| /* Copyright 2021 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| |
| #include <limits> |
| #include <type_traits> |
| |
| #include "tensorflow/lite/c/builtin_op_data.h" |
| #include "tensorflow/lite/c/common.h" |
| #include "tensorflow/lite/micro/kernels/kernel_runner.h" |
| #include "tensorflow/lite/micro/test_helpers.h" |
| #include "tensorflow/lite/micro/testing/micro_test.h" |
| |
| namespace tflite { |
| namespace testing { |
| namespace { |
| |
| struct CumSumTestParams { |
| bool exclusive = false; |
| bool reverse = false; |
| int32_t axis = std::numeric_limits<int32_t>::max(); |
| }; |
| |
| void ExecuteCumSumTest(CumSumTestParams& test_params, TfLiteTensor* tensors, |
| int tensors_count) { |
| int kInputArrayData[] = {2, 0, 1}; |
| TfLiteIntArray* inputs_array = IntArrayFromInts(kInputArrayData); |
| int kOutputArrayData[] = {1, 2}; |
| TfLiteIntArray* outputs_array = IntArrayFromInts(kOutputArrayData); |
| |
| TfLiteCumsumParams params; |
| params.exclusive = test_params.exclusive; |
| params.reverse = test_params.reverse; |
| |
| const TFLMRegistration registration = tflite::Register_CUMSUM(); |
| micro::KernelRunner runner(registration, tensors, tensors_count, inputs_array, |
| outputs_array, static_cast<void*>(¶ms)); |
| |
| TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.InitAndPrepare()); |
| TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.Invoke()); |
| } |
| |
| template <typename T> |
| void TestCumSum(CumSumTestParams& test_params, int* input_dims_data, |
| const T* input_data, int* expected_dims, const T* expected_data, |
| T* output_data) { |
| TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data); |
| TfLiteIntArray* output_dims = IntArrayFromInts(expected_dims); |
| const int output_count = ElementCount(*output_dims); |
| |
| int axis_dims_data[] = {1, 1}; |
| TfLiteIntArray* axis_dims = IntArrayFromInts(axis_dims_data); |
| const int32_t axis_data[] = {test_params.axis}; |
| |
| TfLiteTensor tensors[] = { |
| CreateTensor(input_data, input_dims), |
| CreateTensor(axis_data, axis_dims), |
| CreateTensor(output_data, output_dims), |
| }; |
| constexpr int tensors_count = std::extent<decltype(tensors)>::value; |
| ExecuteCumSumTest(test_params, tensors, tensors_count); |
| |
| constexpr float kTolerance = 1e-5; |
| for (int i = 0; i < output_count; i++) { |
| TF_LITE_MICRO_EXPECT_NEAR(expected_data[i], output_data[i], kTolerance); |
| } |
| } |
| |
| // min/max are used to compute scale, zero-point, compare tolerance |
| template <typename T, int kOutputSize> |
| struct TestQuantParams { |
| float data_min; // input and output data minimum value |
| float data_max; // input and output data maximum value |
| T input_data[kOutputSize]; // quantized input storage |
| T output_data[kOutputSize]; // quantized output storage |
| }; |
| |
| // for quantized int, the error shouldn't exceed step |
| template <typename T> |
| float GetTolerance(float min, float max) { |
| float kQuantizedStep = |
| 2.0f * (max - min) / |
| (std::numeric_limits<T>::max() - std::numeric_limits<T>::min()); |
| return kQuantizedStep; |
| } |
| |
| template <typename T, int kOutputSize> |
| void TestCumSumQuantized(CumSumTestParams& test_params, |
| TestQuantParams<T, kOutputSize>* params, |
| int* input_dims_data, const float* input_data, |
| int* expected_dims, const float* expected_data, |
| float* output_data) { |
| TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data); |
| TfLiteIntArray* output_dims = IntArrayFromInts(expected_dims); |
| |
| int axis_dims_data[] = {1, 1}; |
| TfLiteIntArray* axis_dims = IntArrayFromInts(axis_dims_data); |
| const int32_t axis_data[] = {test_params.axis}; |
| |
| const float scale = ScaleFromMinMax<T>(params->data_min, params->data_max); |
| const int zero_point = |
| ZeroPointFromMinMax<T>(params->data_min, params->data_max); |
| |
| TfLiteTensor tensors[] = { |
| CreateQuantizedTensor(input_data, params->input_data, input_dims, scale, |
| zero_point), |
| CreateTensor(axis_data, axis_dims), |
| CreateQuantizedTensor(params->output_data, output_dims, scale, |
