| /* Copyright 2022 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| #include <initializer_list> |
| |
| #include "tensorflow/lite/c/builtin_op_data.h" |
| #include "tensorflow/lite/c/common.h" |
| #include "tensorflow/lite/micro/kernels/kernel_runner.h" |
| #include "tensorflow/lite/micro/test_helpers.h" |
| #include "tensorflow/lite/micro/testing/micro_test.h" |
| |
| namespace tflite { |
| namespace testing { |
| namespace { |
| |
| template <typename T> |
| void TestConcatenateOneInput(int* input1_dims_data, const T* input1_data, |
| int axis, int* output_dims_data, T* output_data) { |
| TfLiteIntArray* input1_dims = IntArrayFromInts(input1_dims_data); |
| TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data); |
| |
| constexpr int input_size = 1; |
| constexpr int output_size = 1; |
| constexpr int tensors_size = input_size + output_size; |
| TfLiteTensor tensors[tensors_size] = {CreateTensor(input1_data, input1_dims), |
| CreateTensor(output_data, output_dims)}; |
| |
| int inputs_array_data[] = {1, 0}; |
| TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data); |
| int outputs_array_data[] = {1, 1}; |
| TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data); |
| |
| TfLiteConcatenationParams builtin_data = { |
| .axis = axis, |
| .activation = kTfLiteActNone // Only activation supported in this impl |
| }; |
| |
| const TFLMRegistration registration = Register_CONCATENATION(); |
| micro::KernelRunner runner(registration, tensors, tensors_size, inputs_array, |
| outputs_array, |
| reinterpret_cast<void*>(&builtin_data)); |
| |
| TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.InitAndPrepare()); |
| TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.Invoke()); |
| } |
| |
| template <typename T> |
| void TestConcatenateTwoInputs(int* input1_dims_data, const T* input1_data, |
| int* input2_dims_data, const T* input2_data, |
| int axis, int* output_dims_data, T* output_data) { |
| TfLiteIntArray* input1_dims = IntArrayFromInts(input1_dims_data); |
| TfLiteIntArray* input2_dims = IntArrayFromInts(input2_dims_data); |
| TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data); |
| |
| constexpr int input_size = 2; |
| constexpr int output_size = 1; |
| constexpr int tensors_size = input_size + output_size; |
| TfLiteTensor tensors[tensors_size] = {CreateTensor(input1_data, input1_dims), |
| CreateTensor(input2_data, input2_dims), |
| CreateTensor(output_data, output_dims)}; |
| |
| int inputs_array_data[] = {2, 0, 1}; |
| TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data); |
| int outputs_array_data[] = {1, 2}; |
| TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data); |
| |
| TfLiteConcatenationParams builtin_data = { |
| .axis = axis, |
| .activation = kTfLiteActNone // Only activation supported in this impl |
| }; |
| |
| const TFLMRegistration registration = Register_CONCATENATION(); |
| micro::KernelRunner runner(registration, tensors, tensors_size, inputs_array, |
| outputs_array, |
| reinterpret_cast<void*>(&builtin_data)); |
| |
| TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.InitAndPrepare()); |
| TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.Invoke()); |
| } |
| |
| void TestConcatenateTwoFloatInputs( |
| int* input1_dims_data, const float* input1_data, int* input2_dims_data, |
| const float* input2_data, int axis, int* output_dims_data, |
| const float* expected_output_data, float* output_data) { |
| TestConcatenateTwoInputs(input1_dims_data, input1_data, input2_dims_data, |
| input2_data, axis, output_dims_data, output_data); |
| |
