| /* Copyright 2022 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| |
| #include "tensorflow/lite/micro/kernels/softmax.h" |
| |
| #include "Include/arm_nnfunctions.h" |
| #include "tensorflow/lite/c/common.h" |
| #include "tensorflow/lite/kernels/internal/common.h" |
| #include "tensorflow/lite/kernels/internal/quantization_util.h" |
| #include "tensorflow/lite/kernels/internal/reference/softmax.h" |
| #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" |
| #include "tensorflow/lite/kernels/kernel_util.h" |
| #include "tensorflow/lite/kernels/op_macros.h" |
| #include "tensorflow/lite/micro/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/micro_log.h" |
| |
| namespace tflite { |
| namespace { |
| |
| struct CMSISNNSoftmaxParams { |
| SoftmaxParams softmax_params; |
| int32_t num_rows; |
| int32_t row_size; |
| }; |
| |
| void* Init(TfLiteContext* context, const char* buffer, size_t length) { |
| TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); |
| return context->AllocatePersistentBuffer(context, |
| sizeof(CMSISNNSoftmaxParams)); |
| } |
| |
| TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { |
| MicroContext* micro_context = GetMicroContext(context); |
| |
| TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); |
| TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); |
| TfLiteTensor* input = micro_context->AllocateTempInputTensor(node, 0); |
| TF_LITE_ENSURE(context, input != nullptr); |
| TF_LITE_ENSURE(context, NumDimensions(input) >= 1); |
| TfLiteTensor* output = micro_context->AllocateTempOutputTensor(node, 0); |
| TF_LITE_ENSURE(context, output != nullptr); |
| |
| TF_LITE_ENSURE(context, node->user_data != nullptr); |
| CMSISNNSoftmaxParams* op_data = |
| static_cast<CMSISNNSoftmaxParams*>(node->user_data); |
| |
| auto* params = static_cast<TfLiteSoftmaxParams*>(node->builtin_data); |
| auto ret_val = CalculateSoftmaxParams(context, input, output, params, |
| &op_data->softmax_params); |
| |
| const auto input_shape = GetTensorShape(input); |
| const auto output_shape = GetTensorShape(output); |
| const int trailing_dim = input_shape.DimensionsCount() - 1; |
| const int outer_size = |
| MatchingFlatSizeSkipDim(input_shape, trailing_dim, output_shape); |
| const int depth = |
| MatchingDim(input_shape, trailing_dim, output_shape, trailing_dim); |
| op_data->num_rows = outer_size; |
| op_data->row_size = depth; |
| |
| micro_context->DeallocateTempTfLiteTensor(input); |
| micro_context->DeallocateTempTfLiteTensor(output); |
| return ret_val; |
| } |
| |
| TfLiteStatus SoftmaxEval(TfLiteContext* context, TfLiteNode* node) { |
| const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0); |
| TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0); |
| |
| TFLITE_DCHECK(node->user_data != nullptr); |
| const CMSISNNSoftmaxParams op_data = |
| *static_cast<const CMSISNNSoftmaxParams*>(node->user_data); |
| |
| switch (input->type) { |
| case kTfLiteFloat32: { |
| tflite::reference_ops::Softmax( |
| op_data.softmax_params, tflite::micro::GetTensorShape(input), |
| tflite::micro::GetTensorData<float>(input), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<float>(output)); |
| return kTfLiteOk; |
| } |
| case kTfLiteInt8: { |
| if (output->type == kTfLiteInt8) { |
| arm_softmax_s8(tflite::micro::GetTensorData<int8_t>(input), |
| op_data.num_rows, op_data.row_size, |
| op_data.softmax_params.input_multiplier, |
| op_data.softmax_params.input_left_shift, |
| op_data.softmax_params.diff_min, |
| tflite::micro::GetTensorData<int8_t>(output)); |
| } else { |
| arm_softmax_s8_s16(tflite::micro::GetTensorData<int8_t>(input), |
| op_data.num_rows, op_data.row_size, |
| op_data.softmax_params.input_multiplier, |
