blob: b27206c67743c1bfafd3975805d8811d49387dfa [file] [log] [blame]
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/kernels/internal/reference/add.h"
#include <limits>
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/quantization_util.h"
#include "tensorflow/lite/kernels/internal/reference/integer_ops/add.h"
#include "tensorflow/lite/kernels/internal/reference/process_broadcast_shapes.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/kernels/op_macros.h"
#include "tensorflow/lite/micro/kernels/add.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
#include "tensorflow/lite/micro/memory_helpers.h"
#include "tensorflow/lite/micro/micro_log.h"
namespace tflite {
TfLiteStatus EvalAdd(TfLiteContext* context, TfLiteNode* node,
TfLiteAddParams* params, const OpDataAdd* data,
const TfLiteEvalTensor* input1,
const TfLiteEvalTensor* input2, TfLiteEvalTensor* output) {
switch (output->type) {
case kTfLiteFloat32: {
tflite::ArithmeticParams op_params;
SetActivationParams(data->output_activation_min_f32,
data->output_activation_max_f32, &op_params);
if (data->requires_broadcast) {
reference_ops::BroadcastAdd4DSlow(
op_params, tflite::micro::GetTensorShape(input1),
tflite::micro::GetTensorData<float>(input1),
tflite::micro::GetTensorShape(input2),
tflite::micro::GetTensorData<float>(input2),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output));
} else {
reference_ops::Add(op_params, tflite::micro::GetTensorShape(input1),
tflite::micro::GetTensorData<float>(input1),
tflite::micro::GetTensorShape(input2),
tflite::micro::GetTensorData<float>(input2),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output));
}
} break;
case kTfLiteInt32: {
tflite::ArithmeticParams op_params;
SetActivationParams(std::numeric_limits<int32_t>::lowest(),
std::numeric_limits<int32_t>::max(), &op_params);
if (data->requires_broadcast) {
reference_ops::BroadcastAdd4DSlow(
op_params, tflite::micro::GetTensorShape(input1),
tflite::micro::GetTensorData<int32_t>(input1),
tflite::micro::GetTensorShape(input2),
tflite::micro::GetTensorData<int32_t>(input2),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int32_t>(output));
} else {
reference_ops::Add(op_params, tflite::micro::GetTensorShape(input1),
tflite::micro::GetTensorData<int32_t>(input1),
tflite::micro::GetTensorShape(input2),
tflite::micro::GetTensorData<int32_t>(input2),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int32_t>(output));
}
} break;
default:
MicroPrintf("Type %s (%d) not supported.",
TfLiteTypeGetName(output->type), output->type);
return kTfLiteError;
}
return kTfLiteOk;
}
TfLiteStatus EvalAddQuantized(TfLiteContext* context, TfLiteNode* node,
TfLiteAddParams* params, const OpDataAdd* data,
const TfLiteEvalTensor* input1,
const TfLiteEvalTensor* input2,
TfLiteEvalTensor* output) {
tflite::ArithmeticParams op_params;
op_params.left_shift = data->left_shift;
op_params.input1_offset = data->input1_offset;
op_params.input1_multiplier = data->input1_multiplier;
op_params.input1_shift = data->input1_shift;
op_params.input2_offset = data->input2_offset;
op_params.input2_multiplier = data->input2_multiplier;
op_params.input2_shift = data->input2_shift;
op_params.output_offset = data->output_offset;
op_params.output_multiplier = data->output_multiplier;
op_params.output_shift = data->output_shift;
SetActivationParams(data->output_activation_min, data->output_activation_max,
&op_params);
bool need_broadcast = reference_ops::ProcessBroadcastShapes(
tflite::micro::GetTensorShape(input1),
tflite::micro::GetTensorShape(input2), &op_params);
switch (output->type) {
case kTfLiteInt8: {
if (need_broadcast) {
reference_integer_ops::BroadcastAdd4DSlow(
op_params, tflite::micro::GetTensorShape(input1),
tflite::micro::GetTensorData<int8_t>(input1),
tflite::micro::GetTensorShape(input2),
tflite::micro::GetTensorData<int8_t>(input2),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int8_t>(output));
} else {
reference_integer_ops::Add(
op_params, tflite::micro::GetTensorShape(input1),
tflite::micro::GetTensorData<int8_t>(input1),
tflite::micro::GetTensorShape(input2),
tflite::micro::GetTensorData<int8_t>(input2),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int8_t>(output));
}
break;
}
case kTfLiteInt16: {
if (need_broadcast) {
reference_ops::BroadcastAdd4DSlow(
op_params, tflite::micro::GetTensorShape(input1),
tflite::micro::GetTensorData<int16_t>(input1),
tflite::micro::GetTensorShape(input2),
tflite::micro::GetTensorData<int16_t>(input2),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int16_t>(output));
} else {
reference_ops::Add(op_params, tflite::micro::GetTensorShape(input1),
tflite::micro::GetTensorData<int16_t>(input1),
tflite::micro::GetTensorShape(input2),
tflite::micro::GetTensorData<int16_t>(input2),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int16_t>(output),
false);
}
break;
}
default:
MicroPrintf("Type %s (%d) not supported.",
TfLiteTypeGetName(output->type), output->type);
return kTfLiteError;
}
return kTfLiteOk;
}
void* AddInit(TfLiteContext* context, const char* buffer, size_t length) {
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
return context->AllocatePersistentBuffer(context, sizeof(OpDataAdd));
}
TfLiteStatus AddEval(TfLiteContext* context, TfLiteNode* node) {
auto* params = reinterpret_cast<TfLiteAddParams*>(node->builtin_data);
TFLITE_DCHECK(node->user_data != nullptr);
const OpDataAdd* data = static_cast<const OpDataAdd*>(node->user_data);
const TfLiteEvalTensor* input1 =
tflite::micro::GetEvalInput(context, node, kAddInputTensor1);
const TfLiteEvalTensor* input2 =
tflite::micro::GetEvalInput(context, node, kAddInputTensor2);
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kAddOutputTensor);
if (output->type == kTfLiteFloat32 || output->type == kTfLiteInt32) {
TF_LITE_ENSURE_OK(
context, EvalAdd(context, node, params, data, input1, input2, output));
} else if (output->type == kTfLiteInt8 || output->type == kTfLiteInt16) {
TF_LITE_ENSURE_OK(context, EvalAddQuantized(context, node, params, data,
input1, input2, output));
} else {
MicroPrintf("Type %s (%d) not supported.", TfLiteTypeGetName(output->type),
output->type);
return kTfLiteError;
}
return kTfLiteOk;
}
TFLMRegistration Register_ADD() {
return tflite::micro::RegisterOp(AddInit, AddPrepare, AddEval);
}
} // namespace tflite