| /* Copyright 2020 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| |
| #include "tensorflow/lite/kernels/internal/reference/add_n.h" |
| |
| #include <cstdint> |
| |
| #include "tensorflow/lite/c/common.h" |
| #include "tensorflow/lite/kernels/internal/quantization_util.h" |
| #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" |
| #include "tensorflow/lite/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/micro_log.h" |
| |
| namespace tflite { |
| namespace { |
| |
| constexpr int kInputTensor0 = 0; |
| constexpr int kOutputTensor = 0; |
| |
| constexpr int kAddNIntegerShift = 20; |
| |
| // only used with INT8 tensors |
| struct OpData { |
| int32_t output_activation_min; |
| int32_t output_activation_max; |
| int32_t input_offset; |
| int32_t output_offset; |
| int32_t input_multiplier; |
| int32_t output_multiplier; |
| int input_shift; |
| int output_shift; |
| int left_shift; |
| int scratch_index; |
| }; |
| |
| TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node) { |
| int num_inputs = NumInputs(node); |
| TF_LITE_ENSURE(context, num_inputs >= 2); |
| TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); |
| |
| MicroContext* micro_context = GetMicroContext(context); |
| TfLiteTensor* input_tensor_first = |
| micro_context->AllocateTempInputTensor(node, kInputTensor0); |
| TF_LITE_ENSURE(context, input_tensor_first != nullptr); |
| TfLiteTensor* output = |
| micro_context->AllocateTempOutputTensor(node, kOutputTensor); |
| TF_LITE_ENSURE(context, output != nullptr); |
| |
| // Check that all tensors have the same shape and type. |
| TF_LITE_ENSURE_TYPES_EQ(context, output->type, input_tensor_first->type); |
| for (int i = kInputTensor0 + 1; i < num_inputs; ++i) { |
| TfLiteTensor* input = micro_context->AllocateTempInputTensor(node, i); |
| TF_LITE_ENSURE(context, input != nullptr); |
| TF_LITE_ENSURE(context, HaveSameShapes(input_tensor_first, input)); |
| TF_LITE_ENSURE_TYPES_EQ(context, input_tensor_first->type, input->type); |
| |
| // Check that all INT8 input tensors have the same zero-point and scale. |
| if (input_tensor_first->type == kTfLiteInt8) { |
| TF_LITE_ENSURE(context, input_tensor_first->params.zero_point == |
| input->params.zero_point); |
| TF_LITE_ENSURE(context, |
| input_tensor_first->params.scale == input->params.scale); |
| } |
| |
| micro_context->DeallocateTempTfLiteTensor(input); |
| } |
| |
| if (output->type == kTfLiteFloat32) { |
| // Allocate scratch buffer space for pointer to each tensor's data |
| // and store the scratch buffer index in the node's user_data |
| int scratch_index; |
| size_t scratch_size = sizeof(float*) * num_inputs; |
| TF_LITE_ENSURE_OK(context, context->RequestScratchBufferInArena( |
| context, scratch_size, &scratch_index)); |
| node->user_data = |
| reinterpret_cast<decltype(node->user_data)>(scratch_index); |
| } else if (output->type == kTfLiteInt8) { |
| node->user_data = |
| context->AllocatePersistentBuffer(context, sizeof(OpData)); |
| OpData* data = static_cast<OpData*>(node->user_data); |
| |
| // Allocate scratch buffer space for pointer to each tensor's data |
| // and store the scratch buffer index in OpData |
| size_t scratch_size = sizeof(int8_t*) * num_inputs; |
| TF_LITE_ENSURE_OK( |
| context, context->RequestScratchBufferInArena(context, scratch_size, |
| &data->scratch_index)); |
| |
| // 8bit -> 8bit general quantized path, with general rescalings |
| data->input_offset = -input_tensor_first->params.zero_point; |
| data->output_offset = output->params.zero_point; |
| data->left_shift = kAddNIntegerShift; |
| const double twice_max_input_scale = |
| 2 * static_cast<double>(input_tensor_first->params.scale); |
| const double real_input_multiplier = |
