| /* Copyright 2021 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| |
| #include "tensorflow/lite/micro/kernels/activations.h" |
| |
| #include "tensorflow/lite/c/builtin_op_data.h" |
| #include "tensorflow/lite/c/common.h" |
| #include "tensorflow/lite/kernels/internal/common.h" |
| #include "tensorflow/lite/kernels/internal/quantization_util.h" |
| #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" |
| #include "tensorflow/lite/kernels/internal/types.h" |
| #include "tensorflow/lite/kernels/kernel_util.h" |
| #include "tensorflow/lite/kernels/op_macros.h" |
| #include "tensorflow/lite/micro/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/micro_log.h" |
| #include "tensorflow/lite/micro/micro_utils.h" |
| |
| namespace tflite { |
| namespace { |
| |
| void* ReluInit(TfLiteContext* context, const char* buffer, size_t length) { |
| TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); |
| return context->AllocatePersistentBuffer(context, sizeof(ReluOpData)); |
| } |
| |
| TfLiteStatus ReluEval(TfLiteContext* context, TfLiteNode* node) { |
| TFLITE_DCHECK(node->user_data != nullptr); |
| const ReluOpData& data = *(static_cast<const ReluOpData*>(node->user_data)); |
| |
| const TfLiteEvalTensor* input = |
| tflite::micro::GetEvalInput(context, node, kActivationsInputTensor); |
| TfLiteEvalTensor* output = |
| tflite::micro::GetEvalOutput(context, node, kActivationsOutputTensor); |
| |
| switch (input->type) { |
| case kTfLiteFloat32: { |
| ReluFloat(tflite::micro::GetTensorShape(input), |
| tflite::micro::GetTensorData<float>(input), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<float>(output)); |
| |
| return kTfLiteOk; |
| } |
| case kTfLiteInt8: { |
| tflite::ReluQuantized(data, tflite::micro::GetTensorShape(input), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<int8_t>(input), |
| tflite::micro::GetTensorData<int8_t>(output)); |
| return kTfLiteOk; |
| } |
| default: { |
| MicroPrintf("Only float32 is supported currently, got %s", |
| TfLiteTypeGetName(input->type)); |
| return kTfLiteError; |
| } |
| } |
| } |
| |
| void* Relu6Init(TfLiteContext* context, const char* buffer, size_t length) { |
| TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); |
| return context->AllocatePersistentBuffer(context, sizeof(Relu6OpData)); |
| } |
| |
| TfLiteStatus Relu6Eval(TfLiteContext* context, TfLiteNode* node) { |
| TFLITE_DCHECK(node->user_data != nullptr); |
| const Relu6OpData& data = *(static_cast<const Relu6OpData*>(node->user_data)); |
| |
| const TfLiteEvalTensor* input = |
| tflite::micro::GetEvalInput(context, node, kActivationsInputTensor); |
| TfLiteEvalTensor* output = |
| tflite::micro::GetEvalOutput(context, node, kActivationsOutputTensor); |
| |
| switch (input->type) { |
| case kTfLiteFloat32: { |
| Relu6Float(tflite::micro::GetTensorShape(input), |
| tflite::micro::GetTensorData<float>(input), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<float>(output)); |
| |
| return kTfLiteOk; |
| } |
| case kTfLiteInt8: { |
| Relu6Quantized(data.zero_int8, data.six_int8, |
| tflite::micro::GetTensorShape(input), |
| tflite::micro::GetTensorData<int8_t>(input), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<int8_t>(output)); |
| return kTfLiteOk; |
| } |
| default: { |
| MicroPrintf("Only float32 is supported currently, got %s", |
| TfLiteTypeGetName(input->type)); |
| return kTfLiteError; |
| } |
| } |
| } |
| |
| } // namespace |
| |
| TFLMRegistration Register_RELU() { |
| return tflite::micro::RegisterOp(ReluInit, ReluPrepare, ReluEval); |
| } |
| |
| TFLMRegistration Register_RELU6() { |
| return tflite::micro::RegisterOp(Relu6Init, Relu6Prepare, Relu6Eval); |
| } |
| |
| } // namespace tflite |