blob: c2c9cd5c438da424842ff6cfb6e52a95b2896b62 [file] [log] [blame]
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/kernels/internal/reference/integer_ops/depthwise_conv.h"
#include "mli_api.h" // NOLINT
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/quantization_util.h"
#include "tensorflow/lite/kernels/internal/reference/depthwiseconv_float.h"
#include "tensorflow/lite/kernels/internal/reference/depthwiseconv_uint8.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/kernels/padding.h"
#include "tensorflow/lite/micro/kernels/arc_mli/mli_function_specializations.h"
#include "tensorflow/lite/micro/kernels/arc_mli/mli_slicers.h"
#include "tensorflow/lite/micro/kernels/arc_mli/mli_tf_utils.h"
#include "tensorflow/lite/micro/kernels/arc_mli/scratch_buf_mgr.h"
#include "tensorflow/lite/micro/kernels/arc_mli/scratch_buffers.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
#include "tensorflow/lite/micro/micro_log.h"
namespace tflite {
namespace {
constexpr int kInputTensor = 0;
constexpr int kFilterTensor = 1;
constexpr int kBiasTensor = 2;
constexpr int kOutputTensor = 0;
// Depthwise conv is quantized along dimension 3:
// https://www.tensorflow.org/lite/performance/quantization_spec
constexpr int kDepthwiseConvQuantizedDimension = 3;
struct OpData {
TfLitePaddingValues padding;
// Cached tensor zero point values for quantized operations.
int32_t input_zero_point;
int32_t filter_zero_point;
int32_t output_zero_point;
// The scaling factor from input to output (aka the 'real multiplier') can
// be represented as a fixed point multiplier plus a left shift.
int32_t output_multiplier;
int output_shift;
// Per channel output multiplier and shift.
int32_t* per_channel_output_multiplier;
int32_t* per_channel_output_shift;
#ifdef MLI_2_0
int8_t* per_channel_scale_frac_bits;
#endif
// The range of the fused activation layer. For example for kNone and
// uint8_t these would be 0 and 255.
int32_t output_activation_min;
int32_t output_activation_max;
// The result of checking if MLI optimized version of tensors can be used.
bool is_mli_applicable;
// Tensors in MLI format.
mutable ops::micro::MliTensorInterface mli_in;
mutable ops::micro::MliTensorInterface mli_weights;
mutable ops::micro::MliTensorInterface mli_bias;
mutable ops::micro::MliTensorInterface mli_out;
mli_conv2d_cfg* cfg;
// Pointer to the required depthwise function. For “channel multiplier”
// functionality group convolution is used.
depthwise_func_ptr p_mli_krn_depthwise_conv2d_sa8_sa8_sa32;
};
bool IsMliApplicable(TfLiteContext* context, const TfLiteTensor* input,
const TfLiteTensor* filter, const TfLiteTensor* bias,
const TfLiteDepthwiseConvParams* params) {
const auto* affine_quantization =
reinterpret_cast<TfLiteAffineQuantization*>(filter->quantization.params);
#ifndef MLI_2_0
const int in_ch = SizeOfDimension(input, 3);
const int filters_num = SizeOfDimension(filter, 3);
#endif
// MLI optimized version only supports int8_t datatype, dilation factor of 1
// and per-axis quantization of weights (no broadcasting/per-tensor). For
// MLI 1.1 (in_ch == filters_num) || (in_ch == 1)) is used to prevent usage of
// channel multiplier logic for multichannel input.
bool ret_val = (filter->type == kTfLiteInt8) &&
(input->type == kTfLiteInt8) && (bias->type == kTfLiteInt32) &&
(params->dilation_width_factor == 1) &&
(params->dilation_height_factor == 1) &&
(affine_quantization->scale->size ==
#ifdef MLI_2_0
filter->dims->data[kDepthwiseConvQuantizedDimension]);
#else
filter->dims->data[kDepthwiseConvQuantizedDimension]) &&
((in_ch == filters_num) || (in_ch == 1));
#endif
return ret_val;
}
TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node,
TfLiteDepthwiseConvParams* params, int width,
int height, int filter_width, int filter_height,
const TfLiteType data_type, OpData* data) {
bool has_bias = node->inputs->size == 3;
// Check number of inputs/outputs
TF_LITE_ENSURE(context, has_bias || node->inputs->size == 2);
TF_LITE_ENSURE_EQ(context, node->outputs->size, 1);
int unused_output_height, unused_output_width;
data->padding = ComputePaddingHeightWidth(
params->stride_height, params->stride_width, 1, 1, height, width,
filter_height, filter_width, params->padding, &unused_output_height,
&unused_output_width);
// Note that quantized inference requires that all tensors have their
// parameters set. This is usually done during quantized training.
