| /* Copyright 2021 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| |
| #include "tensorflow/lite/c/builtin_op_data.h" |
| #include "tensorflow/lite/c/common.h" |
| #include "tensorflow/lite/kernels/internal/quantization_util.h" |
| #include "tensorflow/lite/kernels/internal/reference/add.h" |
| #include "tensorflow/lite/kernels/internal/reference/integer_ops/add.h" |
| #include "tensorflow/lite/kernels/internal/reference/process_broadcast_shapes.h" |
| #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" |
| #include "tensorflow/lite/kernels/kernel_util.h" |
| #include "tensorflow/lite/kernels/op_macros.h" |
| #include "tensorflow/lite/micro/kernels/add.h" |
| #include "tensorflow/lite/micro/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/memory_helpers.h" |
| |
| namespace tflite { |
| |
| const int kAddInputTensor1 = 0; |
| const int kAddInputTensor2 = 1; |
| const int kAddOutputTensor = 0; |
| |
| TfLiteStatus CalculateOpDataAdd(TfLiteContext* context, TfLiteAddParams* params, |
| const TfLiteTensor* input1, |
| const TfLiteTensor* input2, |
| TfLiteTensor* output, OpDataAdd* data) { |
| data->requires_broadcast = !HaveSameShapes(input1, input2); |
| |
| if (output->type == kTfLiteInt8 || output->type == kTfLiteInt16) { |
| TFLITE_CHECK_NE(output->quantization.type, kTfLiteNoQuantization); |
| |
| // 8bit -> 8bit general quantized path, with general rescalings |
| data->input1_offset = -input1->params.zero_point; |
| data->input2_offset = -input2->params.zero_point; |
| data->output_offset = output->params.zero_point; |
| data->left_shift = (output->type == kTfLiteInt16) ? 15 : 20; |
| const double twice_max_input_scale = |
| 2 * static_cast<double>( |
| std::max(input1->params.scale, input2->params.scale)); |
| const double real_input1_multiplier = |
| static_cast<double>(input1->params.scale) / twice_max_input_scale; |
| const double real_input2_multiplier = |
| static_cast<double>(input2->params.scale) / twice_max_input_scale; |
| const double real_output_multiplier = |
| twice_max_input_scale / |
| ((1 << data->left_shift) * static_cast<double>(output->params.scale)); |
| |
| QuantizeMultiplierSmallerThanOneExp( |
| real_input1_multiplier, &data->input1_multiplier, &data->input1_shift); |
| |
| QuantizeMultiplierSmallerThanOneExp( |
| real_input2_multiplier, &data->input2_multiplier, &data->input2_shift); |
| |
| QuantizeMultiplierSmallerThanOneExp( |
| real_output_multiplier, &data->output_multiplier, &data->output_shift); |
| |
| TF_LITE_ENSURE_STATUS(CalculateActivationRangeQuantized( |
| context, params->activation, output, &data->output_activation_min, |
| &data->output_activation_max)); |
| } else if (output->type == kTfLiteFloat32) { |
| CalculateActivationRange(params->activation, |
| &data->output_activation_min_f32, |
| &data->output_activation_max_f32); |
| } |
| |
| return kTfLiteOk; |
| } |
| |
| TfLiteStatus AddPrepare(TfLiteContext* context, TfLiteNode* node) { |
| TFLITE_DCHECK(node->user_data != nullptr); |
| TFLITE_DCHECK(node->builtin_data != nullptr); |
| |
| MicroContext* micro_context = GetMicroContext(context); |
| TfLiteTensor* input1 = |
| micro_context->AllocateTempInputTensor(node, kAddInputTensor1); |
| TF_LITE_ENSURE(context, input1 != nullptr); |
| TfLiteTensor* input2 = |
| micro_context->AllocateTempInputTensor(node, kAddInputTensor2); |
| TF_LITE_ENSURE(context, input2 != nullptr); |
| TfLiteTensor* output = |
| micro_context->AllocateTempOutputTensor(node, kAddOutputTensor); |
| TF_LITE_ENSURE(context, output != nullptr); |
| |
| OpDataAdd* data = static_cast<OpDataAdd*>(node->user_data); |
| auto* params = reinterpret_cast<TfLiteAddParams*>(node->builtin_data); |
| |
| TF_LITE_ENSURE_STATUS( |
| CalculateOpDataAdd(context, params, input1, input2, output, data)); |
| |
| if (output->type == kTfLiteInt32) { |
| // Only support int32 unquantized add for now. |
| TF_LITE_ENSURE_EQ(context, input1->quantization.type, |
| kTfLiteNoQuantization); |
| TF_LITE_ENSURE_EQ(context, input2->quantization.type, |
| kTfLiteNoQuantization); |
| } |
| |
| micro_context->DeallocateTempTfLiteTensor(input1); |
| micro_context->DeallocateTempTfLiteTensor(input2); |
| micro_context->DeallocateTempTfLiteTensor(output); |
| return kTfLiteOk; |
| } |
| |
| } // namespace tflite |