| /* Copyright 2022 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| #include "tensorflow/lite/c/builtin_op_data.h" |
| #include "tensorflow/lite/c/common.h" |
| #include "tensorflow/lite/micro/kernels/kernel_runner.h" |
| #include "tensorflow/lite/micro/micro_utils.h" |
| #include "tensorflow/lite/micro/test_helpers.h" |
| #include "tensorflow/lite/micro/testing/micro_test.h" |
| |
| namespace { |
| using ::tflite::testing::CreateTensor; |
| using ::tflite::testing::IntArrayFromInts; |
| |
| // The layout of tensors is fixed. |
| constexpr int kShape1Index = 0; |
| constexpr int kShape2Index = 1; |
| constexpr int kOutputIndex = 2; |
| constexpr int kInputsTensor[] = {2, kShape1Index, kShape2Index}; |
| constexpr int kOutputsTensor[] = {1, kOutputIndex}; |
| |
| // This function is NOT thread safe. |
| template <typename DimsType> |
| tflite::micro::KernelRunner CreateBroadcastArgsTestRunner( |
| int* input1_shape, DimsType* input1_data, int* input2_shape, |
| DimsType* input2_data, int* output_shape, DimsType* output_data) { |
| // Some targets do not support dynamic memory (i.e., no malloc or new), thus, |
| // the test need to place non-transient memories in static variables. This is |
| // safe because tests are guaranteed to run serially. |
| // Both below structures are trivially destructible. |
| static TFLMRegistration registration; |
| static TfLiteTensor tensors[3]; |
| |
| tensors[0] = CreateTensor(input1_data, IntArrayFromInts(input1_shape)); |
| tensors[1] = CreateTensor(input2_data, IntArrayFromInts(input2_shape)); |
| tensors[2] = CreateTensor(output_data, IntArrayFromInts(output_shape)); |
| |
| registration = tflite::Register_BROADCAST_ARGS(); |
| tflite::micro::KernelRunner runner = tflite::micro::KernelRunner( |
| registration, tensors, sizeof(tensors) / sizeof(TfLiteTensor), |
| IntArrayFromInts(const_cast<int*>(kInputsTensor)), |
| IntArrayFromInts(const_cast<int*>(kOutputsTensor)), |
| /*builtin_data=*/nullptr); |
| return runner; |
| } |
| |
| template <typename DimsType> |
| void TestBroadcastArgs(int* input1_shape, DimsType* input1_data, |
| int* input2_shape, DimsType* input2_data, |
| int* output_shape, DimsType* output_data, |
| DimsType* expected_output_data) { |
| tflite::micro::KernelRunner runner = |
| CreateBroadcastArgsTestRunner(input1_shape, input1_data, input2_shape, |
| input2_data, output_shape, output_data); |
| |
| TF_LITE_MICRO_EXPECT_EQ(runner.InitAndPrepare(), kTfLiteOk); |
| TF_LITE_MICRO_EXPECT_EQ(runner.Invoke(), kTfLiteOk); |
| |
| // The output elements contain the fill value. |
| const auto elements = tflite::ElementCount(*IntArrayFromInts(output_shape)); |
| for (int i = 0; i < elements; ++i) { |
| TF_LITE_MICRO_EXPECT_EQ(output_data[i], expected_output_data[i]); |
| } |
| } |
| } // namespace |
| |
| TF_LITE_MICRO_TESTS_BEGIN |
| |
| TF_LITE_MICRO_TEST(BroadcastArgsWithScalar) { |
| int input1_shape[] = {1, 0}; |
| int32_t input1_data[] = {}; |
| |
| int input2_shape[] = {1, 2}; |
| int32_t input2_data[2] = {2, 4}; |
| |
| int output_shape[] = {1, 2}; |
| int32_t output_data[2]; |
| int32_t expected_output_data[2] = {2, 4}; |
| |
| TestBroadcastArgs(input1_shape, input1_data, input2_shape, input2_data, |
| output_shape, output_data, expected_output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(BroadcastArgsDifferentDims) { |
| int input1_shape[] = {1, 1}; |
| int32_t input1_data[] = {1}; |
| |
| int input2_shape[] = {1, 2}; |
| int32_t input2_data[2] = {2, 4}; |
| |
| int output_shape[] = {1, 2}; |
| int32_t output_data[2]; |
| int32_t expected_output_data[2] = {2, 4}; |
| |
| TestBroadcastArgs(input1_shape, input1_data, input2_shape, input2_data, |
| output_shape, output_data, expected_output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(BroadcastArgsSameDims) { |
| int input1_shape[] = {1, 6}; |
| int32_t input1_data[] = {1, 4, 6, 3, 1, 5}; |
| |
| int input2_shape[] = {1, 6}; |
| int32_t input2_data[6] = {4, 4, 1, 3, 4, 1}; |
| |
| int output_shape[] = {1, 6}; |
| int32_t output_data[6]; |
| int32_t expected_output_data[6] = {4, 4, 6, 3, 4, 5}; |
| |
| TestBroadcastArgs(input1_shape, input1_data, input2_shape, input2_data, |
| output_shape, output_data, expected_output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(BroadcastArgsComplex) { |
| int input1_shape[] = {1, 4}; |
| int32_t input1_data[] = {6, 3, 1, 5}; |
| |
| int input2_shape[] = {1, 6}; |
| int32_t input2_data[6] = {4, 4, 1, 3, 4, 1}; |
| |
| int output_shape[] = {1, 6}; |
| int32_t output_data[6]; |
| int32_t expected_output_data[6] = {4, 4, 6, 3, 4, 5}; |
| |
| TestBroadcastArgs(input1_shape, input1_data, input2_shape, input2_data, |
| output_shape, output_data, expected_output_data); |
| } |
| |
| TF_LITE_MICRO_TESTS_END |