blob: 0475994f7cbd36930fc42ac473eea281b7f41aa3 [file] [log] [blame]
#!/usr/bin/env python3
#
# Copyright (c) 2010-2023 Antmicro
#
# This file is licensed under the MIT License.
# Full license text is available in 'licenses/MIT.txt'.
#
import argparse
import sys
from dataclasses import dataclass
from typing import List, Optional
import csv
import resd
from grammar import SAMPLE_TYPE, BLOCK_TYPE
@dataclass
class Mapping:
sample_type: SAMPLE_TYPE
map_from: List[str]
map_to: Optional[List[str]]
channel: int
def remap(self, row):
output = [self._retype(row[key]) for key in self.map_from]
if self.map_to:
output = dict(zip(self.map_to, output))
if isinstance(output, list) and len(output) == 1:
output = int(output[0])
return output
def _retype(self, value):
try:
if all(c.isdigit() for c in value.lstrip('-')):
return int(value)
elif all(c.isdigit() or c == '.' for c in value.lstrip('-')):
return float(value)
elif value[0] == '"' and value[-1] == '"':
return value[1:-1]
except ValueError:
return value
def parse_mapping(mapping):
chunks = mapping.split(':')
if len(chunks) >= 3 and not chunks[2]:
chunks[2] = '_'
if not all(chunks) or (len(chunks) < 2 or len(chunks) > 4):
print(f'{mapping} is invalid mapping')
return None
possible_types = [type_ for type_ in SAMPLE_TYPE.encmapping if chunks[0].lower() in type_.lower()]
if not possible_types:
print(f'Invalid type: {chunks[0]}')
print(f'Possible types: {", ".join(SAMPLE_TYPE.ksymapping.values())}')
return None
if len(possible_types) > 1:
print(f'More than one type matches: {", ".join(type_ for _, type_ in possible_types)}')
return None
type_ = possible_types[0]
map_from = chunks[1].split(',')
map_to = chunks[2].split(',') if len(chunks) >= 3 and chunks[2] != '_' else None
channel = int(chunks[3]) if len(chunks) >= 4 else 0
return type_, map_from, map_to, channel
def parse_arguments():
arguments = sys.argv[1:]
entry_parser = argparse.ArgumentParser()
entry_parser.add_argument('-i', '--input', required=True, help='path to csv file')
entry_parser.add_argument('-m', '--map', action='append', type=parse_mapping,
help='mapping in format <type>:<index/label>[:<to_property>:<channel>], multiple mappings are possible')
entry_parser.add_argument('-s', '--start-time', type=int, help='start time (in nanoseconds)')
entry_parser.add_argument('-f', '--frequency', type=float, help='frequency of the data (in Hz)')
entry_parser.add_argument('-t', '--timestamp', help='index/label of a column in the csv file for the timestamps (in nanoseconds)')
entry_parser.add_argument('-o', '--offset', type=int, default=0, help='number of samples to skip from the beginning of the file')
entry_parser.add_argument('-c', '--count', type=int, default=sys.maxsize, help='number of samples to parse')
entry_parser.add_argument('output', nargs='?', help='output file path')
if not arguments or any(v in ('-h', '--help') for v in arguments):
entry_parser.parse_args(['--help'])
sys.exit(0)
split_indices = [i for i, v in enumerate(arguments) if v in ('-i', '--input')]
split_indices.append(len(arguments))
subentries = [arguments[a:b] for a, b in zip(split_indices, split_indices[1:])]
entries = []
for subentry in subentries:
parsed = entry_parser.parse_args(subentry)
if parsed.frequency is None and parsed.timestamp is None:
print(f'{parsed.input}: either frequency or timestamp should be provided')
sys.exit(1)
if parsed.frequency and parsed.timestamp:
print(f'Data will be resampled to {parsed.frequency}Hz based on provided timestamps')
entries.append(parsed)
if entries and entries[-1].output is None:
entry_parser.parse_args(['--help'])
sys.exit(1)
return entries
def map_source(labels, source):
if source is None:
return None
source = int(source) if all(c.isdigit() for c in source) else source
if isinstance(source, int) and 0 <= source < len(labels):
source = labels[source]
if source not in labels:
print(f'{source} is invalid source')
return None
return source
def rebuild_mapping(labels, mapping):
map_from = mapping[1]
for i, src in enumerate(map_from):
src = map_source(labels, src)
if src is None:
return None
map_from[i] = src
return Mapping(mapping[0], map_from, mapping[2], mapping[3])
if __name__ == '__main__':
arguments = parse_arguments()
output_file = arguments[-1].output
resd_file = resd.RESD(output_file)
for group in arguments:
block_type = BLOCK_TYPE.ARBITRARY_TIMESTAMP
resampling_mode = False
if group.frequency is not None:
block_type = BLOCK_TYPE.CONSTANT_FREQUENCY
if group.timestamp is not None:
