Add e2e tests for FA2 (#16953)
Add CPU backend e2e tests for FA2
diff --git a/tests/e2e/linalg_ext_ops/attention.mlir b/tests/e2e/linalg_ext_ops/attention.mlir
index 50fb804..f5cea4d 100644
--- a/tests/e2e/linalg_ext_ops/attention.mlir
+++ b/tests/e2e/linalg_ext_ops/attention.mlir
@@ -1,14 +1,97 @@
-func.func @attention() {
+func.func @attention1x3x4() {
+ %init = tensor.empty() : tensor<1x3x4xf32>
+ %query = util.unfoldable_constant dense<[[[0.1, 0.2, 0.3, 0.4],
+ [0.5, 0.6, 0.7, 0.8],
+ [0.9, 1.0, 1.1, 1.2]]]> : tensor<1x3x4xf32>
+
+ %key = util.unfoldable_constant dense<[[[0.1, 0.2, 0.3, 0.4],
+ [0.5, 0.6, 0.7, 0.8],
+ [0.9, 1.0, 1.1, 1.2]]]> : tensor<1x3x4xf32>
+ %value = util.unfoldable_constant dense<[[[0.1, 0.2, 0.3, 0.4],
+ [0.5, 0.6, 0.7, 0.8],
+ [0.9, 1.0, 1.1, 1.2]]]> : tensor<1x3x4xf32>
+ %scale = arith.constant 0.5 : f32
+ %1 = iree_linalg_ext.attention ins(%query, %key, %value, %scale : tensor<1x3x4xf32>,
+ tensor<1x3x4xf32>, tensor<1x3x4xf32>, f32) outs(%init : tensor<1x3x4xf32>) -> tensor<1x3x4xf32>
+ check.expect_almost_eq_const(
+ %1,
+ dense<[[[0.5530, 0.6530, 0.7530, 0.8530],
+ [0.6328, 0.7328, 0.8328, 0.9328],
+ [0.7011, 0.8011, 0.9011, 1.0011]]]> : tensor<1x3x4xf32>
+ ) : tensor<1x3x4xf32>
+ return
+}
+
+func.func @attention1x4x4() {
%init = tensor.empty() : tensor<1x4x4xf32>
- %query = util.unfoldable_constant dense<1.0> : tensor<1x4x4xf32>
- %key = util.unfoldable_constant dense<0.5> : tensor<1x4x4xf32>
- %value = util.unfoldable_constant dense<2.0> : tensor<1x4x4xf32>
- %scale = arith.constant 1.0 : f32
+ %query = util.unfoldable_constant dense<[[[0.1, 0.2, 0.3, 0.4],
+ [0.5, 0.6, 0.7, 0.8],
+ [0.9, 1.0, 1.1, 1.2],
+ [1.3, 1.4, 1.5, 1.6]]]> : tensor<1x4x4xf32>
+ %key = util.unfoldable_constant dense<[[[0.1, 0.2, 0.3, 0.4],
+ [0.5, 0.6, 0.7, 0.8],
+ [0.9, 1.0, 1.1, 1.2],
+ [1.3, 1.4, 1.5, 1.6]]]> : tensor<1x4x4xf32>
+ %value = util.unfoldable_constant dense<[[[0.1, 0.2, 0.3, 0.4],
+ [0.5, 0.6, 0.7, 0.8],
+ [0.9, 1.0, 1.1, 1.2],
+ [1.3, 1.4, 1.5, 1.6]]]> : tensor<1x4x4xf32>
+ %scale = arith.constant 0.5 : f32
%1 = iree_linalg_ext.attention ins(%query, %key, %value, %scale : tensor<1x4x4xf32>,
tensor<1x4x4xf32>, tensor<1x4x4xf32>, f32) outs(%init : tensor<1x4x4xf32>) -> tensor<1x4x4xf32>
check.expect_almost_eq_const(
%1,
