commit | eb0d678894aa6ebb20b056d0f09bad3a16d5d26c | [log] [tgz] |
---|---|---|
author | Han-Chung Wang <hanchung@google.com> | Fri Apr 08 11:14:31 2022 -0700 |
committer | GitHub <noreply@github.com> | Fri Apr 08 11:14:31 2022 -0700 |
tree | d2d62053d88b91dd2c4d2dc137dfe5c79bc6febd | |
parent | 70949187a7587ef7e0b51d6bd6b06b193364591a [diff] |
Improve compilation time and execution time for quantized matmul on ARM (#8815) The compilation time is cut from 5.5 mins to 1.3 mins. Perf improvements (sampled from MobileBert Int8): Before: ``` ----------------------------------------------------------------------------------------------- Benchmark Time CPU Iterations ----------------------------------------------------------------------------------------------- BM_matmul_i8i8i32_384x128x128/process_time/real_time 0.954 ms 0.933 ms 738 BM_matmul_i8i8i32_384x512x128/process_time/real_time 3.73 ms 3.65 ms 187 BM_matmul_i8i8i32_384x384x32/process_time/real_time 1.12 ms 1.09 ms 628 BM_matmul_i8i8i32_384x128x512/process_time/real_time 3.68 ms 3.60 ms 190 BM_matmul_i8i8i32_384x32x384/process_time/real_time 0.758 ms 0.741 ms 922 BM_matmul_i8i8i32_384x512x384/process_time/real_time 11.7 ms 11.4 ms 60 BM_matmul_i8i8i32_384x2x512/process_time/real_time 0.137 ms 0.133 ms 5106 ``` After: ``` ----------------------------------------------------------------------------------------------- Benchmark Time CPU Iterations ----------------------------------------------------------------------------------------------- BM_matmul_i8i8i32_384x128x128/process_time/real_time 0.728 ms 0.711 ms 968 BM_matmul_i8i8i32_384x512x128/process_time/real_time 2.80 ms 2.74 ms 249 BM_matmul_i8i8i32_384x384x32/process_time/real_time 0.680 ms 0.663 ms 1029 BM_matmul_i8i8i32_384x128x512/process_time/real_time 2.63 ms 2.57 ms 266 BM_matmul_i8i8i32_384x32x384/process_time/real_time 0.521 ms 0.509 ms 1345 BM_matmul_i8i8i32_384x512x384/process_time/real_time 7.99 ms 7.82 ms 88 BM_matmul_i8i8i32_384x2x512/process_time/real_time 0.146 ms 0.142 ms 4789 ``` Fixes https://github.com/google/iree/issues/8734
IREE (Intermediate Representation Execution Environment, pronounced as “eerie”) is an MLIR-based end-to-end compiler and runtime that lowers Machine Learning (ML) models to a unified IR that scales up to meet the needs of the datacenter and down to satisfy the constraints and special considerations of mobile and edge deployments.
See our website for project details, user guides, and instructions on building from source.
IREE is still in its early phase. We have settled down on the overarching infrastructure and are actively improving various software components as well as project logistics. It is still quite far from ready for everyday use and is made available without any support at the moment. With that said, we welcome any kind of feedback on any communication channels!
See our website for more information.
IREE is licensed under the terms of the Apache 2.0 License with LLVM Exceptions. See LICENSE for more information.