# In resampling mode we use provided timestamps to generate constant frequency sample blocks.
# It allows to reconstruct RESD stream spanning long time periods from the sparse data.
# The idea is based on the default behavior of RESD, that allows for gaps between RESD blocks.
# On the other side, constant frequency sample blocks contain continuous, densely packed data,
# so we split samples into separate groups that are used to generate separate blocks.
# It is based on a simple heuristic:
# Samples with the same timestamps are grouped together and resampled to the frequency passed from the command line.
# Start time of the generated block is calculated as an offset to the previous timestamp + the initial start-time passed from the command line.
# Therefore for sparse data you often end up with the RESD file that consists of multiple blocks made of just one sample.
# Start time of the block calculated from the provided timestamps is crucial,
# because it translates to the virtual time during emulation, when the first sample from the block appears.
# Gaps can be handled directly in the model using RESD APIs.
# Usual behavior is to provide a default sample or repeat the last sample in the place of gaps.
# If your CSV file contains well spaced samples, it is better to not provide timestamps explicitly
# and generate a single block containing all samples.
resampling_mode = True
with open(group.input, 'rt') as csv_file:
csv_reader = csv.DictReader(csv_file)
labels = mapping = None
timestamp_source = None
to_skip = group.offset
to_parse = group.count
# These fields are used only in resampling mode to keep track of the block's start time.
# In resampling mode, data is automatically split into multiple blocks based on the timestamps.
prev_timestamp = None
start_offset = group.start_time
for row in csv_reader:
if labels is None:
labels = list(row.keys())
mappings = [rebuild_mapping(labels, mapping) for mapping in group.map]
if block_type == BLOCK_TYPE.ARBITRARY_TIMESTAMP or resampling_mode:
timestamp_source = map_source(labels, group.timestamp)
if timestamp_source is None:
sys.exit(1)
if to_skip > 0:
to_skip -= 1
continue
if to_parse == 0:
break
for mapping in mappings:
block = resd_file.get_block_or_create(mapping.sample_type, block_type, mapping.channel)
if block_type == BLOCK_TYPE.CONSTANT_FREQUENCY:
if resampling_mode:
current_sample = mapping.remap(row)
current_timestamp = int(row[timestamp_source])
if prev_timestamp is None:
# First block
prev_timestamp = current_timestamp
block.frequency = group.frequency
block.start_time = start_offset
if current_timestamp != prev_timestamp:
resd_file.flush()
block = resd_file.get_block_or_create(mapping.sample_type, block_type, mapping.channel)
block.frequency = group.frequency
start_offset += (current_timestamp - prev_timestamp) # Gap between blocks
block.start_time = start_offset
block.add_sample(current_sample)
prev_timestamp = current_timestamp
else:
block.add_sample(mapping.remap(row))
else:
block.add_sample(mapping.remap(row), int(row[timestamp_source]))
to_parse -= 1
# In resampling mode, multiple blocks are usually generated from the single input
# so block properties are tracked ad hoc.
if not resampling_mode:
for mapping in mappings:
block = resd_file.get_block(mapping.sample_type, mapping.channel)
if block_type == BLOCK_TYPE.CONSTANT_FREQUENCY:
block.frequency = group.frequency
if group.start_time is not None:
block.start_time = group.start_time
resd_file.flush()