#if !defined(TF_LITE_STRIP_REFERENCE_IMPL)
MicroContext* micro_context = GetMicroContext(context);
TfLiteTensor* input =
micro_context->AllocateTempInputTensor(node, kInputTensor);
TfLiteTensor* filter =
micro_context->AllocateTempInputTensor(node, kFilterTensor);
TfLiteTensor* bias =
micro_context->AllocateTempInputTensor(context, node, kBiasTensor);
TfLiteTensor* output =
micro_context->AllocateTempOutputTensor(node, kOutputTensor);
if (data_type != kTfLiteFloat32 && !data->is_mli_applicable) {
int num_channels = filter->dims->data[kDepthwiseConvQuantizedDimension];
return tflite::PopulateConvolutionQuantizationParams(
context, input, filter, bias, output, params->activation,
&data->output_multiplier, &data->output_shift,
&data->output_activation_min, &data->output_activation_max,
data->per_channel_output_multiplier,
reinterpret_cast<int*>(data->per_channel_output_shift), num_channels);
}
micro_context->DeallocateTempTfLiteTensor(input);
micro_context->DeallocateTempTfLiteTensor(filter);
micro_context->DeallocateTempTfLiteTensor(bias);
micro_context->DeallocateTempTfLiteTensor(output);
#endif
return kTfLiteOk;
}
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
return context->AllocatePersistentBuffer(context, sizeof(OpData));
}
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TFLITE_DCHECK(node->user_data != nullptr);
TFLITE_DCHECK(node->builtin_data != nullptr);
auto* params =
reinterpret_cast<TfLiteDepthwiseConvParams*>(node->builtin_data);
OpData* data = static_cast<OpData*>(node->user_data);
TfLiteTensor* output = AllocateTempOutputTensor(node, kOutputTensor);
const TfLiteTensor* input = AllocateTempInputTensor(node, kInputTensor);
const TfLiteTensor* filter = AllocateTempInputTensor(node, kFilterTensor);
const TfLiteTensor* bias =
AllocateTempInputTensor(context, node, kBiasTensor);
const TfLiteType data_type = input->type;
int width = SizeOfDimension(input, 2);
int height = SizeOfDimension(input, 1);
#if defined(MLI_2_0) && !defined(MLI_2_0_KRNL_TEST)
int filter_width = SizeOfDimension(filter, 1);
int filter_height = SizeOfDimension(filter, 0);
#else
int filter_width = SizeOfDimension(filter, 2);
int filter_height = SizeOfDimension(filter, 1);
#endif
// Per channel quantization is only needed for int8 inference. For other
// quantized types, only a single scale and zero point is needed.
const int num_channels = filter->dims->data[kDepthwiseConvQuantizedDimension];
// Dynamically allocate per-channel quantization parameters.
data->per_channel_output_multiplier =
reinterpret_cast<int32_t*>(context->AllocatePersistentBuffer(
context, num_channels * sizeof(int32_t)));
data->per_channel_output_shift =
reinterpret_cast<int32_t*>(context->AllocatePersistentBuffer(
context, num_channels * sizeof(int32_t)));
data->is_mli_applicable =
IsMliApplicable(context, input, filter, bias, params);
// All per-channel quantized tensors need valid zero point and scale arrays.
