Add samples for custom kernel match+replace scripts (#16150)

Custom match and replace scripts is a workflow for injecting custom
dispatches into a module without the need for any surrounding compiler
infrastructure for building the dispatches. Custom kernels are paired
with an externally authored script that matches a subgraph and replaces
the subgraph with a call to the kernel, all delivered from independently valid IR.
The examples here use the transform dialect to do this by adding a plugin
point during preprocessing that will run the user provided specification.

The flow demonstrated here requires authoring two functions per kernel
alongside some additional boilerplate.

1. A `func.func @my_kernel(...)` that takes (typically tensor) arguments
   and includes the call to the custom dispatch inline. This can use any
   of the other custom dispatch approaches.

2. A `transform.named_sequence @my_matcher` that describes the
   compatible subgraph to match.
41 files changed
tree: 6f6ae5f064a683a9f13204f9561039b9b45067a6
  1. .devcontainer/
  2. .github/
  3. build_tools/
  4. compiler/
  5. docs/
  6. experimental/
  7. integrations/
  8. lib/
  9. llvm-external-projects/
  10. runtime/
  11. samples/
  12. tests/
  13. third_party/
  14. tools/
  15. .bazel_to_cmake.cfg.py
  16. .bazelignore
  17. .bazelrc
  18. .bazelversion
  19. .clang-format
  20. .dockerignore
  21. .git-blame-ignore-revs
  22. .gitignore
  23. .gitmodules
  24. .yamllint.yml
  25. AUTHORS
  26. BUILD.bazel
  27. CITATION.cff
  28. CMakeLists.txt
  29. configure_bazel.py
  30. CONTRIBUTING.md
  31. LICENSE
  32. README.md
  33. WORKSPACE
README.md

IREE: Intermediate Representation Execution Environment

IREE (Intermediate Representation Execution Environment, pronounced as “eerie”) is an MLIR-based end-to-end compiler and runtime that lowers Machine Learning (ML) models to a unified IR that scales up to meet the needs of the datacenter and down to satisfy the constraints and special considerations of mobile and edge deployments.

See our website for project details, user guides, and instructions on building from source.

CI Status IREE Discord Status

Project Status

IREE is still in its early phase. We have settled down on the overarching infrastructure and are actively improving various software components as well as project logistics. It is still quite far from ready for everyday use and is made available without any support at the moment. With that said, we welcome any kind of feedback on any communication channels!

Communication Channels

Related Project Channels

  • MLIR topic within LLVM Discourse: IREE is enabled by and heavily relies on MLIR. IREE sometimes is referred to in certain MLIR discussions. Useful if you are also interested in MLIR evolution.

Architecture Overview

IREE Architecture IREE Architecture

See our website for more information.

Presentations and Talks

License

IREE is licensed under the terms of the Apache 2.0 License with LLVM Exceptions. See LICENSE for more information.