| /* Copyright 2021 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| |
| #include "tensorflow/lite/kernels/internal/reference/add.h" |
| |
| #include <limits> |
| |
| #include "tensorflow/lite/c/builtin_op_data.h" |
| #include "tensorflow/lite/c/common.h" |
| #include "tensorflow/lite/kernels/internal/quantization_util.h" |
| #include "tensorflow/lite/kernels/internal/reference/integer_ops/add.h" |
| #include "tensorflow/lite/kernels/internal/reference/process_broadcast_shapes.h" |
| #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" |
| #include "tensorflow/lite/kernels/kernel_util.h" |
| #include "tensorflow/lite/kernels/op_macros.h" |
| #include "tensorflow/lite/micro/kernels/add.h" |
| #include "tensorflow/lite/micro/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/memory_helpers.h" |
| #include "tensorflow/lite/micro/micro_log.h" |
| |
| namespace tflite { |
| |
| TfLiteStatus EvalAdd(TfLiteContext* context, TfLiteNode* node, |
| TfLiteAddParams* params, const OpDataAdd* data, |
| const TfLiteEvalTensor* input1, |
| const TfLiteEvalTensor* input2, TfLiteEvalTensor* output) { |
| switch (output->type) { |
| case kTfLiteFloat32: { |
| tflite::ArithmeticParams op_params; |
| SetActivationParams(data->output_activation_min_f32, |
| data->output_activation_max_f32, &op_params); |
| if (data->requires_broadcast) { |
| reference_ops::BroadcastAdd4DSlow( |
| op_params, tflite::micro::GetTensorShape(input1), |
| tflite::micro::GetTensorData<float>(input1), |
| tflite::micro::GetTensorShape(input2), |
| tflite::micro::GetTensorData<float>(input2), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<float>(output)); |
| } else { |
| reference_ops::Add(op_params, tflite::micro::GetTensorShape(input1), |
| tflite::micro::GetTensorData<float>(input1), |
| tflite::micro::GetTensorShape(input2), |
| tflite::micro::GetTensorData<float>(input2), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<float>(output)); |
| } |
| } break; |
| case kTfLiteInt32: { |
| tflite::ArithmeticParams op_params; |
| SetActivationParams(std::numeric_limits<int32_t>::lowest(), |
| std::numeric_limits<int32_t>::max(), &op_params); |
| if (data->requires_broadcast) { |
| reference_ops::BroadcastAdd4DSlow( |
| op_params, tflite::micro::GetTensorShape(input1), |
| tflite::micro::GetTensorData<int32_t>(input1), |
| tflite::micro::GetTensorShape(input2), |
| tflite::micro::GetTensorData<int32_t>(input2), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<int32_t>(output)); |
| } else { |
| reference_ops::Add(op_params, tflite::micro::GetTensorShape(input1), |
| tflite::micro::GetTensorData<int32_t>(input1), |
| tflite::micro::GetTensorShape(input2), |
| tflite::micro::GetTensorData<int32_t>(input2), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<int32_t>(output)); |
| } |
| } break; |
| default: |
| MicroPrintf("Type %s (%d) not supported.", |
| TfLiteTypeGetName(output->type), output->type); |
| return kTfLiteError; |
| } |
| |
| return kTfLiteOk; |
| } |
| |
| TfLiteStatus EvalAddQuantized(TfLiteContext* context, TfLiteNode* node, |
| TfLiteAddParams* params, const OpDataAdd* data, |
| const TfLiteEvalTensor* input1, |
| const TfLiteEvalTensor* input2, |
| TfLiteEvalTensor* output) { |
| tflite::ArithmeticParams op_params; |
| op_params.left_shift = data->left_shift; |
| op_params.input1_offset = data->input1_offset; |
| op_params.input1_multiplier = data->input1_multiplier; |
| op_params.input1_shift = data->input1_shift; |
| op_params.input2_offset = data->input2_offset; |
| op_params.input2_multiplier = data->input2_multiplier; |