if (input->type == kTfLiteInt8) {
TF_LITE_ENSURE_EQ(context, filter->quantization.type,
kTfLiteAffineQuantization);
const auto* affine_quantization =
reinterpret_cast<TfLiteAffineQuantization*>(
filter->quantization.params);
TF_LITE_ENSURE(context, affine_quantization);
TF_LITE_ENSURE(context, affine_quantization->scale);
TF_LITE_ENSURE(context, affine_quantization->zero_point);
TF_LITE_ENSURE(
context, affine_quantization->scale->size == 1 ||
affine_quantization->scale->size ==
filter->dims->data[kDepthwiseConvQuantizedDimension]);
TF_LITE_ENSURE_EQ(context, affine_quantization->scale->size,
affine_quantization->zero_point->size);
}
TF_LITE_ENSURE_STATUS(CalculateOpData(context, node, params, width, height,
filter_width, filter_height, data_type,
data));
data->input_zero_point = input->params.zero_point;
data->filter_zero_point = filter->params.zero_point;
data->output_zero_point = output->params.zero_point;
if (data->is_mli_applicable) {
data->mli_in = ops::micro::MliTensorInterface(static_cast<mli_tensor*>(
context->AllocatePersistentBuffer(context, sizeof(mli_tensor))));
data->mli_weights = ops::micro::MliTensorInterface(static_cast<mli_tensor*>(
context->AllocatePersistentBuffer(context, sizeof(mli_tensor))));
data->mli_bias = ops::micro::MliTensorInterface(static_cast<mli_tensor*>(
context->AllocatePersistentBuffer(context, sizeof(mli_tensor))));
data->mli_out = ops::micro::MliTensorInterface(static_cast<mli_tensor*>(
context->AllocatePersistentBuffer(context, sizeof(mli_tensor))));
data->cfg = static_cast<mli_conv2d_cfg*>(
context->AllocatePersistentBuffer(context, sizeof(mli_conv2d_cfg)));
#ifdef MLI_2_0
const int num_buffers = 2;
data->per_channel_scale_frac_bits =
static_cast<int8_t*>(context->AllocatePersistentBuffer(
context, num_buffers * num_channels * sizeof(int16_t)));
#endif
// Reuse space allocated for OpData parameters.
#ifdef MLI_2_0
*data->mli_weights.Scale<int16_t**>() =
reinterpret_cast<int16_t*>(data->per_channel_output_multiplier);
*data->mli_bias.Scale<int16_t**>() =
reinterpret_cast<int16_t*>(data->per_channel_output_multiplier) +
num_channels;
#else
*data->mli_weights.Scale<int32_t**>() =
static_cast<int32_t*>(data->per_channel_output_multiplier);
*data->mli_bias.Scale<int32_t**>() =
static_cast<int32_t*>(data->per_channel_output_shift);
#endif
#ifdef MLI_2_0
*data->mli_weights.ZeroPoint<int16_t**>() =
reinterpret_cast<int16_t*>(data->per_channel_output_shift);
*data->mli_bias.ZeroPoint<int16_t**>() =
reinterpret_cast<int16_t*>(data->per_channel_output_shift) +
num_channels;
#else
*data->mli_weights.ZeroPoint<int16_t**>() =
reinterpret_cast<int16_t*>(&data->filter_zero_point);
*data->mli_bias.ZeroPoint<int16_t**>() =
reinterpret_cast<int16_t*>(&data->filter_zero_point) + sizeof(int16_t);
#endif
#ifdef MLI_2_0
*data->mli_weights.ScaleFracBits<int8_t**>() =
reinterpret_cast<int8_t*>(data->per_channel_scale_frac_bits);
*data->mli_bias.ScaleFracBits<int8_t**>() =
reinterpret_cast<int8_t*>(data->per_channel_scale_frac_bits) +
num_channels;
#endif
ops::micro::ConvertToMliTensor(input, &data->mli_in);
ops::micro::ConvertToMliTensorPerChannel(filter, &data->mli_weights,
/* is_bias_tensor = */ false);
ops::micro::ConvertToMliTensorPerChannel(bias, &data->mli_bias,
/* is_bias_tensor = */ true);
#ifdef MLI_2_0
ops::micro::AdjustBiasTensor(&data->mli_bias, &data->mli_in,
&data->mli_weights);
#endif
ops::micro::ConvertToMliTensor(output, &data->mli_out);
#ifdef MLI_2_0
// Choose group convolution function for "channel multiplier" functionality.