| TfLiteIntArray* dims = tflite::testing::IntArrayFromInts(output_dims_data); |
| const int output_dims_count = ElementCount(*dims); |
| for (int i = 0; i < output_dims_count; ++i) { |
| TF_LITE_MICRO_EXPECT_NEAR(expected_output_data[i], output_data[i], 1e-5f); |
| } |
| } |
| |
| template <typename T> |
| void TestConcatenateQuantizedTwoInputs( |
| int* input1_dims_data, const T* input1_data, int* input2_dims_data, |
| const T* input2_data, const float input_scale, const int input_zero_point, |
| int axis, int* output_dims_data, const T* expected_output_data, |
| const float output_scale, const int output_zero_point, T* output_data) { |
| TfLiteIntArray* input1_dims = IntArrayFromInts(input1_dims_data); |
| TfLiteIntArray* input2_dims = IntArrayFromInts(input2_dims_data); |
| TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data); |
| |
| constexpr int input_size = 2; |
| constexpr int output_size = 1; |
| constexpr int tensors_size = input_size + output_size; |
| TfLiteTensor tensors[tensors_size] = { |
| CreateQuantizedTensor(input1_data, input1_dims, input_scale, |
| input_zero_point), |
| CreateQuantizedTensor(input2_data, input2_dims, input_scale, |
| input_zero_point), |
| CreateQuantizedTensor(output_data, output_dims, output_scale, |
| output_zero_point)}; |
| |
| int inputs_array_data[] = {2, 0, 1}; |
| TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data); |
| int outputs_array_data[] = {1, 2}; |
| TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data); |
| |
| TfLiteConcatenationParams builtin_data = { |
| .axis = axis, |
| .activation = kTfLiteActNone // Only activation supported in this impl |
| }; |
| |
| const TFLMRegistration registration = Register_CONCATENATION(); |
| micro::KernelRunner runner(registration, tensors, tensors_size, inputs_array, |
| outputs_array, |
| reinterpret_cast<void*>(&builtin_data)); |
| |
| TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.InitAndPrepare()); |
| TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.Invoke()); |
| |
| const int output_dims_count = ElementCount(*output_dims); |
| for (int i = 0; i < output_dims_count; ++i) { |
| TF_LITE_MICRO_EXPECT_EQ(expected_output_data[i], output_data[i]); |
| } |
| } |
| |
| } // namespace |
| } // namespace testing |
| } // namespace tflite |
| |
| TF_LITE_MICRO_TESTS_BEGIN |
| |
| TF_LITE_MICRO_TEST(BoolTypeOneInput) { |
| int input_shape[] = {3, 2, 1, 2}; |
| int output_shape[] = {3, 2, 1, 2}; |
| const bool input_value[] = {true, false, false, true}; |
| int axis = 1; |
| |
| bool output_data[4]; |
| tflite::testing::TestConcatenateOneInput(input_shape, input_value, axis, |
| output_shape, output_data); |
| |
| TfLiteIntArray* dims = tflite::testing::IntArrayFromInts(output_shape); |
| const int output_dims_count = tflite::ElementCount(*dims); |
| for (int i = 0; i < output_dims_count; ++i) { |
| TF_LITE_MICRO_EXPECT_EQ(input_value[i], output_data[i]); |
| } |
| } |
| |
| TF_LITE_MICRO_TEST(BoolTypeTwoInputs) { |
| int input1_shape[] = {3, 2, 1, 2}; |
| const bool input1_value[] = {false, false, false, false}; |
| int input2_shape[] = {3, 2, 3, 2}; |
| const bool input2_value[] = {true, true, true, true, true, true, |
| true, true, true, true, true, true}; |
| |
| const bool expected_output[] = {false, false, true, true, true, true, |
| true, true, false, false, true, true, |
| true, true, true, true}; |
| |
| const int axis = 1; |
| int output_shape[] = {3, 2, 4, 2}; |
| bool output_data[16]; |
| |
| tflite::testing::TestConcatenateTwoInputs(input1_shape, input1_value, |
| input2_shape, input2_value, axis, |
| output_shape, output_data); |
| |
