hide:
!!! caution “Caution - under development” We are still validating and fixing specific models. Between bug fixes in flight and releases running behind, we don't expect that you will be able to do a lot of advanced things without using nightly releases or working with us.
Stay tuned and join the discussion in our [Discord server](https://discord.gg/26P4xW4)'s `#pytorch` channel.
SHARK-Turbine offers a tight integration between compatible versions of IREE, torch-mlir, and PyTorch.
Both just-in-time (JIT) and ahead-of-time (AOT) workflows are supported:
graph LR accTitle: PyTorch integration overview accDescr { PyTorch programs can be optimized within a Python session with SHARK-Turbine's just-in-time tools. PyTorch programs can be exported out of Python to native binaries using SHARK-Turbine's ahead-of-time export toolkit. } subgraph Python pytorch(PyTorch) subgraph turbine [SHARK-Turbine] jit("Eager execution (JIT)") aot("Export toolkit (AOT)") end pytorch --> jit jit --> pytorch pytorch --> aot end subgraph Native binary(["binary (.vmfb)"]) end aot -.-> binary
Install Turbine and its requirements:
python -m pip install shark-turbine
Just-in-time integration allows for Python code using TorchDynamo to optimize PyTorch models/functions using IREE, all within an interactive Python session.
graph TD accTitle: PyTorch JIT workflow overview accDescr { Programs start as either PyTorch nn.Module objects or callable functions. Programs are compiled into optimized modules using torch.compile. Within torch.compile, Dynamo runs the program through Turbine and IREE. } subgraph Python input([nn.Module / function]) subgraph compile ["torch.compile()"] direction LR dynamo{{TorchDynamo}} turbine{{SHARK-Turbine}} iree{{IREE}} dynamo --> turbine --> iree end output([Optimized module]) input --> compile --> output end
For deployment outside of Python, see the ahead-of-time sections below.
Turbine integrates into PyTorch as a custom backend for torch.compile.
Behind the scenes, PyTorch captures the structure of the input model into a computation graph and feeds that graph through to the selected backend compiler.
import torch # Define the `nn.Module` or Python function to run. class LinearModule(torch.nn.Module): def __init__(self, in_features, out_features): super().__init__() self.weight = torch.nn.Parameter(torch.randn(in_features, out_features)) self.bias = torch.nn.Parameter(torch.randn(out_features)) def forward(self, input): return (input @ self.weight) + self.bias linear_module = LinearModule(4, 3) # Compile the program using the turbine backend.(1) opt_linear_module = torch.compile(linear_module, backend="turbine_cpu") # Use the compiled program as you would the original program. args = torch.randn(4) turbine_output = opt_linear_module(args)
| Code samples | |
|---|---|
| JIT compilation notebook | |
| Simple MLP eager | examples/eager_mlp/mlp_eager_simple.py |
The ahead-of-time toolkit allows developers to define a program‘s structure in Python and then export deployment-ready artifacts that can be used in IREE’s deployment configurations via the API bindings.
For simple models, a one-shot export API is available.
graph LR accTitle: PyTorch simple AOT workflow overview accDescr { Programs start as PyTorch nn.Module objects. Modules are exported using the "aot" API. Exported outputs are then compiled to .vmfb files with executable binaries. } subgraph Python input([nn.Module]) export(["ExportOutput (MLIR)"]) input -- "aot.export()" --> export end subgraph Native binary(["binary (.vmfb)"]) end export -. "compile()" .-> binary
import iree.runtime as ireert import numpy as np import shark_turbine.aot as aot import torch # Define the `nn.Module` to export. class LinearModule(torch.nn.Module): def __init__(self, in_features, out_features): super().__init__() self.weight = torch.nn.Parameter(torch.randn(in_features, out_features)) self.bias = torch.nn.Parameter(torch.randn(out_features)) def forward(self, input): return (input @ self.weight) + self.bias linear_module = LinearModule(4, 3) # Export the program using the simple API. example_arg = torch.randn(4) export_output = aot.export(linear_module, example_arg) # Compile to a deployable artifact. binary = export_output.compile(save_to=None) # Use the IREE runtime API to test the compiled program. config = ireert.Config("local-task") vm_module = ireert.load_vm_module( ireert.VmModule.wrap_buffer(config.vm_instance, binary.map_memory()), config, ) input = np.array([1.0, 2.0, 3.0, 4.0], dtype=np.float32) result = vm_module.main(input) print(result.to_host())
| Code samples | |
|---|---|
| Simple AOT export notebook | |
| Simple MLP export | examples/aot_mlp/mlp_export_simple.py |
For more complex models, an underlying advanced API is available that gives access to more features.