const int in_ch = SizeOfDimension(input, 3);
const int filters_num = SizeOfDimension(filter, 3);
const int channels_num = SizeOfDimension(filter, 2);
if (in_ch == filters_num && channels_num == 1) {
data->p_mli_krn_depthwise_conv2d_sa8_sa8_sa32 =
mli_krn_depthwise_conv2d(data->mli_weights.MliTensor());
} else {
data->p_mli_krn_depthwise_conv2d_sa8_sa8_sa32 =
mli_krn_group_conv2d(data->mli_weights.MliTensor());
}
#else
data->p_mli_krn_depthwise_conv2d_sa8_sa8_sa32 =
mli_krn_depthwise_conv2d(data->mli_weights.MliTensor(), data->cfg);
#endif
#ifdef MLI_2_0
data->cfg->dilation_width = 1;
data->cfg->dilation_height = 1;
#endif
if (data->output_activation_min == -128 &&
data->output_activation_max == 127) {
data->cfg->relu.type = MLI_RELU_NONE;
} else if (params->activation == kTfLiteActRelu) {
data->cfg->relu.type = MLI_RELU_GEN;
} else if (params->activation == kTfLiteActRelu6) {
data->cfg->relu.type = MLI_RELU_6;
} else if (params->activation == kTfLiteActReluN1To1) {
data->cfg->relu.type = MLI_RELU_1;
} else {
data->cfg->relu.type = MLI_RELU_NONE;
}
data->cfg->stride_width = params->stride_width;
data->cfg->stride_height = params->stride_height;
if (params->padding == kTfLitePaddingValid) {
data->cfg->padding_left = 0;
data->cfg->padding_right = 0;
data->cfg->padding_top = 0;
data->cfg->padding_bottom = 0;
} else {
data->cfg->padding_left = data->padding.width;
data->cfg->padding_right =
data->padding.width + data->padding.width_offset;
data->cfg->padding_top = data->padding.height;
data->cfg->padding_bottom =
data->padding.height + data->padding.height_offset;
}
}
return kTfLiteOk;
}
void EvalFloat(TfLiteContext* context, TfLiteNode* node,
TfLiteDepthwiseConvParams* params, const OpData& data,
const TfLiteEvalTensor* input, const TfLiteEvalTensor* filter,
const TfLiteEvalTensor* bias, TfLiteEvalTensor* output) {
#if !defined(TF_LITE_STRIP_REFERENCE_IMPL)
float output_activation_min, output_activation_max;
CalculateActivationRange(params->activation, &output_activation_min,
&output_activation_max);
tflite::DepthwiseParams op_params;
// Padding type is ignored, but still set.
op_params.padding_type = PaddingType::kSame;
op_params.padding_values.width = data.padding.width;
op_params.padding_values.height = data.padding.height;
op_params.stride_width = params->stride_width;
op_params.stride_height = params->stride_height;
op_params.dilation_width_factor = params->dilation_width_factor;
op_params.dilation_height_factor = params->dilation_height_factor;
op_params.depth_multiplier = params->depth_multiplier;
op_params.float_activation_min = output_activation_min;
op_params.float_activation_max = output_activation_max;
tflite::reference_ops::DepthwiseConv(
op_params, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<float>(input),
tflite::micro::GetTensorShape(filter),
tflite::micro::GetTensorData<float>(filter),
tflite::micro::GetTensorShape(bias),
tflite::micro::GetTensorData<float>(bias),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output));
#else
MicroPrintf("Type %s (%d) is not supported by ARC MLI Library.",
TfLiteTypeGetName(input->type), input->type);
#endif
}
TfLiteStatus EvalMliQuantizedPerChannel(
TfLiteContext* context, TfLiteNode* node, TfLiteDepthwiseConvParams* params,
const OpData& data, const TfLiteEvalTensor* input,
const TfLiteEvalTensor* filter, const TfLiteEvalTensor* bias,
TfLiteEvalTensor* output) {
// Run Depthwise Conv MLI kernel
// MLI optimized version only supports int8_t dataype and dilation factor of 1
if (data.is_mli_applicable) {
// Copy configuration data from external to local memory
mli_conv2d_cfg cfg_local = *data.cfg;
ops::micro::MliTensorAttachBuffer<int8_t>(input, &data.mli_in);
ops::micro::MliTensorAttachBuffer<int8_t>(filter, &data.mli_weights);
ops::micro::MliTensorAttachBuffer<int32_t>(bias, &data.mli_bias);
ops::micro::MliTensorAttachBuffer<int8_t>(output, &data.mli_out);
// for height slicing
const int height_dimension = 1;
int in_slice_height = 0;
int out_slice_height = 0;
uint32_t* mli_weights_shape = data.mli_weights.Shape();
#ifdef MLI_2_0
const int kernel_height =
static_cast<int>(mli_weights_shape[KRNL_DW_H_DIM_HW1N]);
#else
const int kernel_height =
static_cast<int>(mli_weights_shape[KRNL_DW_H_DIM_HWC]);
#endif
const int overlap = kernel_height - cfg_local.stride_height;
// for weight slicing (on output channels)
// HWCN layout for weights, output channel dimension is the first dimension.