| static_cast<double>(input_tensor_first->params.scale) / |
| twice_max_input_scale; |
| const double real_output_multiplier = |
| twice_max_input_scale / |
| ((1 << data->left_shift) * static_cast<double>(output->params.scale)); |
| |
| QuantizeMultiplierSmallerThanOneExp( |
| real_input_multiplier, &data->input_multiplier, &data->input_shift); |
| |
| QuantizeMultiplierSmallerThanOneExp( |
| real_output_multiplier, &data->output_multiplier, &data->output_shift); |
| |
| TF_LITE_ENSURE_STATUS(CalculateActivationRangeQuantized( |
| context, kTfLiteActNone, output, &data->output_activation_min, |
| &data->output_activation_max)); |
| } else { |
| MicroPrintf("ADD_N only supports FLOAT32 and INT8, got %s.", |
| TfLiteTypeGetName(output->type)); |
| return kTfLiteError; |
| } |
| |
| micro_context->DeallocateTempTfLiteTensor(input_tensor_first); |
| micro_context->DeallocateTempTfLiteTensor(output); |
| |
| return kTfLiteOk; |
| } |
| |
| TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { |
| return CalculateOpData(context, node); |
| } |
| |
| template <typename T> |
| inline const T** CopyInputsToScratchBuffer(TfLiteContext* context, |
| TfLiteNode* node, |
| const int scratch_index) { |
| int num_inputs = NumInputs(node); |
| void* scratch_buffer = context->GetScratchBuffer(context, scratch_index); |
| const T** all_inputs = static_cast<decltype(all_inputs)>(scratch_buffer); |
| for (int i = 0; i < num_inputs; i++) { |
| const TfLiteEvalTensor* next_input = |
| tflite::micro::GetEvalInput(context, node, kInputTensor0 + i); |
| all_inputs[i] = tflite::micro::GetTensorData<T>(next_input); |
| } |
| |
| return all_inputs; |
| } |
| |
| template <typename T> |
| void EvalAddN(TfLiteContext* context, TfLiteNode* node, |
| TfLiteEvalTensor* output) { |
| int num_inputs = NumInputs(node); |
| |
| int scratch_index = |
| static_cast<int>(reinterpret_cast<intptr_t>(node->user_data)); |
| const T** all_inputs = |
| CopyInputsToScratchBuffer<T>(context, node, scratch_index); |
| |
| reference_ops::AddN<T>(tflite::micro::GetTensorShape(output), num_inputs, |
| all_inputs, tflite::micro::GetTensorData<T>(output)); |
| } |
| |
| template <typename T> |
| void EvalAddNQuantized(TfLiteContext* context, TfLiteNode* node, |
| TfLiteEvalTensor* output) { |
| int num_inputs = NumInputs(node); |
| |
| OpData* data = static_cast<OpData*>(node->user_data); |
| const T** all_inputs = |
| CopyInputsToScratchBuffer<T>(context, node, data->scratch_index); |
| |
| ArithmeticParams params; |
| params.left_shift = data->left_shift; |
| params.input1_offset = data->input_offset; |
| params.input1_multiplier = data->input_multiplier; |
| params.input1_shift = data->input_shift; |
| params.output_offset = data->output_offset; |
| params.output_multiplier = data->output_multiplier; |
| params.output_shift = data->output_shift; |
| SetActivationParams(data->output_activation_min, data->output_activation_max, |
| ¶ms); |
| |
| reference_ops::AddN(params, tflite::micro::GetTensorShape(output), num_inputs, |
| all_inputs, tflite::micro::GetTensorData<T>(output)); |
| } |
| |
| TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { |
| TfLiteEvalTensor* output = |
| tflite::micro::GetEvalOutput(context, node, kOutputTensor); |
| if (output->type == kTfLiteFloat32) { |
| EvalAddN<float>(context, node, output); |
| } else if (output->type == kTfLiteInt8) { |
| EvalAddNQuantized<int8_t>(context, node, output); |
| } else { |
| MicroPrintf("ADD_N only supports FLOAT32 and INT8, got %s.", |
| TfLiteTypeGetName(output->type)); |
| return kTfLiteError; |
| } |
| return kTfLiteOk; |
| } |
| |
| } // namespace |
| |
| TFLMRegistration Register_ADD_N() { |
| return tflite::micro::RegisterOp(nullptr, Prepare, Eval); |
| } |
| |
| } // namespace tflite |