context->DeallocateTempTfLiteTensor(input2); |
| micro_context->DeallocateTempTfLiteTensor(output); |
| return kTfLiteOk; |
| } |
| |
| void EvalDiv(TfLiteContext* context, TfLiteNode* node, TfLiteDivParams* params, |
| const OpDataDiv* data, const TfLiteEvalTensor* input1, |
| const TfLiteEvalTensor* input2, TfLiteEvalTensor* output) { |
| tflite::ArithmeticParams op_params = {}; |
| |
| #define TF_LITE_DIV(type, opname, data_type) \ |
| data_type output_activation_min, output_activation_max; \ |
| CalculateActivationRange(params->activation, &output_activation_min, \ |
| &output_activation_max); \ |
| SetActivationParams(output_activation_min, output_activation_max, \ |
| &op_params); \ |
| type::opname(op_params, tflite::micro::GetTensorShape(input1), \ |
| tflite::micro::GetTensorData<data_type>(input1), \ |
| tflite::micro::GetTensorShape(input2), \ |
| tflite::micro::GetTensorData<data_type>(input2), \ |
| tflite::micro::GetTensorShape(output), \ |
| tflite::micro::GetTensorData<data_type>(output)) |
| |
| bool requires_broadcast = reference_ops::ProcessBroadcastShapes( |
| tflite::micro::GetTensorShape(input1), |
| tflite::micro::GetTensorShape(input2), &op_params); |
| |
| if (requires_broadcast) { |
| TF_LITE_DIV(reference_ops, BroadcastDivSlow, float); |
| } else { |
| TF_LITE_DIV(reference_ops, Div, float); |
| } |
| #undef TF_LITE_DIV |
| } |
| |
| TfLiteStatus EvalQuantized(TfLiteContext* context, TfLiteNode* node, |
| TfLiteDivParams* params, const OpDataDiv* data, |
| const TfLiteEvalTensor* input1, |
| const TfLiteEvalTensor* input2, |
| TfLiteEvalTensor* output) { |
| tflite::ArithmeticParams op_params = {}; |
| |
| #define TF_LITE_DIV(type, opname, dtype) \ |
| type::opname(op_params, tflite::micro::GetTensorShape(input1), \ |
| tflite::micro::GetTensorData<dtype>(input1), \ |
| tflite::micro::GetTensorShape(input2), \ |
| tflite::micro::GetTensorData<dtype>(input2), \ |
| tflite::micro::GetTensorShape(output), \ |
| tflite::micro::GetTensorData<dtype>(output)) |
| |
| if (input1->type == kTfLiteInt8 && input2->type == kTfLiteInt8 && |
| output->type == kTfLiteInt8) { |
| SetActivationParams(data->output_activation_min, |
| data->output_activation_max, &op_params); |
| op_params.input1_offset = -data->input1_zero_point; |
| op_params.input2_offset = -data->input2_zero_point; |
| op_params.output_offset = data->output_zero_point; |
| op_params.output_multiplier = data->output_multiplier; |
| op_params.output_shift = data->output_shift; |
| |
| bool requires_broadcast = reference_ops::ProcessBroadcastShapes( |
| tflite::micro::GetTensorShape(input1), |
| tflite::micro::GetTensorShape(input2), &op_params); |
| |
| if (requires_broadcast) { |
| TF_LITE_DIV(reference_ops, BroadcastDivSlow, int8_t); |
| } else { |
| TF_LITE_DIV(reference_ops, Div, int8_t); |
| } |
| #undef TF_LITE_DIV |
| } else { |
| MicroPrintf("Unsupported combination of input and output types in DIV."); |
| return kTfLiteError; |
| } |
| |
| return kTfLiteOk; |
| } |
| |
| TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { |
| TFLITE_DCHECK(node->builtin_data != nullptr); |
| auto* params = static_cast<TfLiteDivParams*>(node->builtin_data); |
| TFLITE_DCHECK(node->user_data != nullptr); |
| auto* data = static_cast<OpDataDiv*>(node->user_data); |
| |
| const TfLiteEvalTensor* input1 = |
| tflite::micro::GetEvalInput(context, node, kInputTensor1); |
| const TfLiteEvalTensor* input2 = |
| tflite::micro::GetEvalInput(context, node, kInputTensor2); |
| TfLiteEvalTensor* output = |
| tflite::micro::GetEvalOutput(context, node, kOutputTensor); |
| |
| if (output->type == kTfLiteFloat32) { |
| EvalDiv(context, node, params, data, input1, input2, output); |
| } else if (output->type == kTfLiteInt8) { |
| TF_LITE_ENSURE_OK(context, EvalQuantized(context, node, params, data, |
| input1, input2, output)); |
| } else { |
| MicroPrintf( |
| "DIV only supports FLOAT32, quantized INT8 " |
| "now, got type %s (%d).", |
| TfLiteTypeGetName(output->type), output->type); |
| return kTfLiteError; |
| } |
| |
| return kTfLiteOk; |
| } |
| |
| } // namespace |
| |
| TFLMRegistration Register_DIV() { |
| return tflite::micro::RegisterOp(Init, Prepare, Eval); |
| } |
| |
| } // namespace tflite |