Test that IREE has the correct model and optimizer state after doing one train step and after initialization of parameters. The ground truth is extracted from a JAX model. The MLIR model is generated with IREE JAX.
To regenerate the model together with the test data use
python -m venv generate_mnist.venv source generate_mnist.venv/bin/activate # Add IREE Python to your PYTHONPATH, following # https://openxla.github.io/iree/building-from-source/getting-started/#python-bindings pip install -r generate_test_data_requirements.txt python ./generate_test_data.py
Upload to gcs
tar --remove-files -v -c -f mnist_train.tar *.npz *.mlirbc DIGEST="$(sha256sum mnist_train.tar | awk '{print $1}')" gcloud storage mv mnist_train.tar "gs://iree-model-artifacts/mnist_train.${DIGEST}.tar" sed -i \ "s|MODEL_ARTIFACTS_URL =.*|MODEL_ARTIFACTS_URL = \"https://storage.googleapis.com/iree-model-artifacts/mnist_train.${DIGEST}.tar\"|" \ mnist_train_test.py