| /* Copyright 2022 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| #include "tensorflow/lite/kernels/internal/reference/broadcast_args.h" |
| |
| #include <stdint.h> |
| |
| #include "tensorflow/lite/c/common.h" |
| #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" |
| #include "tensorflow/lite/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/micro_context.h" |
| |
| namespace tflite { |
| namespace { |
| constexpr int kShape1Tensor = 0; |
| constexpr int kShape2Tensor = 1; |
| constexpr int kOutputTensor = 0; |
| |
| TfLiteStatus BroadcastArgsPrepare(TfLiteContext* context, TfLiteNode* node) { |
| TF_LITE_ENSURE(context, NumInputs(node) == 2); |
| TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); |
| |
| MicroContext* micro_context = GetMicroContext(context); |
| TfLiteTensor* shape1 = |
| micro_context->AllocateTempInputTensor(node, kShape1Tensor); |
| TfLiteTensor* shape2 = |
| micro_context->AllocateTempInputTensor(node, kShape2Tensor); |
| TfLiteTensor* output = |
| micro_context->AllocateTempOutputTensor(node, kOutputTensor); |
| |
| TF_LITE_ENSURE(context, |
| shape1->type == kTfLiteInt32 || shape1->type == kTfLiteInt64); |
| TF_LITE_ENSURE_EQ(context, shape1->type, shape2->type); |
| TF_LITE_ENSURE_EQ(context, shape1->type, output->type); |
| |
| // Ensures the shapes are 1D tensor. |
| TF_LITE_ENSURE_EQ(context, NumDimensions(shape1), 1); |
| TF_LITE_ENSURE_EQ(context, NumDimensions(shape2), 1); |
| |
| // Ensure the shape of the output tensor is compatible |
| TF_LITE_ENSURE_EQ(context, NumDimensions(output), 1); |
| |
| micro_context->DeallocateTempTfLiteTensor(shape1); |
| micro_context->DeallocateTempTfLiteTensor(shape2); |
| micro_context->DeallocateTempTfLiteTensor(output); |
| |
| return kTfLiteOk; |
| } |
| |
| TfLiteStatus BroadcastArgsEval(TfLiteContext* context, TfLiteNode* node) { |
| const TfLiteEvalTensor* shape1 = |
| micro::GetEvalInput(context, node, kShape1Tensor); |
| const TfLiteEvalTensor* shape2 = |
| micro::GetEvalInput(context, node, kShape2Tensor); |
| TfLiteEvalTensor* output = micro::GetEvalOutput(context, node, kOutputTensor); |
| |
| if (output->type == kTfLiteInt32) { |
| reference_ops::BroadcastArgs( |
| micro::GetTensorShape(shape1), micro::GetTensorData<int32_t>(shape1), |
| micro::GetTensorShape(shape2), micro::GetTensorData<int32_t>(shape2), |
| micro::GetTensorShape(output), micro::GetTensorData<int32_t>(output)); |
| } else { |
| reference_ops::BroadcastArgs( |
| micro::GetTensorShape(shape1), micro::GetTensorData<int64_t>(shape1), |
| micro::GetTensorShape(shape2), micro::GetTensorData<int64_t>(shape2), |
| micro::GetTensorShape(output), micro::GetTensorData<int64_t>(output)); |
| } |
| |
| return kTfLiteOk; |
| } |
| |
| } // namespace |
| |
| TFLMRegistration Register_BROADCAST_ARGS() { |
| return tflite::micro::RegisterOp(nullptr, BroadcastArgsPrepare, |
| BroadcastArgsEval); |
| } |
| |
| } // namespace tflite |