We are in the progress of replacing the legacy benchmark suites. Currently the new benchmark suites only support x86_64
, CUDA
, and compilation statistics
benchmarks. For working with the legacy benchmark suites, see IREE Benchmarks (Legacy).
IREE Benchmarks Suites is a collection of benchmarks for IREE developers to track performance improvements/regressions during development.
The benchmark suites are run for each commit on the main branch and the results are uploaded to https://perf.iree.dev for regression analysis (for the current supported targets). On pull requests, users can write benchmarks: x86_64,cuda,comp-stats
(or a subset) at the bottom of the PR descriptions and re-run the CI workflow to trigger the benchmark runs. The results will be compared with https://perf.iree.dev and post in the comments.
Information about the definitions of the benchmark suites can be found in the IREE Benchmark Suites Configurations.
Install iree-import-tf
and iree-import-tflite
in your Python environment (see Tensorflow Integration and TFLite Integration).
Configure IREE with -DIREE_BUILD_E2E_TEST_ARTIFACTS=ON
:
cmake -GNinja -B "${IREE_BUILD_DIR?}" -S "${IREE_REPO?}" \ -DCMAKE_BUILD_TYPE=RelWithDebInfo \ -DCMAKE_C_COMPILER=clang \ -DCMAKE_CXX_COMPILER=clang++ \ -DIREE_ENABLE_LLD=ON \ -DIREE_BUILD_E2E_TEST_ARTIFACTS=ON
Build the benchmark suites and tools:
cmake --build "${IREE_BUILD_DIR?}" --target \ iree-e2e-test-artifacts \ iree-benchmark-module export E2E_TEST_ARTIFACTS_DIR="${IREE_BUILD_DIR?}/e2e_test_artifacts"
Export the execution benchmark config:
build_tools/benchmarks/export_benchmark_config.py execution > "${E2E_TEST_ARTIFACTS_DIR?}/exec_config.json"
Run benchmarks (currently only support running on a Linux host):
build_tools/benchmarks/run_benchmarks_on_linux.py \ --normal_benchmark_tool_dir="${IREE_BUILD_DIR?}/tools" \ --e2e_test_artifacts_dir="${E2E_TEST_ARTIFACTS_DIR?}" \ --execution_benchmark_config="${E2E_TEST_ARTIFACTS_DIR?}/exec_config.json" \ --target_device_name="<target_device_name, e.g. c2-standard-16>" \ --output="${E2E_TEST_ARTIFACTS_DIR?}/benchmark_results.json" \ --verbose \ --cpu_uarch="<host CPU uarch, e.g. CascadeLake>" # Traces can be collected by adding: # --traced_benchmark_tool_dir="${IREE_TRACED_BUILD_DIR?}/tools" \ # --trace_capture_tool=/path/to/iree-tracy-capture \ # --capture_tarball=captured_tracy_files.tar.gz
Note that:
<target_device_name>
selects a benchmark group targets a specific device:c2-standard-16
for x86_64 CPU benchmarks.a2-highgpu-1g
for NVIDIA GPU benchmarks.--cpu_uarch
needs to be provided and only CascadeLake
is available currently.Filters can be used to select the benchmarks:
build_tools/benchmarks/run_benchmarks_on_linux.py \ --normal_benchmark_tool_dir="${IREE_BUILD_DIR?}/tools" \ --e2e_test_artifacts_dir="${E2E_TEST_ARTIFACTS_DIR?}" \ --execution_benchmark_config="${E2E_TEST_ARTIFACTS_DIR?}/exec_config.json" \ --target_device_name="c2-standard-16" \ --output="${E2E_TEST_ARTIFACTS_DIR?}/benchmark_results.json" \ --verbose \ --cpu_uarch="CascadeLake" \ --model_name_regex="MobileBert*" \ --driver_filter_regex='local-task' \ --mode_regex="4-thread"
Export the compilation benchmark config:
build_tools/benchmarks/export_benchmark_config.py compilation > "${E2E_TEST_ARTIFACTS_DIR?}/comp_config.json"
Generate the compilation statistics:
build_tools/benchmarks/collect_compilation_statistics.py \ alpha \ --compilation_benchmark_config=comp_config.json \ --e2e_test_artifacts_dir="${E2E_TEST_ARTIFACTS_DIR?}" \ --build_log="${IREE_BUILD_DIR?}/.ninja_log" \ --output="${E2E_TEST_ARTIFACTS_DIR?}/compile_stats_results.json"
Note that you need to use Ninja to build the benchmark suites as the tool collects information from its build log.
