| /* Copyright 2021 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| |
| #include "tensorflow/lite/c/builtin_op_data.h" |
| #include "tensorflow/lite/c/common.h" |
| #include "tensorflow/lite/micro/kernels/kernel_runner.h" |
| #include "tensorflow/lite/micro/test_helpers.h" |
| #include "tensorflow/lite/micro/testing/micro_test.h" |
| |
| namespace tflite { |
| namespace testing { |
| namespace { |
| |
| void TestReluFloat(int* input_dims_data, const float* input_data, |
| int* output_dims_data, const float* golden, |
| float* output_data) { |
| TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data); |
| TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data); |
| const int output_elements_count = ElementCount(*output_dims); |
| |
| constexpr int inputs_size = 1; |
| constexpr int outputs_size = 1; |
| constexpr int tensors_size = inputs_size + outputs_size; |
| TfLiteTensor tensors[tensors_size] = { |
| CreateTensor(input_data, input_dims), |
| CreateTensor(output_data, output_dims), |
| }; |
| |
| int inputs_array_data[] = {1, 0}; |
| TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data); |
| int outputs_array_data[] = {1, 1}; |
| TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data); |
| |
| const TFLMRegistration registration = Register_RELU(); |
| micro::KernelRunner runner(registration, tensors, tensors_size, inputs_array, |
| outputs_array, |
| /*builtin_data=*/nullptr); |
| |
| TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.InitAndPrepare()); |
| TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.Invoke()); |
| |
| for (int i = 0; i < output_elements_count; ++i) { |
| TF_LITE_MICRO_EXPECT_NEAR(golden[i], output_data[i], 1e-5f); |
| } |
| } |
| |
| void TestRelu6Float(int* input_dims_data, const float* input_data, |
| int* output_dims_data, const float* golden, |
| float* output_data) { |
| TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data); |
| TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data); |
| const int output_elements_count = ElementCount(*output_dims); |
| |
| constexpr int inputs_size = 1; |
| constexpr int outputs_size = 1; |
| constexpr int tensors_size = inputs_size + outputs_size; |
| TfLiteTensor tensors[tensors_size] = { |
| CreateTensor(input_data, input_dims), |
| CreateTensor(output_data, output_dims), |
| }; |
| |
| int inputs_array_data[] = {1, 0}; |
| TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data); |
| int outputs_array_data[] = {1, 1}; |
| TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data); |
| |
| const TFLMRegistration registration = Register_RELU6(); |
| micro::KernelRunner runner(registration, tensors, tensors_size, inputs_array, |
| outputs_array, |
| /*builtin_data=*/nullptr); |
| |
| TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.InitAndPrepare()); |
| TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.Invoke()); |
| |
| for (int i = 0; i < output_elements_count; ++i) { |
| TF_LITE_MICRO_EXPECT_NEAR(golden[i], output_data[i], 1e-5f); |
| } |
| } |
| |
| void TestReluInt8(int* input_dims_data, const float* input_data, |
| int8_t* input_data_quantized, const float input_scale, |
| const int input_zero_point, const float* golden, |
| int8_t* golden_quantized, int* output_dims_data, |
| const float output_scale, const int output_zero_point, |
| int8_t* output_data) { |
| TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data); |
| TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data); |
| const int output_elements_count = ElementCount(*output_dims); |
| constexpr int inputs_size = 1; |
| constexpr int outputs_size = 1; |
| constexpr int tensors_size = inputs_size + outputs_size; |
| TfLiteTensor tensors[tensors_size] = { |
| CreateQuantizedTensor(input_data, input_data_quantized, input_dims, |
| input_scale, input_zero_point), |
| CreateQuantizedTensor(output_data, output_dims, output_scale, |
| output_zero_point), |
| }; |
| |
| int inputs_array_data[] = {1, 0}; |
| TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data); |
| int outputs_array_data[] = {1, 1}; |
| TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data); |
| |
| const TFLMRegistration registration = Register_RELU(); |
| micro::KernelRunner runner(registration, tensors, tensors_size, inputs_array, |
| outputs_array, |
| /*builtin_data=*/nullptr); |
| |
| TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.InitAndPrepare()); |
| TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.Invoke()); |
| |
| Quantize(golden, golden_quantized, output_elements_count, output_scale, |
