| /* Copyright 2021 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| |
| #include "tensorflow/lite/c/builtin_op_data.h" |
| #include "tensorflow/lite/c/common.h" |
| #include "tensorflow/lite/kernels/internal/common.h" |
| #include "tensorflow/lite/kernels/internal/quantization_util.h" |
| #include "tensorflow/lite/kernels/internal/reference/depthwiseconv_float.h" |
| #include "tensorflow/lite/kernels/internal/reference/integer_ops/depthwise_conv.h" |
| #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" |
| #include "tensorflow/lite/kernels/kernel_util.h" |
| #include "tensorflow/lite/kernels/padding.h" |
| #include "tensorflow/lite/micro/kernels/depthwise_conv.h" |
| #include "tensorflow/lite/micro/kernels/kernel_util.h" |
| |
| namespace tflite { |
| |
| const int kDepthwiseConvInputTensor = 0; |
| const int kDepthwiseConvWeightsTensor = 1; |
| const int kDepthwiseConvBiasTensor = 2; |
| const int kDepthwiseConvOutputTensor = 0; |
| |
| // DepthwiseConv is quantized along dimension 3: |
| // https://www.tensorflow.org/lite/performance/quantization_spec |
| const int kDepthwiseConvQuantizedDimension = 3; |
| |
| // Returns a DepthwiseParams struct with all the parameters needed for a |
| // float computation. |
| DepthwiseParams DepthwiseConvParamsFloat( |
| const TfLiteDepthwiseConvParams& params, const OpDataConv& data) { |
| DepthwiseParams op_params; |
| CalculateActivationRange(params.activation, &op_params.float_activation_min, |
| &op_params.float_activation_max); |
| op_params.padding_type = tflite::micro::RuntimePaddingType(params.padding); |
| op_params.padding_values.width = data.padding.width; |
| op_params.padding_values.height = data.padding.height; |
| op_params.stride_width = params.stride_width; |
| op_params.stride_height = params.stride_height; |
| op_params.dilation_width_factor = params.dilation_width_factor; |
| op_params.dilation_height_factor = params.dilation_height_factor; |
| op_params.depth_multiplier = params.depth_multiplier; |
| return op_params; |
| } |
| |
| // Returns a DepthwiseParams struct with all the parameters needed for a |
| // quantized computation. |
| DepthwiseParams DepthwiseConvParamsQuantized( |
| const TfLiteDepthwiseConvParams& params, const OpDataConv& data) { |
| DepthwiseParams op_params; |
| op_params.input_offset = -data.input_zero_point; |
| op_params.weights_offset = -data.filter_zero_point; |
| op_params.output_offset = data.output_zero_point; |
| op_params.output_multiplier = data.output_multiplier; |
| op_params.output_shift = -data.output_shift; |
| op_params.padding_type = tflite::micro::RuntimePaddingType(params.padding); |
| op_params.padding_values.height = data.padding.height; |
| op_params.padding_values.width = data.padding.width; |
| op_params.stride_height = params.stride_height; |
| op_params.stride_width = params.stride_width; |
| op_params.dilation_height_factor = params.dilation_height_factor; |
| op_params.dilation_width_factor = params.dilation_width_factor; |
| op_params.depth_multiplier = params.depth_multiplier; |
| op_params.quantized_activation_min = data.output_activation_min; |
| op_params.quantized_activation_max = data.output_activation_max; |
| return op_params; |
| } |
| |
| TfLiteStatus CalculateOpDataDepthwiseConv( |
| TfLiteContext* context, TfLiteNode* node, |
| const TfLiteDepthwiseConvParams& params, int width, int height, |
| int filter_width, int filter_height, int out_width, int out_height, |
| const TfLiteType data_type, OpDataConv* data) { |
| bool has_bias = node->inputs->size == 3; |
| // Check number of inputs/outputs |
| TF_LITE_ENSURE(context, has_bias || node->inputs->size == 2); |
| TF_LITE_ENSURE_EQ(context, node->outputs->size, 1); |
| |
| // Matching GetWindowedOutputSize in TensorFlow. |
| auto padding = params.padding; |
| data->padding = ComputePaddingHeightWidth( |
| params.stride_height, params.stride_width, params.dilation_height_factor, |
| params.dilation_width_factor, height, width, filter_height, filter_width, |
| padding, &out_height, &out_width); |
| |
| MicroContext* micro_context = GetMicroContext(context); |
| |
| TfLiteTensor* input = |
| micro_context->AllocateTempInputTensor(node, kConvInputTensor); |
| TF_LITE_ENSURE(context, input != nullptr); |
| TfLiteTensor* filter = |
| micro_context->AllocateTempInputTensor(node, kConvWeightsTensor); |
| TF_LITE_ENSURE(context, filter != nullptr); |
| TfLiteTensor* bias = |
| micro_context->AllocateTempInputTensor(node, kConvBiasTensor); |
| TfLiteTensor* output = |
| micro_context->AllocateTempOutputTensor(node, kConvOutputTensor); |