const int weight_out_ch_dimension = 3;
// bias has only 1 dimension
const int bias_out_ch_dimension = 0;
// Batch-Height-Width-Channel layout means last dimension is output
// channels.
const int out_tensor_ch_dimension = 3;
const int32_t in_channels = data.mli_in.Shape()[out_tensor_ch_dimension];
const int32_t out_channels = data.mli_out.Shape()[out_tensor_ch_dimension];
int slice_channels =
static_cast<int>(mli_weights_shape[weight_out_ch_dimension]);
// Tensors for data in fast (local) memory
// and config to copy data from external to local memory
mli_tensor weights_local = *data.mli_weights.MliTensor();
mli_tensor bias_local = *data.mli_bias.MliTensor();
mli_tensor in_local = *data.mli_in.MliTensor();
mli_tensor out_local =
*data.mli_out.MliTensor(); // this assumes that output shape
// is already filled in the tensor struct.
ops::micro::MliTensorInterface weights_local_interface(&weights_local);
ops::micro::MliTensorInterface bias_local_interface(&bias_local);
ops::micro::MliTensorInterface in_local_interface(&in_local);
ops::micro::MliTensorInterface out_local_interface(&out_local);
mli_mov_cfg_t copy_config;
mli_mov_cfg_for_copy(&copy_config);
TF_LITE_ENSURE_STATUS(ops::micro::get_arc_scratch_buffer_for_conv_tensors(
context, &in_local_interface, &weights_local_interface,
&bias_local_interface, &out_local_interface));
/* is_local indicates that the tensor is already in local memory,
so in that case the original tensor can be used,
and there is no need to copy it to the local tensor*/
const bool in_is_local =
in_local_interface.Data<int8_t>() == data.mli_in.Data<int8_t>();
const bool out_is_local =
out_local_interface.Data<int8_t>() == data.mli_out.Data<int8_t>();
const bool w_is_local = weights_local_interface.Data<int8_t>() ==
data.mli_weights.Data<int8_t>();
const bool b_is_local =
bias_local_interface.Data<int32_t>() == data.mli_bias.Data<int32_t>();
TF_LITE_ENSURE_STATUS(ops::micro::arc_scratch_buffer_calc_slice_size_io(
&in_local_interface, &out_local_interface, kernel_height,
cfg_local.stride_height, cfg_local.padding_top,
cfg_local.padding_bottom, &in_slice_height, &out_slice_height));
TF_LITE_ENSURE_STATUS(
ops::micro::arc_scratch_buffer_calc_slice_size_weights(
&weights_local_interface, &bias_local_interface,
weight_out_ch_dimension, &slice_channels));
/* if input channels is not equal to output channels, a channel multiplier
is used. in this case the slice channels needs to be rounded down to a
multiple of the input channels */
if (in_channels != out_channels) {
slice_channels = (slice_channels / in_channels) * in_channels;
}
ops::micro::TensorSlicer b_slice(data.mli_bias.MliTensor(),
bias_out_ch_dimension, slice_channels);
ops::micro::TensorSlicer w_slice(data.mli_weights.MliTensor(),
weight_out_ch_dimension, slice_channels, 0,
0, 0, true);
ops::micro::TensorSlicer out_ch_slice(data.mli_out.MliTensor(),
out_tensor_ch_dimension,
slice_channels, 0, 0, 0, true);
ops::micro::TensorSlicer in_ch_slice(data.mli_in.MliTensor(),
out_tensor_ch_dimension,
slice_channels, 0, 0, 0, true);
mli_tensor* w_ptr = w_is_local ? w_slice.Sub() : &weights_local;
mli_tensor* b_ptr = b_is_local ? b_slice.Sub() : &bias_local;
void* input_buffer_ptr = NULL;
uint32_t input_buffer_size = 0;
int padding_top = cfg_local.padding_top;
int padding_bottom = cfg_local.padding_bottom;
while (!w_slice.Done()) {
mli_mov_tensor_sync(w_slice.Sub(), &copy_config, w_ptr);
mli_mov_tensor_sync(b_slice.Sub(), &copy_config, b_ptr);
/* input tensor is already sliced in the channel dimension.