See Generating Benchmark Report.
Each benchmark has its benchmark ID in the benchmark suites, you will see a benchmark ID at:
https://perf.iree.dev/serie?IREE?<benchmark_id>
https://perf.iree.dev/serie?IREE?<benchmark_id>-<metric_id>
benchmark_results.json
and compile_stats_results.json
run_config_id
gen_config_id
diff_local_benchmarks.py
, each benchmark has the link to its https://perf.iree.dev URL, which includes the benchmark ID.If you don't have artifacts locally, see Fetching Benchmark Artifacts from CI to find the GCS directory of the CI artifacts. Then fetch the needed files:
# Get ${E2E_TEST_ARTIFACTS_DIR_URL} from "Fetching Benchmark Artifacts from CI". export E2E_TEST_ARTIFACTS_DIR="e2e_test_artifacts" # Download all artifacts mkdir "${E2E_TEST_ARTIFACTS_DIR?}" gcloud storage cp -r "${E2E_TEST_ARTIFACTS_DIR_URL?}" "${E2E_TEST_ARTIFACTS_DIR?}"
Run the helper tool to dump benchmark commands from benchmark configs:
build_tools/benchmarks/benchmark_helper.py dump-cmds \ --execution_benchmark_config="${E2E_TEST_ARTIFACTS_DIR?}/execution-benchmark-config.json" \ --compilation_benchmark_config="${E2E_TEST_ARTIFACTS_DIR?}/compilation-benchmark-config.json" \ --e2e_test_artifacts_dir="${E2E_TEST_ARTIFACTS_DIR?}" \ --benchmark_id="<benchmark_id>"
The commands below output the full list of execution and compilation benchmarks, including the benchmark names and their flags:
build_tools/benchmarks/export_benchmark_config.py execution > "${E2E_TEST_ARTIFACTS_DIR?}/exec_config.json" build_tools/benchmarks/export_benchmark_config.py compilation > "${E2E_TEST_ARTIFACTS_DIR?}/comp_config.json" build_tools/benchmarks/benchmark_helper.py dump-cmds \ --execution_benchmark_config="${E2E_TEST_ARTIFACTS_DIR?}/exec_config.json" \ --compilation_benchmark_config="${E2E_TEST_ARTIFACTS_DIR?}/comp_config.json"
On the commit of the benchmark run, you can find the list of the workflow jobs by clicking the green check mark. Click any job starts with CI /
:
On the CI page, click Summary
on the top-left to open the summary page. Scroll down and the links to artifacts are listed in a section titled “Artifact Links”. Paste the content in your shell to define all needed variables for the following steps:
To fetch files from the GCS URL, the gcloud CLI tool (https://cloud.google.com/sdk/docs/install) can list the directory contents and download files (see https://cloud.google.com/sdk/gcloud/reference/storage for more usages). If you want to use CI artifacts to reproduce benchmarks locally, see Find Compile and Run Commands to Reproduce Benchmarks.
Assume you get the GCS URL variables from Get URLs of GCS artifacts.
Download artifacts:
# The GCS directory has the same structure as your local ${IREE_BUILD_DIR?}/e2e_test_artifacts. gcloud storage ls "${E2E_TEST_ARTIFACTS_DIR_URL?}" # Download all source and imported MLIR files: gcloud storage cp "${E2E_TEST_ARTIFACTS_DIR_URL?}/*.mlir" "<target_dir>"
Execution and compilation benchmark configs can be downloaded at:
# Execution benchmark config: gcloud storage cp \ "${E2E_TEST_ARTIFACTS_DIR_URL?}/execution-benchmark-config.json" \ "${E2E_TEST_ARTIFACTS_DIR?}/exec_config.json" # Compilation benchmark config: gcloud storage cp \ "${E2E_TEST_ARTIFACTS_DIR_URL?}/compilation-benchmark-config.json" \ "${E2E_TEST_ARTIFACTS_DIR?}/comp_config.json"
Benchmark raw results and traces can be downloaded at:
# Execution benchmark raw results gcloud storage cp "${EXECUTION_BENCHMARK_RESULTS_DIR_URL?}/benchmark-results-*.json" . # Execution benchmark traces gcloud storage cp "${EXECUTION_BENCHMARK_RESULTS_DIR_URL?}/benchmark-traces-*.tar.gz" . # Compilation benchmark results gcloud storage cp "${COMPILATION_BENCHMARK_RESULTS_URL?}" .