| op_params.input2_shift = data->input2_shift; |
| op_params.output_offset = data->output_offset; |
| op_params.output_multiplier = data->output_multiplier; |
| op_params.output_shift = data->output_shift; |
| SetActivationParams(data->output_activation_min, data->output_activation_max, |
| &op_params); |
| bool need_broadcast = reference_ops::ProcessBroadcastShapes( |
| tflite::micro::GetTensorShape(input1), |
| tflite::micro::GetTensorShape(input2), &op_params); |
| |
| switch (output->type) { |
| case kTfLiteInt8: { |
| if (need_broadcast) { |
| reference_integer_ops::BroadcastAdd4DSlow( |
| op_params, tflite::micro::GetTensorShape(input1), |
| tflite::micro::GetTensorData<int8_t>(input1), |
| tflite::micro::GetTensorShape(input2), |
| tflite::micro::GetTensorData<int8_t>(input2), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<int8_t>(output)); |
| } else { |
| reference_integer_ops::Add( |
| op_params, tflite::micro::GetTensorShape(input1), |
| tflite::micro::GetTensorData<int8_t>(input1), |
| tflite::micro::GetTensorShape(input2), |
| tflite::micro::GetTensorData<int8_t>(input2), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<int8_t>(output)); |
| } |
| break; |
| } |
| case kTfLiteInt16: { |
| if (need_broadcast) { |
| reference_ops::BroadcastAdd4DSlow( |
| op_params, tflite::micro::GetTensorShape(input1), |
| tflite::micro::GetTensorData<int16_t>(input1), |
| tflite::micro::GetTensorShape(input2), |
| tflite::micro::GetTensorData<int16_t>(input2), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<int16_t>(output)); |
| } else { |
| reference_ops::Add(op_params, tflite::micro::GetTensorShape(input1), |
| tflite::micro::GetTensorData<int16_t>(input1), |
| tflite::micro::GetTensorShape(input2), |
| tflite::micro::GetTensorData<int16_t>(input2), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<int16_t>(output), |
| false); |
| } |
| break; |
| } |
| default: |
| MicroPrintf("Type %s (%d) not supported.", |
| TfLiteTypeGetName(output->type), output->type); |
| return kTfLiteError; |
| } |
| |
| return kTfLiteOk; |
| } |
| |
| void* AddInit(TfLiteContext* context, const char* buffer, size_t length) { |
| TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); |
| return context->AllocatePersistentBuffer(context, sizeof(OpDataAdd)); |
| } |
| |
| TfLiteStatus AddEval(TfLiteContext* context, TfLiteNode* node) { |
| auto* params = reinterpret_cast<TfLiteAddParams*>(node->builtin_data); |
| |
| TFLITE_DCHECK(node->user_data != nullptr); |
| const OpDataAdd* data = static_cast<const OpDataAdd*>(node->user_data); |
| |
| const TfLiteEvalTensor* input1 = |
| tflite::micro::GetEvalInput(context, node, kAddInputTensor1); |
| const TfLiteEvalTensor* input2 = |
| tflite::micro::GetEvalInput(context, node, kAddInputTensor2); |
| TfLiteEvalTensor* output = |
| tflite::micro::GetEvalOutput(context, node, kAddOutputTensor); |
| |
| if (output->type == kTfLiteFloat32 || output->type == kTfLiteInt32) { |
| TF_LITE_ENSURE_OK( |
| context, EvalAdd(context, node, params, data, input1, input2, output)); |
| } else if (output->type == kTfLiteInt8 || output->type == kTfLiteInt16) { |
| TF_LITE_ENSURE_OK(context, EvalAddQuantized(context, node, params, data, |
| input1, input2, output)); |
| } else { |
| MicroPrintf("Type %s (%d) not supported.", TfLiteTypeGetName(output->type), |
| output->type); |
| return kTfLiteError; |
| } |
| |
| return kTfLiteOk; |
| } |
| |
| TFLMRegistration Register_ADD() { |
| return tflite::micro::RegisterOp(AddInit, AddPrepare, AddEval); |
| } |
| |
| } // namespace tflite |