out_ch_slice.Sub() is the tensor for the amount of channels of this
iteration of the weight slice loop. This tensor needs to be further
sliced over the batch and height dimension. in_ch_slice.Sub() tensor
contains batches of HWC tensors. so it is a 4 dimensional tensor. because
the mli kernel will process one HWC tensor at a time, the 4 dimensional
tensor needs to be sliced into nBatch 3 dimensional tensors. on top of
that there could be a need to also slice in the Height dimension. for that
the sliceHeight has been calculated. The tensor slicer is configured that
it will completely slice the nBatch dimension (0) and slice the height
dimension (1) in chunks of 'sliceHeight' */
ops::micro::TensorSlicer in_slice(in_ch_slice.Sub(), height_dimension,
in_slice_height, padding_top,
padding_bottom, overlap);
/* output tensor is already sliced in the output channel dimension.
out_ch_slice.Sub() is the tensor for the amount of output channels of this
iteration of the weight slice loop. This tensor needs to be further
sliced over the batch and height dimension. */
ops::micro::TensorSlicer out_slice(out_ch_slice.Sub(), height_dimension,
out_slice_height);
/* setup the pointers to the local or remote tensor to make the code
* inside the loop easier. */
mli_tensor* in_ptr = in_is_local ? in_slice.Sub() : &in_local;
mli_tensor* out_ptr = out_is_local ? out_slice.Sub() : &out_local;
while (!out_slice.Done()) {
if (!out_is_local) {
ops::micro::PrepareLocalTensor(out_slice.Sub(), &out_local);
ops::micro::PrepareLocalTensor(in_slice.Sub(), &in_local);
}
TF_LITE_ENSURE(context, !in_slice.Done());
cfg_local.padding_top = in_slice.GetPaddingPre();
cfg_local.padding_bottom = in_slice.GetPaddingPost();
// if same input copy as previous iteration, skip the copy of input
#ifdef MLI_2_0
if ((in_slice.Sub()->data.mem.pi8 != input_buffer_ptr) ||
(mli_hlp_count_elem_num(in_slice.Sub(), 0) != input_buffer_size)) {
mli_mov_tensor_sync(in_slice.Sub(), &copy_config, in_ptr);
input_buffer_ptr = in_slice.Sub()->data.mem.pi8;
input_buffer_size = mli_hlp_count_elem_num(in_slice.Sub(), 0);
}
#ifdef MLI_2_0_KRNL_TEST
// Checking conditions here to prevent usage non-contiguous buffer
// memory.