graph LR accTitle: PyTorch advanced AOT workflow overview accDescr { Programs are represented using the aot.CompiledModule class. CompiledModules can extend nn.Module objects, export globals, and set shapes and dtypes for each function. Modules are exported using the "aot" API. Exported outputs are then compiled to .vmfb files with executable binaries. } subgraph Python compiledmodule("aot.CompiledModule\n\n- extend nn.Module\n- export globals\n- set shapes/dtypes") export(["ExportOutput (MLIR)"]) compiledmodule -- "aot.export()" --> export end subgraph Native binary(["binary (.vmfb)"]) end export -. "compile()" .-> binary
Advanced export workflows can use the aot.CompiledModule class to define and constrain the structure of a program prior to compiling it.
import shark_turbine.aot as aot # A minimal program, with no functions or variables. class BasicModule(aot.CompiledModule): ... # Create an instance of the program and convert it to MLIR. from iree.compiler.ir import Context instance = BasicModule(context=Context()) module_str = str(aot.CompiledModule.get_mlir_module(instance)) print(module_str) # module @basic { # }
Exported functions are the API entry points into a compiled program.
Simple feed-forward neural networks used for inference may have a single exported function (typically called “forward”), while more complex programs can have multiple computation functions, initialization functions, “backward” methods for training, state management functions, debugging functions, etc.
Each instance method on a aot.CompiledModule-derived class is exported. These instance methods can include calls to other aot components, such as aot.jittable compute functions:
class GetOnesModule(aot.CompiledModule): @aot.jittable def compute_ones(): return torch.ones(3) def get_ones(self): return self.compute_ones()
Instance methods can use aot.AbstractTensor to specify data types:
class IntSumModule(aot.CompiledModule): @aot.jittable def compute_sum(a, b): return a + b def sum_int32( self, a=aot.AbstractTensor(2, dtype=torch.int32), b=aot.AbstractTensor(2, dtype=torch.int32), ): return self.compute_sum(a, b)
Shapes can be made dynamic using aot.AbstractTensor and aot.jittable constraints:
class DynamicSumModule(aot.CompiledModule): @aot.jittable def compute_sum(a, b): return a + b def sum_dynamic( self, a=aot.AbstractTensor(None), b=aot.AbstractTensor(None), ): return self.compute_sum( a, b, constraints=[ a.dynamic_dim(0) == b.dynamic_dim(0), ], )
Global variables are used to represent persistent state within a program instance.
For example, they can be used to represent the weights and biases in a neural network, and exporting these as mutable variables can allow for setting their values independently at runtime.
Individual globals can be exported using aot.export_global():
state_example = torch.tensor(0, dtype=torch.int32) update_example = torch.tensor(0, dtype=torch.int32) class SampleModule(aot.CompiledModule): value = aot.export_global(state_example, mutable=True) def get_value(self): return self.value def update_value(self, new_value=aot.abstractify(update_example)): self.value = new_value
All named parameters on a nn.Module can be exported using export_parameters():
class SimpleParams(torch.nn.Module): def __init__(self): super().__init__() self.classifier = torch.nn.Linear(20, 30) def forward(self, x): return self.classifier(x) m = SimpleParams() class SimpleParamsModule(aot.CompiledModule): params = aot.export_parameters(m) compute = aot.jittable(m.forward) def run(self, x=aot.AbstractTensor(128, 20)): return self.compute(x) # torch.nn.Linear has 'weight' and 'bias' variables: # https://pytorch.org/docs/stable/generated/torch.nn.Linear.html # Add getters for both exported parameters. def get_weight(self): return self.params["classifier.weight"] def get_bias(self): return self.params["classifier.bias"]
| Code samples | |
|---|---|
| Advanced AOT export notebook | |
| PyTorch dynamic shapes notebook | |
| AOT unit tests | tests/aot/ |
| Dynamic MLP export | examples/aot_mlp/mlp_export_dynamic.py |
| stateless llama2 | python/turbine_models/custom_models/stateless_llama.py |
!!! caution “Caution - These are due for migration to SHARK-Turbine.”
| Code samples | |
|---|---|
| (Deprecated) Inference on BERT |
A small (~100-250KB), self-contained binary can be built for deploying to resource-constrained environments without a Python interpreter.
| Example scripts |
|---|
| Basic Inference and Training Example |
| Native On-device Training Example |