| /* Copyright 2021 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| |
| #include "tensorflow/lite/kernels/internal/reference/dequantize.h" |
| |
| #include "tensorflow/lite/c/builtin_op_data.h" |
| #include "tensorflow/lite/c/common.h" |
| #include "tensorflow/lite/kernels/internal/quantization_util.h" |
| #include "tensorflow/lite/kernels/internal/reference/quantize.h" |
| #include "tensorflow/lite/kernels/internal/reference/requantize.h" |
| #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" |
| #include "tensorflow/lite/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/kernels/dequantize.h" |
| #include "tensorflow/lite/micro/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/micro_log.h" |
| |
| namespace tflite { |
| |
| void* DequantizeInit(TfLiteContext* context, const char* buffer, |
| size_t length) { |
| TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); |
| return context->AllocatePersistentBuffer(context, sizeof(DequantizeOpData)); |
| } |
| |
| TfLiteStatus DequantizeEval(TfLiteContext* context, TfLiteNode* node) { |
| TFLITE_DCHECK(node->user_data != nullptr); |
| DequantizeOpData* data = static_cast<DequantizeOpData*>(node->user_data); |
| |
| const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0); |
| TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0); |
| |
| // Output type ensured to be kTfLiteFloat32 at the Prepare stage |
| TFLITE_DCHECK(output->type == kTfLiteFloat32); |
| |
| switch (input->type) { |
| case kTfLiteInt8: |
| reference_ops::Dequantize(data->quantization_params, |
| tflite::micro::GetTensorShape(input), |
| tflite::micro::GetTensorData<int8_t>(input), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<float>(output)); |
| break; |
| case kTfLiteInt16: |
| reference_ops::Dequantize(data->quantization_params, |
| tflite::micro::GetTensorShape(input), |
| tflite::micro::GetTensorData<int16_t>(input), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<float>(output)); |
| break; |
| case kTfLiteUInt8: |
| reference_ops::Dequantize(data->quantization_params, |
| tflite::micro::GetTensorShape(input), |
| tflite::micro::GetTensorData<uint8_t>(input), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<float>(output)); |
| break; |
| default: |
| MicroPrintf("Input %s, output %s not supported.", |
| TfLiteTypeGetName(input->type), |
| TfLiteTypeGetName(output->type)); |
| return kTfLiteError; |
| } |
| |
| return kTfLiteOk; |
| } |
| |
| TFLMRegistration Register_DEQUANTIZE() { |
| return tflite::micro::RegisterOp(DequantizeInit, DequantizePrepare, |
| DequantizeEval); |
| } |
| |
| } // namespace tflite |