| import matplotlib.pyplot as plt |
| import matplotlib.gridspec as gridspec |
| import pandas as pd |
| |
| from .legend_picker import * |
| from .helpers import * |
| |
| |
| def show_executed_instructions(metricsParser, options, onePlotFigureSize, fontSize): |
| cpus, instructionEntries = metricsParser.get_instructions_entries() |
| fig, ax = plt.subplots(figsize=onePlotFigureSize, constrained_layout=True) |
| |
| instructionLines = _prepare_data(fig, ax, cpus, instructionEntries, 'realTime' if options.real_time else 'virtualTime') |
| |
| handles, labels = ax.get_legend_handles_labels() |
| legend = fig.legend(handles, labels, loc='upper left') |
| |
| fig.suptitle('Executed instructions', fontsize=fontSize) |
| ax.set_xlabel('{} time [ms]'.format('Real' if options.real_time else 'Virtual')) |
| ax.set_ylabel('Number of instructions') |
| |
| set_legend_picker(fig, instructionLines, legend) |
| |
| save_fig(fig, 'instructions.png', options) |
| |
| |
| def _prepare_data(fig, ax, cpus, instructionEntries, columnName): |
| data = pd.DataFrame(instructionEntries, columns=['realTime', 'virtualTime', 'cpuId', 'executedInstruction']) |
| instructionLines = [] |
| |
| for cpuId, cpuName in cpus.items(): |
| entries = data[data['cpuId'] == bytes([cpuId])] |
| if entries.empty: |
| continue |
| line, = ax.plot(entries[columnName], entries['executedInstruction'], label=cpuName) |
| instructionLines.append(line) |
| |
| return instructionLines |