| zero_point), |
| }; |
| |
| constexpr int tensors_count = std::extent<decltype(tensors)>::value; |
| ExecuteCumSumTest(test_params, tensors, tensors_count); |
| |
| Dequantize(params->output_data, kOutputSize, scale, zero_point, output_data); |
| const float kTolerance = GetTolerance<T>(params->data_min, params->data_max); |
| for (int i = 0; i < kOutputSize; i++) { |
| TF_LITE_MICRO_EXPECT_NEAR(expected_data[i], output_data[i], kTolerance); |
| } |
| } |
| |
| } // namespace |
| } // namespace testing |
| } // namespace tflite |
| |
| TF_LITE_MICRO_TESTS_BEGIN |
| |
| TF_LITE_MICRO_TEST(CumSumOpTestSimpleTest) { |
| int kDims[] = {2, 2, 4}; |
| constexpr float kInput[] = {1, 2, 3, 4, 5, 6, 7, 8}; |
| constexpr float kExpect[] = {1, 3, 6, 10, 5, 11, 18, 26}; |
| |
| constexpr int kOutputCount = std::extent<decltype(kExpect)>::value; |
| float output_data[kOutputCount]; |
| |
| tflite::testing::CumSumTestParams test_params; |
| test_params.axis = 1; |
| |
| tflite::testing::TestCumSum(test_params, kDims, kInput, kDims, kExpect, |
| output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(CumSumOpTestSimpleAxis0Test) { |
| int kDims[] = {2, 2, 4}; |
| constexpr float kInput[] = {1, 2, 3, 4, 5, 6, 7, 8}; |
| constexpr float kExpect[] = {1, 2, 3, 4, 6, 8, 10, 12}; |
| |
| constexpr int kOutputCount = std::extent<decltype(kExpect)>::value; |
| float output_data[kOutputCount]; |
| |
| tflite::testing::CumSumTestParams test_params; |
| test_params.axis = 0; |
| |
| tflite::testing::TestCumSum(test_params, kDims, kInput, kDims, kExpect, |
| output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(CumSumOpTestSimple1DTest) { |
| int kDims[] = {1, 8}; |
| constexpr float kInput[] = {1, 2, 3, 4, 5, 6, 7, 8}; |
| constexpr float kExpect[] = {1, 3, 6, 10, 15, 21, 28, 36}; |
| |
| constexpr int kOutputCount = std::extent<decltype(kExpect)>::value; |
| float output_data[kOutputCount]; |
| |
| tflite::testing::CumSumTestParams test_params; |
| test_params.axis = 0; |
| |
| tflite::testing::TestCumSum(test_params, kDims, kInput, kDims, kExpect, |
| output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(CumSumOpTestSimpleReverseTest) { |
| int kDims[] = {2, 2, 4}; |
| constexpr float kInput[] = {1, 2, 3, 4, 5, 6, 7, 8}; |
| constexpr float kExpect[] = {10, 9, 7, 4, 26, 21, 15, 8}; |
| |
| constexpr int kOutputCount = std::extent<decltype(kExpect)>::value; |
| float output_data[kOutputCount]; |
| |
| tflite::testing::CumSumTestParams test_params; |
| test_params.axis = 1; |
| test_params.reverse = true; |
| |
| tflite::testing::TestCumSum(test_params, kDims, kInput, kDims, kExpect, |
| output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(CumSumOpTestSimpleExclusiveTest) { |
| int kDims[] = {2, 2, 4}; |
| constexpr float kInput[] = {1, 2, 3, 4, 5, 6, 7, 8}; |
| constexpr float kExpect[] = {0, 1, 3, 6, 0, 5, 11, 18}; |
| |
| constexpr int kOutputCount = std::extent<decltype(kExpect)>::value; |
| float output_data[kOutputCount]; |
| |
| tflite::testing::CumSumTestParams test_params; |
| test_params.axis = 1; |
| test_params.exclusive = true; |
| |
| tflite::testing::TestCumSum(test_params, kDims, kInput, kDims, kExpect, |
| output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(CumSumOpTestSimpleReverseExclusiveTest) { |
| int kDims[] = {2, 2, 4}; |
| constexpr float kInput[] = {1, 2, 3, 4, 5, 6, 7, 8}; |
| constexpr float kExpect[] = {9, 7, 4, 0, 21, 15, 8, 0}; |
| |
| constexpr int kOutputCount = std::extent<decltype(kExpect)>::value; |
| float output_data[kOutputCount]; |
| |
| tflite::testing::CumSumTestParams test_params; |
| test_params.axis = -1; |
| test_params.exclusive = true; |
| test_params.reverse = true; |
| |
| tflite::testing::TestCumSum(test_params, kDims, kInput, kDims, kExpect, |
| output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(CumSumOpTestSimpleTestInt8) { |
| int kDims[] = {2, 2, 4}; |
| constexpr float kInput[] = {1, 2, 3, 4, 5, 6, 7, 8}; |
| constexpr float kExpect[] = {1, 3, 6, 10, 5, 11, 18, 26}; |
| |