| TfLiteIntArray* dims = tflite::testing::IntArrayFromInts(output_shape); |
| const int output_dims_count = tflite::ElementCount(*dims); |
| for (int i = 0; i < output_dims_count; ++i) { |
| TF_LITE_MICRO_EXPECT_EQ(expected_output[i], output_data[i]); |
| } |
| } |
| |
| TF_LITE_MICRO_TEST(TwoInputsAllAxesCombinations) { |
| // Concatenate the same two input tensors along all possible axes. |
| |
| int input_shape[] = {2, 2, 3}; |
| const float input1_value[] = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f}; |
| const float input2_value[] = {7.0f, 8.0f, 9.0f, 10.0f, 11.0f, 12.0f}; |
| |
| // expected output when concatenating on axis 0 |
| int output_shape_axis0[] = {2, 4, 3}; |
| const float output_value_axis0[] = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, |
| 7.0f, 8.0f, 9.0f, 10.0f, 11.0f, 12.0f}; |
| |
| // expected output when concatenating on axis 1 |
| int output_shape_axis1[] = {2, 2, 6}; |
| const float output_value_axis1[] = {1.0f, 2.0f, 3.0f, 7.0f, 8.0f, 9.0f, |
| 4.0f, 5.0f, 6.0f, 10.0f, 11.0f, 12.0f}; |
| |
| float output_data[12]; |
| |
| // Axis = 0 |
| tflite::testing::TestConcatenateTwoFloatInputs( |
| input_shape, input1_value, input_shape, input2_value, /* axis */ 0, |
| output_shape_axis0, output_value_axis0, output_data); |
| |
| // Axis = -2 (equivalent to axis = 0) |
| tflite::testing::TestConcatenateTwoFloatInputs( |
| input_shape, input1_value, input_shape, input2_value, /* axis */ -2, |
| output_shape_axis0, output_value_axis0, output_data); |
| |
| // Axis = 1 |
| tflite::testing::TestConcatenateTwoFloatInputs( |
| input_shape, input1_value, input_shape, input2_value, /* axis */ 1, |
| output_shape_axis1, output_value_axis1, output_data); |
| |
| // Axis = -1 (equivalent to axis = 1) |
| tflite::testing::TestConcatenateTwoFloatInputs( |
| input_shape, input1_value, input_shape, input2_value, /* axis */ -1, |
| output_shape_axis1, output_value_axis1, output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(TwoInputsQuantizedInt8) { |
| const int axis = 2; |
| int input_shape[] = {3, 2, 1, 2}; |
| int output_shape[] = {3, 2, 1, 4}; |
| |
| const float input_scale = 0.1f; |
| const int input_zero_point = 0; |
| const float output_scale = 0.1f; |
| const int output_zero_point = 0; |
| |
| const int8_t input1_values[] = {1, 2, 3, 4}; |
| |
| const int8_t input2_values[] = {5, 6, 7, 8}; |
| |
| const int8_t output_value[] = {1, 2, 5, 6, 3, 4, 7, 8}; |
| |
| int8_t output_data[8]; |
| tflite::testing::TestConcatenateQuantizedTwoInputs( |
| input_shape, input1_values, input_shape, input2_values, input_scale, |
| input_zero_point, axis, output_shape, output_value, output_scale, |
| output_zero_point, output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(TwoInputsQuantizedInt16) { |
| const int axis = 2; |
| int input_shape[] = {3, 2, 1, 2}; |
| int output_shape[] = {3, 2, 1, 4}; |
| |
| const float input_scale = 0.1f; |
| const int input_zero_point = 0; |
| const float output_scale = 0.1f; |
| const int output_zero_point = 0; |
| |
| const int16_t input1_values[] = {1, 2, 3, 4}; |
| |
| const int16_t input2_values[] = {5, 6, 7, 8}; |
| |
| const int16_t output_value[] = {1, 2, 5, 6, 3, 4, 7, 8}; |
| |
| int16_t output_data[8]; |
| tflite::testing::TestConcatenateQuantizedTwoInputs( |
| input_shape, input1_values, input_shape, input2_values, input_scale, |
| input_zero_point, axis, output_shape, output_value, output_scale, |
| output_zero_point, output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(ThreeDimensionalTwoInputsDifferentShapes) { |
| const int axis = 1; |
| |
| int input1_shape[] = {3, 2, 1, 2}; |