- dense<[[[2.0, 2.0, 2.0, 2.0], [2.0, 2.0, 2.0, 2.0], [2.0, 2.0, 2.0, 2.0], [2.0, 2.0, 2.0, 2.0]]]> : tensor<1x4x4xf32>
+ dense<[[[0.7989, 0.8989, 0.9989, 1.0989],
+ [0.9419, 1.0419, 1.1419, 1.2419],
+ [1.0537, 1.1537, 1.2537, 1.3537],
+ [1.1329, 1.2329, 1.3329, 1.4329]]]> : tensor<1x4x4xf32>
) : tensor<1x4x4xf32>
return
}
+
+func.func @attention3x3x4() {
+ %init = tensor.empty() : tensor<3x3x4xf32>
+ %query = util.unfoldable_constant dense<[[[-1.5256, -0.7502, -0.6540, -1.6095],
+ [-0.6092, -0.9798, -1.6091, -0.7121],
+ [ 0.4676, -0.6970, -1.1608, 0.6995]],
+ [[ 0.8657, 0.2444, -0.6629, 0.8073],
+ [-0.1759, -2.2456, -1.4465, 0.0612],
+ [-0.7735, 0.1991, 0.0457, 0.1530]],
+ [[-0.1110, 0.2927, -0.1578, -0.0288],
+ [ 1.1422, 0.2486, -1.7754, -0.0255],
+ [ 1.6103, -0.7040, -0.1853, -0.9962]]]> : tensor<3x3x4xf32>
+ %key = util.unfoldable_constant dense<[[[-0.6092, -0.9798, -1.6091, -0.7121],
+ [-0.7773, -0.2515, -0.2223, 1.6871],
+ [ 0.4676, -0.6970, -1.1608, 0.6995]],
+ [[ 0.8657, 0.2444, -0.6629, 0.8073],
+ [-0.7981, -0.1316, 1.8793, -0.0721],
+ [-0.7735, 0.1991, 0.0457, 0.1530]],
+ [[-0.1110, 0.2927, -0.1578, -0.0288],
+ [ 1.1422, 0.2486, -1.7754, -0.0255],
+ [ 1.6103, -0.7040, -0.1853, -0.9962]]]> : tensor<3x3x4xf32>
+ %value = util.unfoldable_constant dense<[[[-1.5256, -0.7502, -0.6540, -1.6095],
+ [-0.6092, -0.9798, -1.6091, -0.7121],
+ [ 0.4676, -0.6970, -1.1608, 0.6995]],
+ [[ 0.8657, 0.2444, -0.6629, 0.8073],
+ [-0.1759, -2.2456, -1.4465, 0.0612],
+ [-0.7773, -0.2515, -0.2223, 1.6871]],
+ [[-0.1110, 0.2927, -0.1578, -0.0288],
+ [-0.5962, -1.0055, 0.4285, 1.4761],
+ [ 1.6103, -0.7040, -0.1853, -0.9962]]]> : tensor<3x3x4xf32>
+ %scale = arith.constant 0.5 : f32
+ %1 = iree_linalg_ext.attention ins(%query, %key, %value, %scale : tensor<3x3x4xf32>,
+ tensor<3x3x4xf32>, tensor<3x3x4xf32>, f32) outs(%init : tensor<3x3x4xf32>) -> tensor<3x3x4xf32>
+ check.expect_almost_eq_const(
+ %1,
+ dense<[[[-1.2804, -0.7607, -0.7648, -1.3364],
+ [-1.0711, -0.7572, -0.8238, -1.0953],
+ [-0.4030, -0.7807, -1.1112, -0.3482]],
+ [[ 0.4245, -0.1012, -0.6484, 0.9162],
+ [ 0.1324, -0.2762, -0.6125, 1.0206],
+ [-0.1866, -0.9266, -0.7977, 0.8593]],
+ [[ 0.1917, -0.4658, 0.0510, 0.2561],
+ [-0.1054, -0.8358, 0.2544, 0.8461],
+ [ 0.9522, -0.7023, -0.0358, -0.3303]]]> : tensor<3x3x4xf32>
+ ) : tensor<3x3x4xf32>
+ return
+}