| output_zero_point); |
| |
| for (int i = 0; i < output_elements_count; ++i) { |
| TF_LITE_MICRO_EXPECT_EQ(golden_quantized[i], output_data[i]); |
| } |
| } |
| |
| void TestRelu6Int8(int* input_dims_data, const float* input_data, |
| int8_t* input_data_quantized, const float input_scale, |
| const int input_zero_point, const float* golden, |
| int8_t* golden_quantized, int* output_dims_data, |
| const float output_scale, const int output_zero_point, |
| int8_t* output_data) { |
| TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data); |
| TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data); |
| const int output_elements_count = ElementCount(*output_dims); |
| constexpr int inputs_size = 1; |
| constexpr int outputs_size = 1; |
| constexpr int tensors_size = inputs_size + outputs_size; |
| TfLiteTensor tensors[tensors_size] = { |
| CreateQuantizedTensor(input_data, input_data_quantized, input_dims, |
| input_scale, input_zero_point), |
| CreateQuantizedTensor(output_data, output_dims, output_scale, |
| output_zero_point), |
| }; |
| |
| int inputs_array_data[] = {1, 0}; |
| TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data); |
| int outputs_array_data[] = {1, 1}; |
| TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data); |
| |
| const TFLMRegistration registration = Register_RELU6(); |
| micro::KernelRunner runner(registration, tensors, tensors_size, inputs_array, |
| outputs_array, |
| /*builtin_data=*/nullptr); |
| |
| TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.InitAndPrepare()); |
| TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.Invoke()); |
| |
| Quantize(golden, golden_quantized, output_elements_count, output_scale, |
| output_zero_point); |
| |
| for (int i = 0; i < output_elements_count; ++i) { |
| TF_LITE_MICRO_EXPECT_EQ(golden_quantized[i], output_data[i]); |
| } |
| } |
| |
| } // namespace |
| } // namespace testing |
| } // namespace tflite |
| |
| TF_LITE_MICRO_TESTS_BEGIN |
| |
| TF_LITE_MICRO_TEST(SimpleReluTestFloat) { |
| const int output_elements_count = 10; |
| int input_shape[] = {2, 1, 5}; |
| const float input_data[] = { |
| 1.0, 2.0, 3.0, 4.0, 5.0, -1.0, -2.0, -3.0, -4.0, -5.0, |
| }; |
| const float golden[] = {1.0, 2.0, 3.0, 4.0, 5.0, 0, 0, 0, 0, 0}; |
| int output_shape[] = {2, 1, 5}; |
| float output_data[output_elements_count]; |
| tflite::testing::TestReluFloat(input_shape, input_data, output_shape, golden, |
| output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(SimpleRelu6TestFloat) { |
| const int output_elements_count = 10; |
| float output_data[output_elements_count]; |
| int input_shape[] = {2, 1, 5}; |
| const float input_data[] = {4.0, 5.0, 6.0, 7.0, 8.0, |
| -4.0, -5.0, -6.0, -7.0, -8.0}; |
| int output_shape[] = {2, 1, 5}; |
| const float golden[] = { |
| 4.0, 5.0, 6.0, 6.0, 6.0, 0.0, 0.0, 0.0, 0.0, 0.0, |
| }; |
| |
| tflite::testing::TestRelu6Float(input_shape, input_data, output_shape, golden, |
| output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(SimpleReluTestInt8) { |
| const int elements_count = 10; |
| |
| int input_shape[] = {2, 1, 5}; |
| const float input_data[] = {1, 2, 3, 4, 5, -1, -2, -3, -4, -5}; |
| int8_t input_quantized[elements_count]; |
| int output_shape[] = {2, 1, 5}; |
| const float golden[] = {1, 2, 3, 4, 5, 0, 0, 0, 0, 0}; |
| int8_t golden_quantized[elements_count]; |
| int8_t output_data[elements_count]; |
| |
| const float input_scale = 0.5f; |
| const int input_zero_point = 0; |
| const float output_scale = 0.5f; |
| const int output_zero_point = 0; |
| |
| tflite::testing::TestReluInt8(input_shape, input_data, input_quantized, |
| input_scale, input_zero_point, golden, |
| golden_quantized, output_shape, output_scale, |
| output_zero_point, output_data); |
| } |
| |
| TF_LITE_MICRO_TEST(SimpleRelu6TestInt8) { |
| const int elements_count = 10; |
| |
| int input_shape[] = {2, 1, 5}; |
| const float input_data[] = {4, 5, 6, 7, 8, -1, -2, -3, -4, -5}; |
| int8_t input_quantized[elements_count]; |
| int output_shape[] = {2, 1, 5}; |
| const float golden[] = {4, 5, 6, 6, 6, 0, 0, 0, 0, 0}; |
| int8_t golden_quantized[elements_count]; |
| int8_t output_data[elements_count]; |
| |
| const float input_scale = 0.5f; |
| const int input_zero_point = 127; |
| const float output_scale = 0.5f; |
| const int output_zero_point = 127; |
| |
| tflite::testing::TestRelu6Int8(input_shape, input_data, input_quantized, |
| input_scale, input_zero_point, golden, |
| golden_quantized, output_shape, output_scale, |
| output_zero_point, output_data); |
| } |
| |
| TF_LITE_MICRO_TESTS_END |