| constexpr int kOutputCount = std::extent<decltype(kExpect)>::value; |
| float output_data[kOutputCount]; |
| |
| tflite::testing::CumSumTestParams test_params; |
| test_params.axis = 1; |
| |
| tflite::testing::TestQuantParams<int8_t, kOutputCount> params = {}; |
| params.data_min = -26.0f; |
| params.data_max = 26.0f; |
| |
| tflite::testing::TestCumSumQuantized<int8_t, kOutputCount>( |
| test_params, ¶ms, kDims, kInput, kDims, kExpect, output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(CumSumOpTestSimpleAxis0TestInt8) { |
| int kDims[] = {2, 2, 4}; |
| constexpr float kInput[] = {1, 2, 3, 4, 5, 6, 7, 8}; |
| constexpr float kExpect[] = {1, 2, 3, 4, 6, 8, 10, 12}; |
| |
| constexpr int kOutputCount = std::extent<decltype(kExpect)>::value; |
| float output_data[kOutputCount]; |
| |
| tflite::testing::CumSumTestParams test_params; |
| test_params.axis = 0; |
| |
| tflite::testing::TestQuantParams<int8_t, kOutputCount> params = {}; |
| params.data_min = -12.0f; |
| params.data_max = 12.0f; |
| |
| tflite::testing::TestCumSumQuantized<int8_t, kOutputCount>( |
| test_params, ¶ms, kDims, kInput, kDims, kExpect, output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(CumSumOpTestSimple1DTestInt8) { |
| int kDims[] = {1, 8}; |
| constexpr float kInput[] = {1, 2, 3, 4, 5, 6, 7, 8}; |
| constexpr float kExpect[] = {1, 3, 6, 10, 15, 21, 28, 36}; |
| |
| constexpr int kOutputCount = std::extent<decltype(kExpect)>::value; |
| float output_data[kOutputCount]; |
| |
| tflite::testing::CumSumTestParams test_params; |
| test_params.axis = 0; |
| |
| tflite::testing::TestQuantParams<int8_t, kOutputCount> params = {}; |
| params.data_min = -36.0f; |
| params.data_max = 36.0f; |
| |
| tflite::testing::TestCumSumQuantized<int8_t, kOutputCount>( |
| test_params, ¶ms, kDims, kInput, kDims, kExpect, output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(CumSumOpTestSimpleReverseTestInt8) { |
| int kDims[] = {2, 2, 4}; |
| constexpr float kInput[] = {1, 2, 3, 4, 5, 6, 7, 8}; |
| constexpr float kExpect[] = {10, 9, 7, 4, 26, 21, 15, 8}; |
| |
| constexpr int kOutputCount = std::extent<decltype(kExpect)>::value; |
| float output_data[kOutputCount]; |
| |
| tflite::testing::CumSumTestParams test_params; |
| test_params.axis = 1; |
| test_params.reverse = true; |
| |
| tflite::testing::TestQuantParams<int8_t, kOutputCount> params = {}; |
| params.data_min = -26.0f; |
| params.data_max = 26.0f; |
| |
| tflite::testing::TestCumSumQuantized<int8_t, kOutputCount>( |
| test_params, ¶ms, kDims, kInput, kDims, kExpect, output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(CumSumOpTestSimpleExclusiveTestInt8) { |
| int kDims[] = {2, 2, 4}; |
| constexpr float kInput[] = {1, 2, 3, 4, 5, 6, 7, 8}; |
| constexpr float kExpect[] = {0, 1, 3, 6, 0, 5, 11, 18}; |
| |
| constexpr int kOutputCount = std::extent<decltype(kExpect)>::value; |
| float output_data[kOutputCount]; |
| |
| tflite::testing::CumSumTestParams test_params; |
| test_params.axis = 1; |
| test_params.exclusive = true; |
| |
| tflite::testing::TestQuantParams<int8_t, kOutputCount> params = {}; |
| params.data_min = -18.0f; |
| params.data_max = 18.0f; |
| |
| tflite::testing::TestCumSumQuantized<int8_t, kOutputCount>( |
| test_params, ¶ms, kDims, kInput, kDims, kExpect, output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(CumSumOpTestSimpleReverseExclusiveTestInt8) { |
| int kDims[] = {2, 2, 4}; |
| constexpr float kInput[] = {1, 2, 3, 4, 5, 6, 7, 8}; |
| constexpr float kExpect[] = {9, 7, 4, 0, 21, 15, 8, 0}; |
| |
| constexpr int kOutputCount = std::extent<decltype(kExpect)>::value; |
| float output_data[kOutputCount]; |
| |
| tflite::testing::CumSumTestParams test_params; |
| test_params.axis = -1; |
| test_params.exclusive = true; |
| test_params.reverse = true; |
| |
| tflite::testing::TestQuantParams<int8_t, kOutputCount> params = {}; |
| params.data_min = -21.0f; |
| params.data_max = 21.0f; |
| |
| tflite::testing::TestCumSumQuantized<int8_t, kOutputCount>( |
| test_params, ¶ms, kDims, kInput, kDims, kExpect, output_data); |
| } |
| TF_LITE_MICRO_TESTS_END |