| /* Copyright 2021 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| |
| #include "tensorflow/lite/kernels/internal/reference/cumsum.h" |
| |
| #include "tensorflow/lite/c/common.h" |
| #include "tensorflow/lite/kernels/internal/quantization_util.h" |
| #include "tensorflow/lite/kernels/internal/types.h" |
| #include "tensorflow/lite/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/micro_log.h" |
| |
| namespace tflite { |
| namespace { |
| |
| constexpr int kInputTensor = 0; |
| constexpr int kAxisTensor = 1; |
| constexpr int kOutputTensor = 0; |
| |
| constexpr int kCumSumIntegerShift = 20; |
| |
| // only used with INT8 tensors |
| struct OpData { |
| int32_t output_activation_min; |
| int32_t output_activation_max; |
| int32_t input_offset; |
| int32_t output_offset; |
| int32_t input_multiplier; |
| int32_t output_multiplier; |
| int input_shift; |
| int output_shift; |
| int left_shift; |
| }; |
| |
| TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node) { |
| TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); |
| TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); |
| |
| MicroContext* micro_context = GetMicroContext(context); |
| |
| TfLiteTensor* input = |
| micro_context->AllocateTempInputTensor(node, kInputTensor); |
| TfLiteTensor* axis = |
| micro_context->AllocateTempInputTensor(node, kAxisTensor); |
| |
| TF_LITE_ENSURE(context, |
| input->type == kTfLiteFloat32 || input->type == kTfLiteInt8); |
| TF_LITE_ENSURE_EQ(context, axis->type, kTfLiteInt32); |
| |
| TF_LITE_ENSURE_EQ(context, NumElements(axis), 1); |
| |
| TF_LITE_ENSURE(context, NumDimensions(input) >= 1); |
| |
| TfLiteTensor* output = |
| micro_context->AllocateTempOutputTensor(node, kOutputTensor); |
| |
| TF_LITE_ENSURE_EQ(context, input->type, output->type); |
| TF_LITE_ENSURE(context, HaveSameShapes(input, output)); |
| |
| if (output->type == kTfLiteInt8) { |
| node->user_data = |
| context->AllocatePersistentBuffer(context, sizeof(OpData)); |
| OpData* data = static_cast<OpData*>(node->user_data); |
| |
| // 8bit -> 8bit general quantized path, with general rescalings |
| data->input_offset = -input->params.zero_point; |
| data->output_offset = output->params.zero_point; |
| data->left_shift = kCumSumIntegerShift; |
| const double twice_max_input_scale = |
| 2 * static_cast<double>(input->params.scale); |
| const double real_input_multiplier = |
| static_cast<double>(input->params.scale) / twice_max_input_scale; |
| const double real_output_multiplier = |
| twice_max_input_scale / |
| ((1 << data->left_shift) * static_cast<double>(output->params.scale)); |
| |
| QuantizeMultiplierSmallerThanOneExp( |
| real_input_multiplier, &data->input_multiplier, &data->input_shift); |
| |
| QuantizeMultiplierSmallerThanOneExp( |
| real_output_multiplier, &data->output_multiplier, &data->output_shift); |
| |
| TF_LITE_ENSURE_STATUS(CalculateActivationRangeQuantized( |
| context, kTfLiteActNone, output, &data->output_activation_min, |
| &data->output_activation_max)); |
| } |
| |
| micro_context->DeallocateTempTfLiteTensor(input); |
| micro_context->DeallocateTempTfLiteTensor(axis); |
| micro_context->DeallocateTempTfLiteTensor(output); |
| |
| return kTfLiteOk; |
| } |
| |
| TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { |
| return CalculateOpData(context, node); |
| } |
| |
| TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { |
| const TfLiteEvalTensor* input = |
| tflite::micro::GetEvalInput(context, node, kInputTensor); |
| const TfLiteEvalTensor* axis_tensor = |
| tflite::micro::GetEvalInput(context, node, kAxisTensor); |
| |
| TfLiteEvalTensor* output = |
| tflite::micro::GetEvalOutput(context, node, kOutputTensor); |
| |
| auto* cs_params = static_cast<TfLiteCumsumParams*>(node->builtin_data); |
| auto input_shape = tflite::micro::GetTensorShape(input); |
| |
| int32_t axis = *tflite::micro::GetTensorData<int32_t>(axis_tensor); |
| if (axis < 0) axis += input_shape.DimensionsCount(); |
| |
| if (axis < 0 || axis >= input_shape.DimensionsCount()) { |
| MicroPrintf("CUMSUM Invalid axis: %d", axis); |
| return kTfLiteError; |
| } |
| |
| switch (input->type) { |
| case kTfLiteFloat32: { |
| reference_ops::CumSum(tflite::micro::GetTensorData<float>(input), |
| input_shape, axis, cs_params->exclusive, |
| cs_params->reverse, |
| tflite::micro::GetTensorData<float>(output)); |
| return kTfLiteOk; |
| } break; |
| |
| case kTfLiteInt8: { |
| auto* data = static_cast<OpData*>(node->user_data); |
| ArithmeticParams params; |
| params.left_shift = data->left_shift; |
| params.input1_offset = data->input_offset; |
| params.input1_multiplier = data->input_multiplier; |
| params.input1_shift = data->input_shift; |
| params.output_offset = data->output_offset; |
| params.output_multiplier = data->output_multiplier; |
| params.output_shift = data->output_shift; |
| SetActivationParams(data->output_activation_min, |
| data->output_activation_max, ¶ms); |
| reference_ops::CumSum(params, tflite::micro::GetTensorData<int8_t>(input), |
| input_shape, axis, cs_params->exclusive, |
| cs_params->reverse, |
| tflite::micro::GetTensorData<int8_t>(output)); |
| return kTfLiteOk; |
| } break; |
| |
| default: { |
| MicroPrintf("CUMSUM only supports FLOAT32 and INT8, got %s.", |
| TfLiteTypeGetName(output->type)); |
| return kTfLiteError; |
| } |
| } |
| |
| return kTfLiteError; |
| } |
| |
| } // namespace |
| |
| TFLMRegistration Register_CUMSUM() { |
| return tflite::micro::RegisterOp(nullptr, Prepare, Eval); |
| } |
| |
| } // namespace tflite |