| TF_LITE_ENSURE(context, output != nullptr); |
| |
| // Note that quantized inference requires that all tensors have their |
| // parameters set. This is usually done during quantized training. |
| if (data_type != kTfLiteFloat32) { |
| int output_channels = filter->dims->data[kDepthwiseConvQuantizedDimension]; |
| |
| TF_LITE_ENSURE_STATUS(tflite::PopulateConvolutionQuantizationParams( |
| context, input, filter, bias, output, params.activation, |
| &data->output_multiplier, &data->output_shift, |
| &data->output_activation_min, &data->output_activation_max, |
| data->per_channel_output_multiplier, data->per_channel_output_shift, |
| output_channels)); |
| } |
| |
| data->input_zero_point = input->params.zero_point; |
| data->filter_zero_point = filter->params.zero_point; |
| data->output_zero_point = output->params.zero_point; |
| |
| micro_context->DeallocateTempTfLiteTensor(input); |
| micro_context->DeallocateTempTfLiteTensor(filter); |
| micro_context->DeallocateTempTfLiteTensor(bias); |
| micro_context->DeallocateTempTfLiteTensor(output); |
| |
| return kTfLiteOk; |
| } |
| |
| TfLiteStatus DepthwiseConvPrepare(TfLiteContext* context, TfLiteNode* node) { |
| TFLITE_DCHECK(node->user_data != nullptr); |
| TFLITE_DCHECK(node->builtin_data != nullptr); |
| |
| OpDataConv* data = static_cast<OpDataConv*>(node->user_data); |
| const auto& params = |
| *(static_cast<const TfLiteDepthwiseConvParams*>(node->builtin_data)); |
| MicroContext* micro_context = GetMicroContext(context); |
| |
| TfLiteTensor* output = |
| micro_context->AllocateTempOutputTensor(node, kDepthwiseConvOutputTensor); |
| TF_LITE_ENSURE(context, output != nullptr); |
| TfLiteTensor* input = |
| micro_context->AllocateTempInputTensor(node, kDepthwiseConvInputTensor); |
| TF_LITE_ENSURE(context, input != nullptr); |
| TfLiteTensor* filter = |
| micro_context->AllocateTempInputTensor(node, kDepthwiseConvWeightsTensor); |
| TF_LITE_ENSURE(context, filter != nullptr); |
| |
| const int input_width = input->dims->data[2]; |
| const int input_height = input->dims->data[1]; |
| const int filter_width = filter->dims->data[2]; |
| const int filter_height = filter->dims->data[1]; |
| const int output_width = output->dims->data[2]; |
| const int output_height = output->dims->data[1]; |
| |
| // Dynamically allocate per-channel quantization parameters. |
| const int num_channels = filter->dims->data[kDepthwiseConvQuantizedDimension]; |
| data->per_channel_output_multiplier = |
| static_cast<int32_t*>(context->AllocatePersistentBuffer( |
| context, num_channels * sizeof(int32_t))); |
| data->per_channel_output_shift = |
| static_cast<int32_t*>(context->AllocatePersistentBuffer( |
| context, num_channels * sizeof(int32_t))); |
| |
| // All per-channel quantized tensors need valid zero point and scale arrays. |
| if (input->type == kTfLiteInt8) { |
| TF_LITE_ENSURE_EQ(context, filter->quantization.type, |
| kTfLiteAffineQuantization); |
| |
| const auto* affine_quantization = |
| static_cast<TfLiteAffineQuantization*>(filter->quantization.params); |
| TFLITE_DCHECK(affine_quantization != nullptr); |
| TFLITE_DCHECK(affine_quantization->scale != nullptr); |
| TFLITE_DCHECK(affine_quantization->zero_point != nullptr); |
| |
| TF_LITE_ENSURE( |
| context, affine_quantization->scale->size == 1 || |
| affine_quantization->scale->size == |
| filter->dims->data[kDepthwiseConvQuantizedDimension]); |
| |
| TF_LITE_ENSURE_EQ(context, affine_quantization->scale->size, |
| affine_quantization->zero_point->size); |
| } |
| |
| TF_LITE_ENSURE_MSG( |
| context, |
| input->type == filter->type || |
| (input->type == kTfLiteInt8 && |
| (filter->type == kTfLiteInt4 || filter->type == kTfLiteInt8)) || |
| (input->type == kTfLiteInt16 && filter->type == kTfLiteInt8), |
| "Hybrid models are not supported on TFLite Micro."); |
| |
| if (filter->type == kTfLiteInt4) { |
| int filter_size = |
| RuntimeShape(filter->dims->size, |
| reinterpret_cast<const int32_t*>(filter->dims->data)) |
| .FlatSize(); |
| context->RequestScratchBufferInArena(context, filter_size, |
| &data->filter_buffer_index); |
| } |
| |
| TF_LITE_ENSURE_STATUS(CalculateOpDataDepthwiseConv( |
| context, node, params, input_width, input_height, filter_width, |
| filter_height, output_width, output_height, input->type, data)); |
| |
| micro_context->DeallocateTempTfLiteTensor(output); |
| micro_context->DeallocateTempTfLiteTensor(input); |
| micro_context->DeallocateTempTfLiteTensor(filter); |
| |
| return kTfLiteOk; |
| } |
| |
| } // namespace tflite |