if (mli_weights_shape[weight_out_ch_dimension] !=
w_slice.Sub()->shape[3]) {
MicroPrintf("Slicing is not supported with real-time permutation.");
return kTfLiteError;
}
uint8_t dim_order[] = {1, 2, 0, 3};
ops::micro::change_shape(w_ptr, dim_order);
#endif
data.p_mli_krn_depthwise_conv2d_sa8_sa8_sa32(in_ptr, w_ptr, b_ptr,
&cfg_local, out_ptr);
#else
if ((in_slice.Sub()->data != input_buffer_ptr) ||
(mli_hlp_count_elem_num(in_slice.Sub(), 0) != input_buffer_size)) {
mli_mov_tensor_sync(in_slice.Sub(), &copy_config, in_ptr);
input_buffer_ptr = in_slice.Sub()->data;
input_buffer_size = mli_hlp_count_elem_num(in_slice.Sub(), 0);
}
data.p_mli_krn_depthwise_conv2d_sa8_sa8_sa32(in_ptr, w_ptr, b_ptr,
&cfg_local, out_ptr);
#endif
mli_mov_tensor_sync(out_ptr, &copy_config, out_slice.Sub());
in_slice.Next();
out_slice.Next();
}
w_slice.Next();
b_slice.Next();
out_ch_slice.Next();
in_ch_slice.Next();
TF_LITE_ENSURE(context, in_slice.Done());
}
}
return kTfLiteOk;
}
void EvalQuantizedPerChannel(TfLiteContext* context, TfLiteNode* node,
TfLiteDepthwiseConvParams* params,
const OpData& data, const TfLiteEvalTensor* input,
const TfLiteEvalTensor* filter,
const TfLiteEvalTensor* bias,
TfLiteEvalTensor* output) {
#if !defined(TF_LITE_STRIP_REFERENCE_IMPL)
DepthwiseParams op_params;
op_params.padding_type = PaddingType::kSame;
op_params.padding_values.width = data.padding.width;
op_params.padding_values.height = data.padding.height;
op_params.stride_width = params->stride_width;
op_params.stride_height = params->stride_height;
op_params.dilation_width_factor = params->dilation_width_factor;
op_params.dilation_height_factor = params->dilation_height_factor;
op_params.depth_multiplier = params->depth_multiplier;
op_params.input_offset = -data.input_zero_point;
op_params.weights_offset = 0;
op_params.output_offset = data.output_zero_point;
op_params.quantized_activation_min = std::numeric_limits<int8_t>::min();
op_params.quantized_activation_max = std::numeric_limits<int8_t>::max();
reference_integer_ops::DepthwiseConvPerChannel(
op_params, data.per_channel_output_multiplier,
data.per_channel_output_shift, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<int8_t>(input),
tflite::micro::GetTensorShape(filter),
tflite::micro::GetTensorData<int8_t>(filter),
tflite::micro::GetTensorShape(bias),
tflite::micro::GetTensorData<int32_t>(bias),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int8_t>(output));
#else
MicroPrintf("Node configuration is not supported by ARC MLI Library.");
#endif
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
TFLITE_DCHECK(node->user_data != nullptr);
TFLITE_DCHECK(node->builtin_data != nullptr);
auto* params =
reinterpret_cast<TfLiteDepthwiseConvParams*>(node->builtin_data);
const OpData& data = *(static_cast<const OpData*>(node->user_data));
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
const TfLiteEvalTensor* input =
tflite::micro::GetEvalInput(context, node, kInputTensor);
const TfLiteEvalTensor* filter =
tflite::micro::GetEvalInput(context, node, kFilterTensor);
const TfLiteEvalTensor* bias =
(NumInputs(node) == 3)
? tflite::micro::GetEvalInput(context, node, kBiasTensor)
: nullptr;
switch (input->type) { // Already know in/out types are same.
case kTfLiteFloat32:
EvalFloat(context, node, params, data, input, filter, bias, output);
break;
case kTfLiteInt8:
if (data.is_mli_applicable) {
EvalMliQuantizedPerChannel(context, node, params, data, input, filter,
bias, output);
} else {
EvalQuantizedPerChannel(context, node, params, data, input, filter,
bias, output);
}
break;
case kTfLiteInt16: {
switch (filter->type) {
case kTfLiteInt8: {
reference_integer_ops::DepthwiseConvPerChannel(
DepthwiseConvParamsQuantized(params, data),
data.per_channel_output_multiplier, data.per_channel_output_shift,
tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<int16_t>(input),
tflite::micro::GetTensorShape(filter),
tflite::micro::GetTensorData<int8_t>(filter),
tflite::micro::GetTensorShape(bias),
tflite::micro::GetOptionalTensorData<int64_t>(bias),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int16_t>(output));
break;
}
default:
MicroPrintf("Filter type %s (%d) for input type %s not supported.",
TfLiteTypeGetName(filter->type), filter->type,
TfLiteTypeGetName(input->type));
return kTfLiteError;
}
break;
}
default:
MicroPrintf("Type %s (%d) not supported.", TfLiteTypeGetName(input->type),
input->type);
return kTfLiteError;
}
return kTfLiteOk;
}
} // namespace
TFLMRegistration Register_DEPTHWISE_CONV_2D() {
return tflite::micro::RegisterOp(Init, Prepare, Eval);
}
} // namespace tflite