Strided pack/unpack ukernels (#17516)

The pack ukernel gains the ability to support inner-strided sources, and
the unpack ukernel gains the ability to support inner-strided
destinations.

Note that the pack and unpack ukernels both use a small temporary buffer
to decouple source vs destination layout aspects, limiting the
combinatorics. The inner-striding aspect here is local to the "2D" side,
orthogonal to the "4D" side which is what we have architecture specific
code paths for. The "2D" side was handled by generic loops with generic
memcpy/memset primitives. What changes here is that now we need a
"memcpy with stride on either src or dst".

This is implemented as scalar loops. I tried using AVX-512
gather/scatter instructions, but that turned out 2x slower than a scalar
loop on AMD Zen4 where they are micro-coded, and the Intel documentation
suggests a very high cost there too.

Fixes #17507.

Signed-off-by: Benoit Jacob <jacob.benoit.1@gmail.com>
17 files changed
tree: 5923f22a9d955a02d555b14444b02e05e8689f6a
  1. .devcontainer/
  2. .github/
  3. build_tools/
  4. compiler/
  5. docs/
  6. experimental/
  7. integrations/
  8. lib/
  9. llvm-external-projects/
  10. runtime/
  11. samples/
  12. tests/
  13. third_party/
  14. tools/
  15. .bazel_to_cmake.cfg.py
  16. .bazelignore
  17. .bazelrc
  18. .bazelversion
  19. .clang-format
  20. .dockerignore
  21. .git-blame-ignore-revs
  22. .gitignore
  23. .gitmodules
  24. .yamllint.yml
  25. AUTHORS
  26. BUILD.bazel
  27. CITATION.cff
  28. CMakeLists.txt
  29. configure_bazel.py
  30. CONTRIBUTING.md
  31. LICENSE
  32. MAINTAINERS.md
  33. README.md
  34. RELEASING.md
  35. WORKSPACE
README.md

IREE: Intermediate Representation Execution Environment

IREE (Intermediate Representation Execution Environment, pronounced as “eerie”) is an MLIR-based end-to-end compiler and runtime that lowers Machine Learning (ML) models to a unified IR that scales up to meet the needs of the datacenter and down to satisfy the constraints and special considerations of mobile and edge deployments.

See our website for project details, user guides, and instructions on building from source.

CI Status IREE Discord Status

Project Status

IREE is still in its early phase. We have settled down on the overarching infrastructure and are actively improving various software components as well as project logistics. It is still quite far from ready for everyday use and is made available without any support at the moment. With that said, we welcome any kind of feedback on any communication channels!

Communication Channels

Related Project Channels

  • MLIR topic within LLVM Discourse: IREE is enabled by and heavily relies on MLIR. IREE sometimes is referred to in certain MLIR discussions. Useful if you are also interested in MLIR evolution.

Architecture Overview

IREE Architecture IREE Architecture

See our website for more information.

Presentations and Talks

Community meeting recordings: IREE YouTube channel

  • 2021-06-09: IREE Runtime Design Tech Talk (recording and slides)
  • 2020-08-20: IREE CodeGen: MLIR Open Design Meeting Presentation (recording and slides)
  • 2020-03-18: Interactive HAL IR Walkthrough (recording)
  • 2020-01-31: End-to-end MLIR Workflow in IREE: MLIR Open Design Meeting Presentation (recording and slides)

License

IREE is licensed under the terms of the Apache 2.0 License with LLVM Exceptions. See LICENSE for more information.