| int input2_shape[] = {3, 2, 3, 2}; |
| int output_shape[] = {3, 2, 4, 2}; |
| |
| const float input1_values[] = {1.0f, 3.0f, 4.0f, 7.0f}; |
| const float input2_values[] = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, |
| 7.0f, 8.0f, 9.0f, 10.0f, 11.0f, 12.0f}; |
| const float output_values[] = {1.0f, 3.0f, 1.0f, 2.0f, 3.0f, 4.0f, |
| 5.0f, 6.0f, 4.0f, 7.0f, 7.0f, 8.0f, |
| 9.0f, 10.0f, 11.0f, 12.0f}; |
| |
| float output_data[16]; |
| tflite::testing::TestConcatenateTwoFloatInputs( |
| input1_shape, input1_values, input2_shape, input2_values, axis, |
| output_shape, output_values, output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(TwoInputsFiveDimensionsAllAxesCombinations) { |
| // Concatenate the same two input tensors along all possible axes. |
| int input_shape[] = {5, 2, 1, 2, 1, 3}; |
| const int kInputSize = 12; |
| const float input1_value[] = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, |
| 7.0f, 8.0f, 9.0f, 10.0f, 11.0f, 12.0f}; |
| const float input2_value[] = {13.0f, 14.0f, 15.0f, 16.0f, 17.0f, 18.0f, |
| 19.0f, 20.0f, 21.0f, 22.0f, 23.0f, 24.0f}; |
| |
| float output_data[2 * kInputSize]; |
| |
| // Axis = 0 |
| int output_shape_axis0[] = {5, 4, 1, 2, 1, 3}; |
| const float output_value_axis0[2 * kInputSize] = { |
| 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, |
| 9.0f, 10.0f, 11.0f, 12.0f, 13.0f, 14.0f, 15.0f, 16.0f, |
| 17.0f, 18.0f, 19.0f, 20.0f, 21.0f, 22.0f, 23.0f, 24.0f}; |
| tflite::testing::TestConcatenateTwoFloatInputs( |
| input_shape, input1_value, input_shape, input2_value, /* axis */ 0, |
| output_shape_axis0, output_value_axis0, output_data); |
| |
| // Axis = 4 |
| int output_shape_axis4[] = {5, 2, 1, 2, 1, 6}; |
| const float output_value_axis4[2 * kInputSize] = { |
| 1.0f, 2.0f, 3.0f, 13.0f, 14.0f, 15.0f, 4.0f, 5.0f, |
| 6.0f, 16.0f, 17.0f, 18.0f, 7.0f, 8.0f, 9.0f, 19.0f, |
| 20.0f, 21.0f, 10.0f, 11.0f, 12.0f, 22.0f, 23.0f, 24.0f}; |
| tflite::testing::TestConcatenateTwoFloatInputs( |
| input_shape, input1_value, input_shape, input2_value, /* axis */ 4, |
| output_shape_axis4, output_value_axis4, output_data); |
| |
| // Axis = -2 |
| int output_shape_axis_minus2[] = {5, 2, 1, 2, 2, 3}; |
| const float output_value_axis_minus2[2 * kInputSize] = { |
| 1.0f, 2.0f, 3.0f, 13.0f, 14.0f, 15.0f, 4.0f, 5.0f, |
| 6.0f, 16.0f, 17.0f, 18.0f, 7.0f, 8.0f, 9.0f, 19.0f, |
| 20.0f, 21.0f, 10.0f, 11.0f, 12.0f, 22.0f, 23.0f, 24.0f}; |
| tflite::testing::TestConcatenateTwoFloatInputs( |
| input_shape, input1_value, input_shape, input2_value, /* axis */ -2, |
| output_shape_axis_minus2, output_value_axis_minus2, output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(TwoInputsQuantizedInt8FiveDimensions) { |
| const int axis = 2; |
| int input_shape[] = {5, 2, 1, 2, 1, 3}; |
| const int kInputSize = 12; |
| const int8_t input1_values[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}; |
| const int8_t input2_values[] = {13, 14, 15, 16, 17, 18, |
| 19, 20, 21, 22, 23, 24}; |
| |
| const float input_scale = 0.1f; |
| const int input_zero_point = 0; |
| const float output_scale = 0.1f; |
| const int output_zero_point = 0; |
| |
| const int8_t output_value[] = {1, 2, 3, 4, 5, 6, 13, 14, 15, 16, 17, 18, |
| 7, 8, 9, 10, 11, 12, 19, 20, 21, 22, 23, 24}; |
| int output_shape[] = {5, 2, 1, 4, 1, 3}; |
| int8_t output_data[2 * kInputSize]; |
| |
| tflite::testing::TestConcatenateQuantizedTwoInputs( |
| input_shape, input1_values, input_shape, input2_values, input_scale, |
| input_zero_point, axis, output_shape, output_value, output_scale, |
| output_zero_point, output_data); |
| } |
| |
| TF_LITE_MICRO_TESTS_END |