| op_data.softmax_params.input_left_shift, |
| op_data.softmax_params.diff_min, |
| tflite::micro::GetTensorData<int16_t>(output)); |
| } |
| return kTfLiteOk; |
| } |
| case kTfLiteInt16: { |
| const cmsis_nn_softmax_lut_s16 softmax_params = { |
| .exp_lut = op_data.softmax_params.exp_lut, |
| .one_by_one_lut = op_data.softmax_params.one_over_one_plus_x_lut}; |
| |
| TFLITE_DCHECK_EQ( |
| arm_softmax_s16( |
| tflite::micro::GetTensorData<int16_t>(input), op_data.num_rows, |
| op_data.row_size, op_data.softmax_params.input_multiplier, |
| op_data.softmax_params.input_left_shift, &softmax_params, |
| tflite::micro::GetTensorData<int16_t>(output)), |
| ARM_CMSIS_NN_SUCCESS); |
| return kTfLiteOk; |
| } |
| default: |
| MicroPrintf("Type %s (%d) not supported.", TfLiteTypeGetName(input->type), |
| input->type); |
| return kTfLiteError; |
| } |
| } |
| |
| TfLiteStatus SoftmaxEvalInt8(TfLiteContext* context, TfLiteNode* node) { |
| const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0); |
| TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0); |
| |
| TFLITE_DCHECK(node->user_data != nullptr); |
| const CMSISNNSoftmaxParams op_data = |
| *static_cast<const CMSISNNSoftmaxParams*>(node->user_data); |
| |
| arm_softmax_s8(tflite::micro::GetTensorData<int8_t>(input), op_data.num_rows, |
| op_data.row_size, op_data.softmax_params.input_multiplier, |
| op_data.softmax_params.input_left_shift, |
| op_data.softmax_params.diff_min, |
| tflite::micro::GetTensorData<int8_t>(output)); |
| |
| return kTfLiteOk; |
| } |
| |
| TfLiteStatus SoftmaxEvalInt8_Int16(TfLiteContext* context, TfLiteNode* node) { |
| const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0); |
| TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0); |
| |
| TFLITE_DCHECK(node->user_data != nullptr); |
| const CMSISNNSoftmaxParams op_data = |
| *static_cast<const CMSISNNSoftmaxParams*>(node->user_data); |
| |
| arm_softmax_s8_s16( |
| tflite::micro::GetTensorData<int8_t>(input), op_data.num_rows, |
| op_data.row_size, op_data.softmax_params.input_multiplier, |
| op_data.softmax_params.input_left_shift, op_data.softmax_params.diff_min, |
| tflite::micro::GetTensorData<int16_t>(output)); |
| |
| return kTfLiteOk; |
| } |
| |
| TfLiteStatus SoftmaxEvalInt16(TfLiteContext* context, TfLiteNode* node) { |
| const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0); |
| TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0); |
| |
| TFLITE_DCHECK(node->user_data != nullptr); |
| const CMSISNNSoftmaxParams op_data = |
| *static_cast<const CMSISNNSoftmaxParams*>(node->user_data); |
| |
| const cmsis_nn_softmax_lut_s16 softmax_params = { |
| .exp_lut = op_data.softmax_params.exp_lut, |
| .one_by_one_lut = op_data.softmax_params.one_over_one_plus_x_lut}; |
| |
| TFLITE_DCHECK_EQ( |
| arm_softmax_s16(tflite::micro::GetTensorData<int16_t>(input), |
| op_data.num_rows, op_data.row_size, |
| op_data.softmax_params.input_multiplier, |
| op_data.softmax_params.input_left_shift, &softmax_params, |
| tflite::micro::GetTensorData<int16_t>(output)), |
| ARM_CMSIS_NN_SUCCESS); |
| |
| return kTfLiteOk; |
| } |
| |
| } // namespace |
| |
| TFLMRegistration Register_SOFTMAX() { |
| return tflite::micro::RegisterOp(Init, Prepare, SoftmaxEval); |
| } |
| |
| TFLMRegistration Register_SOFTMAX_INT8() { |
| return tflite::micro::RegisterOp(Init, Prepare, SoftmaxEvalInt8); |
| } |
| |
| TFLMRegistration Register_SOFTMAX_INT8_INT16() { |
| return tflite::micro::RegisterOp(Init, Prepare, SoftmaxEvalInt8_Int16); |
| } |
| |
| TFLMRegistration Register_SOFTMAX_INT16() { |
| return tflite::micro::RegisterOp(Init, Prepare, SoftmaxEvalInt16); |
| } |
| |
| } // namespace tflite |